1.7 Hz). Found (%): C, 41.11; H, 4.93; N, 6.80. C14H20Br2N2O2. Calculated (%): C, 41.20; H, 4.94; N, 6.86. syn-exo-10-Bromo-9-nitrosotricyclo[6.2.1.0^{2,7}]undeca-2(7),3,5-triene (4). The interaction of benzonorbornadiene 3 (0.57 g, 4 mmol), EtONO (0.9 g, 12 mmol) in 70 mL of CHCl₃, and PBr₃ (0.54 g, 2 mmol) in 40 mL of CHCl₃ afforded compound 4 (0.78 g, 77%, dimer) as colorless crystals, m.p. 140-141 °C (from MeOH). ¹H NMR (CDCl₃), δ: 2.15 (d, 1 H, anti-C(11)H, ${}^{2}J = -9.9$ Hz); 2.67 (dt, 1 H, syn-C(11)H, ${}^{2}J = -9.9$ Hz, ${}^{4}J = 1.5$ Hz); 3.62 (s, 1 H, C(1)H or C(8)H); 3.76 (s, 1 H, C(8)H or C(1)H); 4.44 (dd, 1 H, C(10)H, ${}^{3}J = 6.7$ Hz, ${}^{4}J = 1.5$ Hz); 4.96 (dd, 1 H, C(9)H, ${}^{3}J = 6.7$ Hz, ${}^{4}J = 1.5$ Hz); 7.15 (m, 2 H, CH arom.); 7.23 (m, 2 H, CH arom.). ¹³C NMR (CDCl₃), 8: 46.7, 47.1, 50.0 (C(1), C(8), C(11)); 53.0 (C-Br); 71.0 (C-N); 122.2, 122.4, 127.5, 127.7, 144.0, 145.0 (C arom.). Found (%): C, 51.91; H, 3.87; N, 5.32. $C_{22}H_{20}Br_2N_2O_2$. Calculated (%): C, 52.40; H, 3.99; N, 5.55.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 96-03-32570).

References

- 1. J. Meinwald, Y. C. Meinwald, and T. N. Baker, J. Am. Chem. Soc., 1963, 85, 2513.
- N. S. Zefirov, N. V. Zyk, Yu. A. Lapin, E. E. Nesterov, and B. I. Ugrak, J. Org. Chem., 1995, 60, 6771.
- E. K. Beloglazkina, V. S. Tyurin, I. D. Titanyuk, N. V. Zyk, and N. S. Zefirov, *Dokl. Akad. Nauk*, 1995, 344, 487 [*Dokl. Chem.*, 1995 (Engl. Transi.)].
- 4. R. C. Fahey, Top. Stereochem., 1968, 3, 237.
- S. V. Vasil'ev, O. T. Burdelev, V. N. Kopranenkov, and L. M. Zakharova, *Zh. Org. Khim*, 1971, 7, 1622 [J. Org. Chem. (USSR), 1971, 7 (Engl. Transl.)].

Received May 22, 1997; in revised form October 1, 1997

Formation of 4-(1,1,1,3,3,3-hexafluoroisopropyl)-5-trifluoromethyl-2H-1,2,3-triazole by the oxidation of dihydrazone of 1,1,1,5,5,5-hexafluoro-4-trifluoromethylpentane-2,3-dione

G. G. Bargamov^{*} and M. D. Bargamova

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation. Fax: +7 (095) 135 5085

Dihydrazone of 1,1,1,5,5,5-hexafluoro-4-trifluoromethylpentane-2,3-dione (1) (for the synthesis, see Ref. 1) in the presence of the $H_2SO_4-P_2O_5$ mixture (molar ratio 3 : 1) at 100-120 °C is oxidized to 4-(1,1,1,3,3,3-hexafluoroisopropyl)-5-trifluoromethyl-2H-1,2,3-triazole (2).

The H_2SO_4 --P_2O_5 mixture has not been previously used for the oxidation of N,N-unsubstituted hydrazones of aliphatic α -diketones. No formation of 2H-1,2,3-triazoles during their oxidation by other reagents was observed. It is noteworthy that α -dihydrazone 1, similarly to other nonfluorinated analogs, is readily hydrolyzed in the presence of concentrated H₂SO₄ to α -ketohydrazone.²

4-(1,1,1,3,3,3-Hexafluoroisopropy)-5-trifluoromethyl-2*H***-1,2,3-triazole (2):** b.p. 75–77 °C (3 Torr). Found (%): N, 14.24. $C_6H_2F_9N_3$. Calculated (%): N, 14.69. ¹⁹F NMR, δ : --14.5 (s, 3 F, CF₃); --9.33 (d, 6 F, (CF₃)₂CH, *J* = 8 Hz). ¹H NMR, δ : 13.0 (br.s, 1 H, NH); 4.5 (hept, 1 H, H(CF₃)₂, *J* = 8 Hz). IR, v/cm⁻¹: 1460 m, 1560 m (unsaturated bonds); 3000 w (CH); 3270 br (NH). MS (EI, 70 eV), *m/z* (*I*_{rel} (%)): 287 [M⁺] (64.81); 268 [M-F]⁺ (38.95); 248 [M-F, HF]⁺ (17.99); 218 [M-CF₃]⁺ (100.00); 199 [M-CF₃, F]⁺ (7.34); 198 [M-CF₃, HF]⁺ (2.08); 168 [M-CF₃, 2 HF]⁺ (56.40); 69 [CF₃]⁺ (60.17).

The MS-GLC method confirmed that compound 2 exists in the form of a single isomer. Based on the 19 F and 1 H NMR and IR spectroscopic data, structure 2 was assigned to the product obtained.

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 192–193, January, 1998.

1066-5285/98/4701-0192\$20.00 °1998 Plenum Publishing Corporation

References

- M. D. Bargamova and L. S. German, Izv. Akad. Nauk SSSR, Ser. Khim., 1991, 1463 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 1302 (Engl. Transl.)].
- 2. M. D. Bargamova, M. Yu. Antipin, L. S. German, and Yu. T. Struchkov, *Dokl. Akad. Nauk*, 1993, **329**, 44 [*Dokl. Chem.*, 1993 (Engl. Transl.)].

A mild synthesis of the [B₁₂H₁₁CO]⁻ anion

I. B. Sivaev,^{a*} V. I. Bregadze,^a and S. Sjöberg^b

 ^aA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation. Fax: +7 (095) 135 5085. E-mail: bre@ineos.ac.ru
^bDepartment of Organic Chemistry, Institute of Chemistry, Uppsala University, Thunbergsvägen 5, Box 531, S-751 21 Uppsala, Sweden. Fax: 46 (18) 50 8542. E-mail: ssj@kemi.uu.se

Key derivatives in the chemistry of the dodecahydrocloso-dodecaborate anion $[B_{12}H_{12}]^{2-}$ (1) are its carbonyl derivatives $[B_{12}H_{11}CO]^{-1}$ (2), 1,7- and 1,12-[B12H10(CO)2], which possess high reactivity and can be used for the synthesis of a variety of anion $[B_{12}H_{12}]^{2-}$ derivatives (acids, ethers, esters, amides, alcohols, amines, isocyanates, etc.).¹ In connection with this, it seems to be promising to use monocarbonyl derivative 2 for the synthesis of biologically active boron-containing compounds, which could be used in boron neutron capture therapy of malignant tumors.² Chemical properties of anion 2 remain almost unstudied, because the only reported method for preparation of [B12H11CO]⁻ is an inconvenient, for laboratory practice, synthesis from acid $(H_3O)_2[B_{12}H_{12}] \cdot nH_2O$ and CO at 1000 atm in the presence of $Co_2(CO)_8$ as the catalyst.³ Only transformation of $[B_{12}H_{11}CO]^-$ to $[B_{12}H_{11}NCO]^{2-}$, when it reacts with sodium azide has been reported.⁴ It is also known⁵ that reaction of decahydro-closo-decaborate anion $[B_{10}H_{10}]^{2-}$ with oxalyl chloride results in formation of monocarbonyl derivative $[2-B_{10}H_9CO]^-$.

We found that reaction of tetrabutylammonium salt of $[B_{12}H_{12}]^{2-}$ with oxalyl chloride in CH_2Cl_2 , carried out under mild conditions at 20 °C and atmospheric pressure, results in quantitative conversion of anion 1 to monocarbonyl derivative $[B_{12}H_{11}CO]^{-}$.

In the IR spectrum of product 2, there are intensive absorption bands at 2507 and 2172 cm^{-1} that are as-

signed to the stretching vibrations of the B-H bonds of the boron skeleton (2480 cm⁻¹ for $[B_{12}H_{12}]^{2-}$) and the $[-C=O]^+$ group, respectively. The ¹¹B NMR spectrum of product 2 consists of three doublets at δ -3.0 (J = 142 Hz), -12.1 (J = 129 Hz), and -12.1 (J = 135 Hz) and a singlet at δ -33.5 (with the integral intensity ratio of 1 : 5 : 5 : 1).

Anion 2 is also formed when oxalyl chloride reacts either with triethylammonium salt $[B_{12}H_{12}]^{2-}$ in MeCN or with tetrabutylammonium salt $[B_{12}H_{12}]^{2-}$ in THF.

Carbonyl derivative 2 is readily hydrated to form the corresponding carboxy derivative $[B_{12}H_{11}COOH]^{2-}$ (3) as indicated by disappearance of the band at 2172 cm⁻¹ and appearance of the absorption band of the carbonyl group at 1660 cm⁻¹ in the IR spectrum. In this case, the

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 193-194, January, 1998.