
604 Russian Chemical Bulletin, Vol. 47, No. 4, April, 1998 

Kinetics of solid state reactions with a positive feedback 
between the reaction and fracture 

1. A quantitative model for movement of the fracture front 
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A model describing the steady-state kinetics of thermal decomposition in the solid phase 
occurring with a decrease in the solid phase volume and accompanied by fracture in the 
reaction zone is suggested. The model is based on the concept of positive feedback between 
the reaction and fracture. The rate of the fracture front and the size of the product fragments 
formed were calculated. 
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Reaction localization at the interface between the 
reagents and the products is one of  the characteristic 
features of chemical  reactions in the solid phase. 1 It is 
generally assumed that  processes of  thermal decomposi- 
t ion 

As --, S~ + c~, (I) 

e.g., dehydration of  crystal hydrates and decomposition 
of carbonates and sulfites, occur in the reaction zone. 2,3 
Structural discrepancies and /o r  differences in molar vol- 
umes of  the starting reagent and reaction products bring 
about mechanical  stress in the reaction zone, which can 
relax either by plastic deformation or by fracture in the 
reaction zone. 4 Fracture  of  the solid reagent is the most 
common way of  stress relaxation in the solid phase for 
the reaction type in question, s'6 Initially, the reaction 
starts at the original su r face /~ ;  as the component  C is 
removed to the gas phase, the reaction slows down due 
to diffusion hindrance.  7 Fracture of  the surface layer 
depleted of  componen t  C removes the diffusion hin- 
drance, since it forms a new reaction surface. Thus, 
positive feedback is established between the reaction and 
fracture: the react ion propagates to some depth in the 
solid reagent and causes mechanical  stress, which at 
some critical momen t  leads to the fracture of the solid 
reagent in the react ion region and to its rapid termina- 
t ion in the mechanical ly  destroyed solid. Since the 
reaction is heterogeneous,  autocatalysis makes the pro-  
eess localize at the interface separating the solid reagent 
and the product ,  Le., the formation of  a reaction front 
occurs. The positive feedback described above plays the 
role of  reaction autocatalysis.  The reaction is localized 

in the region where fracture occurs. The characteristic 
width of  such a region is determined by the condit ion 
that  the elastic energy accumulated in it is sufficient to 
form a new surface upon fracture. For  this process to 
occur, it is necessary that  other ways of  relaxation of  
mechanical  stress do not compete  considerably with 
fracture. For  the reagent not to relax as a whole body, its 
size should exceed noticeably the diffusion profile width. 
The absence of  fracture in small crystals has been ob- 
served experimental ly for the decomposi t ion of  barium 
hydrooxalate.  6 The crystals of Ba(HC204)2- H20 with 
l inear dimensions not exceeding 50 ~m underwent de- 
hydra t ion  without  cracking, whereas  larger crystals 
cracked on dehydration.  Plastic deformation can play 
the role o f  another  channel for relaxation. Competi t ion 
between plastic deformation and fracture may explain 
the autolocal izat ion of  topochemical  reactions. Plastic 
deformation can prevent the onset of  fracture over the 
entire original surface of  a solid and not allow it to be 
destroyed subsequently. As a result, the reaction virtu- 
ally stops due to diffusion hindrance. I f  fracture has 
nevertheless started at some place of  the original sur- 
face, it can continue,  since it leads to the formation of  
efficient stress concentrators which remove hindrance to 
the development  of  new cracks. Thus, the reaction will 
proceed at the boundary of  the once formed and growing 
fracture zone (nucleus). 

A study of  the dehydrat ion of silicate glue 8 can serve 
as an evident experiment  qualitatively confirming this 
scheme. It is evident in the microphotographs reported 
previously s that the regions of the dehydrat ion product 
(dehydrat ion nuclei) are fracture zones. A comparison of  
the kinetics of  water  evolution with microscopic obser- 
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vations shows unambiguously that the fracture observed 
is not just a side effect of  the dehydration process, but it 
is the fracture that  determines the kinetics, i.e., the 
formation of  fracture zones (nuclei) concludes the in- 
duction period,  and the process accelerates considerably 
after that. 

Models describing the steady-state regime of a pro- 
cess with positive feedback between a reaction which has 
a surface stage and fracture have been suggested previ- 
ously. 9,t~ These models  consider a reaction of  the type 
(1), which occurs in an infinite isotropic body at a fiat 
reaction front moving at a constant rate u and results in 
a decrease in the solid phase volume. The models differ 
in the assumed fracture geometry. In one case, I~ a 
system of parallel  cracks spaced at an equal distance h 
from each other  is considered; in the other case, 9 the 
assumption is made that the fragments splitting off have 
random shapes with characteristic size h. 

In both cases, it is concluded that the steady-state 
process is unambiguously described by the dimensionless 
parameter  s To summarize the results, let us intro- 
duce unified designations: k is the rate constant of  the 
surface react ion (cm s - l ) ;  h0 = 97/(E]32) is the charac- 
teristic size of  fracture; 3' is the specific surface energy of  
fracture (e rgcm-2) ;  E is the Young 's  modulus; 13 = 
/tV/V is the bulk shrinkage due to the reaction (the 
relative decrease in the solid phase volume, where V is 
the original volume of the solid reagent and A V is the 
decrease in this volume upon complete transformation); 
D is the diffusion coefficient of the molecules of com- 
pound C in the solid reagent. The models give qualita- 
tively similar results in the two limiting cases corre- 
sponding to small and large values of this parameter. 

It has been shown 9 that  over the entire range of the 
kho/D parameter,  uh/D ~ 0.9. In the limit kho/D >> 1 

h ~ 1.2h 0, 

and in the limit kho/D << 1 

h ~ holl3(D/k)2/3. 

It has been found le that vh/D ~- 7 for all magnitudes 
of kho/D. At kho/D >> 1 

h = 100h 0, 

while at kho/D << 1 

h ~ 7hol13(D/Ir 

The purpose of  the present work is to create a model  
based on the crack geometry observed experimentaUy. 

Model of  movement of the fracture front 

The development  of  separate cracks has been ob- 
served in experiments on the dehydration of  silicate 
glue. s Each new crack nucleates at the edge of a previ- 

_./ 

Original crystal 

Fracture front 

Fig. 1. Schematic representation of the assumed geometry, of 
cracks. 

ous crack and moves away from the latter in a perpen-  
dicular direction,  i.e., in the  direction of movement  of  
the reaction front. The crack then moves along the edge 
of the previous crack (i.e., along the reaction front) and 
for a markedly longer distance. In this way, relaxation in 
the entire region between the old and new cracks occurs. 
This pattern is observed at the reaction front of the 
nucleus and is visible on the the original surface of the 
reacting body; however, such a geometry of the cracks is 
also possible in the bulk. In other words, we assume that 
the relaxation of  stress in the reaction zone can occur by 
splitting off fragments of  the reagent in the form of 
plates eoplanar to the reaction front (Fig. 1). 

In order to derive an approximate model,  let us 
assume that the longitudinal size of  the plates is infinite. 
This distinguishes the diffusion problem in this model 
from those described previously: 9A~ in our case, the 
problem of  diffusion in a semi-space with a stepwise 
moving border  is being considered. 

Let us consider  a process which occurs between two 
subsequent split-offs, when the boundary remains im- 
mobile. Then account of  the preceding diffusion is 
reduced to introducing the initial condition 

C(x, t = 0) = C~ 

corresponding to a concentrat ion profile which remains 
in the semi-space under consideration at the spli t-off  
moment  ( t =  0). The concentrat ion changes according 
to the following diffusion Eq. (the subscripts indicate 
the corresponding partial derivatives) 

G = DC~, (2) 

while at the boundary the condition corresponding to 
desorption is fulfilled: 

DG = kC, x -- o. (3) 
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The solution is sought in the form 

C(x,t) = f G (x,x')  C~ ". (4) 
0 

The Green function can be obtained using the Laplace 
transformation over time 

S(x,p) = S exp ( -pt)  C(x, Odt. 
0 

This transforms Eq. (2) to 

DS= - p S  = - CO(x), 

while condition (3) changes to 

DSx= kS, x = O. 

This problem is solved by the method of  Green ' s  func- 
tions: 

~o 

S(x) = - f g (x,x ')  C~ ")dx', (5) 
o 

while the corresponding problem on g (x , x ' )  (5 is the 
Dirac delta-function) 

Dgxx - pg = 8(x - x ' )  

with a boundary condition 

og~ = ks, x =  0 

has a nondivergent solution 

=:-2 v J pt -< 
Applying the reverse Laplace transformation to Eq. (5), 
one obtains Eq. (4). where G is a prototype of  - g ,  Le., 

where 

2 
erfc(z) = -~n J'exp(--y2)dy 

is an additionalZerror integral. For a sequence of  diffu- 
sion and fracture cycles to describe a "steady-state" 
reaction, it is necessary that these cycles be identical. To 
guarantee this, it is sufficient to establish the identity of  
the starting conditions in two consecutive cycles. As- 
suming the duration o f  a cycle to be x and the thickness 
of  the splitting layer to be h, one obtains 

C(x+/,,~) = CO(x). 

Taking Eq. (4) into account, one obtains an integral 
equation for C~ 

Co(x) = j G (x+h,x ' )co(x ' )dx ' .  (6) 
0 

Thus, the expression for C~ satisfying the condition of 
identity of  cycles is the eigenfunction of  the G ( x + h , x ' )  
kernel taken at t = ~. The existence of  such own func- 
tions at any positive h and x follows from their physical 
m e a n i n g .  

The determination of  the diffusion problem param- 
eters, h and x, requires two conditions, which have to be 
obtained from an analysis of the fracture problem. The 
first condition is the conservation o f  energy upon frac- 
ture, i.e., the energy, liberated due to the relaxation of 
mechanical stress is consumed for the formation of  a 
new surface. The second condition is related to the 
mechanical stability of  the solid. This implies that in a 
real situation, a stressed layer always contains stress 
concentrators, since the longitudinal size of  plates is not 
infinite but is limited by a network of  cracks. Hence 
splitting occurs immediately as soon as the stressed state 
satisfies the energetic condition for fracture. 

If  W 0 and W 1 are the energies of  the plate before and 
after splitting, respectively, and S is the plate area, it can 
be shown that 

wo- w, = 2st. (7) 

However, certain corrections should be made in this 
approximate expression. In an ideal case, Eq. (7) is valid 
for one-dimensional strips of width h that are separated 
from a semi-plane, i.e., for the problem from which one 
dimension has been excluded, rather than for two- 
dimensional plates. When considering two dimensions 
normal to the direction of front movement ,  it is essential 
to note that during crack propagation, full stress relax- 
ation along two directions simultaneously is impossible. 
During the initial crack propagation, the plate can relax 
along only one direction (normal to the crack front), 
and it is only at the end of splitting that the plate can 
relax as a whole, i.e., along two directions. Since the 
start of fracture has to be considered for the description 
of the critical state, W l will indicate the energy of a 
plate relaxed along only one of  the two longitudinal 
directions (the deformations along the second direction 
remain unchanged). 

Another correction is related to the finiteness of  the 
longitudinal plate size. The network of  cracks confining 
the plates relaxes a part of  the mechanical stress even 
before they split off, hence decreasing the initial energy 
W 0. Assuming that the elastic energy that is liberated is 
consumed for the formation of  the surface of  the net- 
work of cracks noted above (with the same energy 
consumption for fracture, 't), we obtain the simplest way 
of estimating this correction, i.e., by using the full 
surface of  the plate, including the surface of  the edges: 

2S-~  20..7, ct ~ 1 + 2h/L, 

where L is the characteristic longitudinal size of  the 
plates. Generally speaking, it is possible to determine 
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the magnitude of ct by solving the problems according to 
ttie elasticity and fracture theories, but because of their  
complexity,  ct will be considered as a phenomenological  
parameter.  Thus, we obtain the condition for energy 
conservation in the final form: 

w o - w~ = 2~&. (8) 

To calculate the energy of  a stressed plate, it is 
necessary to know the components  of  the tensors of 
deformation,  cO., and stress, o/j. We are considering 
plane-stressed states, since the stress in the direction 
normal to the plate surface is absent. Deformation is 
caused by isotropic bulk shrinkage and is uniformly 
distributed in the plane of  the plate, therefore the defor- 
mation tensor has only diagonal components  depending 
only on the x coordinate.  Hence,  the stress tensor, 
which depends on the deformation tensor according to 
the Hooke "s law, also has only diagonal components.  
According to the condit ion of plane stress, there are just 
two of  these components .  

In the initial state, the stresses and deformations 
along both directions in the plane of  the plate are equa l  
Let the deformat ion in the plane of the plate be 13"%, 
where 13' = 1 - ( 1 -  13) 1/3 is the linear shrinkage (at 
13 << 1, the following approximation can be used: 13" = 
13/3) and g0 is a value that can vary from 0 to I. Then, 
calculating the corresponding stress according to the 
Hooke ' s  law, one can obtain the following expression 
for the energy: 

i ,'2 h w o =  s ' ~ ' J  d~ = S El ;"  [~?)dx (9) 
0 2 9 ( l -  v )  0 ' 

where v is the Poisson modulus. Let us assume for 
definiteness that  the local shrinkage depends linearly on 
the local degree of  transformation. This relates to the 
situation in which the reaction zone is a solid solution of 
the reaction product  in the original reagent. Thus, 

= I - C ( x )  

(the concentrat ion is normalized to the starting value, so 
that C ~ 1 at x--~ oo). 

As a result, if  a spli t-off plate is allowed to relax 
while keeping the deformation along one of the direc- 
tions in its plane unchanged,  the plate will shrink and 
bend (into a cylindrical  surface) along the other direc- 
tion. This shrinkage and bending will also be uniform, as 
they are caused by originally uniform stress. If  the 
de fo rma t ion  caused  by shr inkage and bending  is 
[3"(1 + v)~t, the W l energy is expressed as follows: 

wt = s ~ ! [ ( e 0 -  ~)2(1 + v)2 + ~2(1-Q)~x .  (to) 

Uniform shrinkage and bending can be represented in 
the form 

,~l = 1 - ( C )  + ( h / 2  - x ) / &  

which is analogous to the pattern of deformations in a 
rod subjected to uniform compression along its axis and 
bending with a constant curvature radius. The relaxation 
parameters,  (C) and R, can be determined from the 
condit ion of  minimum energy W t. It follows from the 
OWI/O(C) = 0 and OWl~OR = 0 conditions that 

h 

h 
1 _ 12 ~( 

X - h---r~. 1 - C(x)) (h/2  - x)dx.  

Substituting expressions (9) and (10) into Eq. (8) and 
changing somewhat the expression for ~ (it differs from 
that  defined above only in the dimensionless coeffi- 
cients) 

4c~v(l- v) 
h 0 - ( i+  v)E~ '2 ' 

one obtains 
h 

a -= j [~8 - (~0 -~ , )2 j  d ~ - ' ' "  =h0.  (11) 
0 

This equation is one of the two conditions determining h 
and ~. It signifies the conservation of  energy upon 
fracture. To obtain an expression for the second condi-  
t ion, i.e., mechanical stability, one has to analyze the 
behavior of  the A(h,3) function, which is proport ional  to 
the energy (with a constant proportionali ty coefficient, 

2 (1 -  v) ) liberated upon relaxation of a plate of 

thickness h after the next reaction cycle of  duration 3. It 
can be easily shown that A is a monotone increasing 
function of  ~, as at any depth the degree of transforma- 
tion in the reaction zone and the related stress increase 
with time to approach a certain limit, and the greater 
the initial stress, the higher the energy liberated upon 
relaxation. It can be shown further that at any 3, the A 
function has a maximum at a certain h. In fact, let the 
characteristic width of the diffusion profile (and stress 
profile) be d b y  the moment  ~. Then at h << d, the stress 
is described with good precision by a l inear function o f x  
in the range o f x  from 0 to h. Using the formulas for ( Q ,  
l /R, and ~l presented above, one can obtain 

whence it follows that 

h 

. 4 < x  = 0>h, 
0 

i.e., at h << d, A increases proportionally to h. In the 
other limit,  at h >> d, relaxation almost does not occur 
when a plate is split off, since the stressed layer is much 
thinner than the plate. Calculating the values of (C> and 
1/R for this  limit, one obtains ~ ~ i/h. Thus, for any d 
(and hence for any ~), the ~, function has a maximum at 
a certain h ~ d. It follows from the above considerations 
that  the value of 4, which is everywhere smaller than h 0 
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at the  start of  each cycle (otherwise the condition of 
fracture would be fulfilled at the very start of the cycle), 
increases with t ime. At some moment  x, at h corre- 
sponding to the maximum % this maximum reaches h0, 
and a plate of  thickness h is split off according to the 
condi t ion of  mechanical  stability. Thus, the condition of  
mechanical  stability coincides with the condition of  
maximum A: 

~,~/ah = o. 

Differentiation of  Eq. (11) gives a simple result (the 
terms corresponding to differentiation of  the integrand 
become zero because of  the form of  deformations deter- 
mined by the condit ion of  the minimum elastic energy. 
rri) 

~02(h) - (~(h) - El(h)) 2 = 0. (12) 

Thus, the problem reduces to solving a system of three 
equations, i.e., (6), (I1) ,  and (12). To perform a nu- 
merical  solution, the Eq.s were brought to dimensionless 
form by the following substitutions: 

x ~ h gho 
2~5Z =z, k _  = e, T - ~  =~o, -5 - = e -  

In order  to improve the accuracy of  calculations over the 
entire ranges of  0 and P, the value f =  1 - C was used 
instead of  concentrat ion C. In addition, for convenience 
of  calculations,  integral Eq. (6) was reformulated to a 
concentrat ion profile at the end of the cycle. Taking all 
the changes into account,  the system assumes the form 

r 

. f (x )  = S K ( ~ . , T c ' ) f ( z "  + xo)d ) [ "  + 
0 

+ erfc(z) -- exp(20)~ + 02)erfc(x + O), (13) 

where 

K = ~I_ {exp[-(7~ - ;(.)2] + exp[-(;~ + X')2]~ 

- 20exp[20(Z + ~')  + 02]erfc(z + Z" + 0), 

f 2 ( xo )  - (/Tx.o) + 2( I )  - 3M) 2 = O, 04) 

2x0e(4~ 2 + 3312 - 6~M)  = P, 

where 
x~ 

6fe = J-- f fdx,  
xO 0 

2 ~ 

05) 

Results and Discussion 

The system was solved by iterations with a starting 
p ro f i l e f l ;0  = 0 and a given t. In each iteration, Eq. (13) 

defines a new fiX) profile based on the profile and x 0 
obtained in the previous i teration,  while Eq. (14) serves 
as the condit ion determining x o for the J(;0 obtained. 
Calculations showed that in aH cases, condit ion (14) is 
fulf'dled only in one point corresponding to one of the 
two possible roots, namely, 2(/') = 3M, hence the thick- 
ness of  the spl i t -off  part is de te rmined  unambiguously. 
The sequence of  iterations converges rather quickly to 
the limit to provide J(;0 and x 0 corresponding to a given 
duration of  the cycle, 0. Equat ion (15) determines the P 
parameter  for the cycle. Thus, this  procedure indirectly 
gave the dependences  of  the cycle  duration,  the thick- 
ness of  the plates split off, and the  diffusion profile in 
the reaction zone on the dimensionless  parameter  P, 
which characterizes the ratio of  the  process constants. It 
is important  to note that the values of  P and x 0 deter- 
mined after the first iteration were only a few percent 
different from the values to which  the sequence of  
iterations converged. The main changes in the interme- 
diate results corresponded only to  the "tail" of  the J(7.) 
profile located beyond ;~ = Xo, which gradually becomes 
exponential,  as occurs in the problem with a uniformly 
moving border. This allows one to assume that the 
sequence of  i terations approximate ly  reflects the se- 
quence of  cycles of  the kinetics described,  starting from 
the initial reagent surface. Hence from the start of the 
reaction, the rate of  movement of  the  fracture front and 
the size of  product fragments differ only slightly from 
the stationary values. 

It is convenient to represent the  calculation results as 
dependences of the dimensionless process characteris- 
tics, h/h o and vh/D (where v = h/'r is the mean rate of  
the front), on P. These characterist ics  can easily be 
expressed through the parameters  introduced for the 
calculation: h/h o = 2xoO/P and vh /D  = 4x02. The calcu- 
lation results (Fig. 2) show the existence of  two modes 
corresponding to large and small P values. At P > >  1, h 
approaches its min imum value (-3.6h0) , whence it fol- 
lows that kh/D >> I. The meaning  of  the latter condi- 
tion is simple: it states that a react ion occurring in some 
region with a characteristic size h and involving surface 
and bulk steps is l imited by diffusion. This is clear from 
the fact that h2/D is the character is t ic  t ime of  diffusion 
on the h scale, and h/k  is the characteris t ic  t ime of  a 
reaction, which is l imited by a surface step, in a bulk 
with characteristic size h. In this l imit ,  cycles between 
fracture events involve widening o f  the diffusion profile 
to a critical width, while the m e a n  rate of  the front is 
determined by diffusion for a dis tance ~h 0. 

At P < <  I, the dependence h /h  o ~ 1/1 )2/3 was ob- 
tained, i.e., kh/D ~ pl/3, and hence  kh/D<< 1. In 
contrast to the previous case, this means  that  the reac- 
tion is l imited by the surface step. It is thus clear that 
the condit ion P~/~ << 1 is a more correct  description of  
this limit. Although in this ease the  diffusion itself is not 
the limiting stage in the sense ment ioned  above, the 
result still depends on D, since diffusion determines the 
reaction zone width. 
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log(h/h O) 
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-20 -20 10 lg(khdD ) - 10 0 10 lg(kho/D ) 

Fig. 2. Calculated dependences of h/h o (a) and vh/D (b) on the dimensionless parameter kho/D. 

Thus, simulation in the two limiting cases gave the 
following results: 
at kho/D >> 1, 

h = 3.6h0, vh/D = 5.6; 

and at kho/D << l, 

h = 2.2hol/3(D/k) 2/3, vh/D= 3.9. 

It is evident that the calculation results are qualita- 
tively similar to those derived from the earlier mod- 
els, 9,1~ i.e., the averaged process characte6_stics (v and 
h) are almost insensitive to the fracture pattern selected. 
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