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ABSTRACT: In this study, the stress based finite element method is coupled with the boundary
element method in two different ways. In the first one, the ordinary distribution matrix is used for

coupling. In the second one, the stress traction equilibrium is used at the interface line of both regions

as a new coupling process. This new coupling procedure is presented without a distribution matrix.

Several case studies are solved for the validation of the developed coupling procedure. The results of

case studies are compared with the distribution matrix coupling, displacement based finite element

method, assumed stress finite element method, boundary element method, ANSYS and analytical

results whenever possible. It is shown that the coupling of the stress traction equilibrium with assumed

stress finite elements gives as accurate results as those by the distribution matrix coupling.
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1 INTRODUCTION

The main purpose of coupling of the finite ele-
ment method (FEM) and boundary element method
(BEM) is to take the advantages of both methods for
the solution of various engineering problems. Both
methods have some advantages in certain applica-
tions. While the BEM gives better results for the
surface type problems like contact problems, FEM is
more effective for the domain type problems.

In this study, the assumed stress finite ele-
ment (SFE) method and the boundary element (BE)
method are coupled using both distribution ma-
trix (DMC) and stress-traction equilibrium equations
(STC). The results of both methods are compared to
each other and other methods and it is observed that
the coupling by the stress-traction equilibrium gives
more accurate stresses.

In the literature, it is seen that Zienkiewicz et
al.l!l are one of the forerunners in studying the cou-
pling process. They discussed the coupling in a gen-
eral context. Later, Kelly et al.?l proposed a method
obtaining the symmetric stiffness matrices of the BE
region which satisfy the equilibrium equation and ap-
plied the method to a number of field problems in fluid
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mechanics. Furthermore Felippal® used the coupling
methods for a three dimensional structure submerged
in an acoustic fluid. Beer!*! developed a general cou-
pled BE and FE program in 1983. A number of special
elements were included for the analysis of shell struc-
tures and joint/interfaces. The same author analysed
the unbounded problems in elastostatics by the cou-
pling method®, He claimed that the BEM is very
efficient for unbounded problems in elastostatics.

The assumed stress finite elements were first pro-
posed by Pian!®!. He derived the element stiffness ma-
trices from an assumed stress distribution. Then Pin
Tongl™ developed a new displacement hybrid finite el-
ement model for solid continua. Pian et al.l®l used a
rational approach for assumed stress finite elements
based on the Hellingner-Reissner principle. The same
author studied the relations between incompatible
displacement models and hybrid stress models!®. He
also proposed a rational approach for choosing stress

terms for hybrid finite element formulations'9,

2 COUPLING PROCESS BY SUB-
REGIONAL TECHNIQUE

Although the subregion is a technique in
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BEMs!! the coupling process may also be thought
as a subregional technique with the problem domain
being divided into the two subdomains as BE and
FE[2. The stress-traction equilibrium approach may
also be considered as a subregion technique due to
the BE and FE subregions and the compatibility con-
ditions on the interface line of two regions which is
similar to the compatibility conditions in the subre-
gion technique.

When the subregional coupling technique is
used, the imaginary constraints, which are explained

imaginary tractions X
by stress-traction
equilibrium ot '

e

real displacements after
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in Fig.1, must be considered at the interface line of the
finite element and boundary element region. There
are three types of boundary conditions. The first one
includes the normal and tangential constraints at the
interface line. The second one contains the normal
constraints at the interface line. The last one includes
only the tangential constraints at the interface. The
type of the problem determines the type of imaginary
boundary constraints. Some case studies are selected
considering these different boundary constraints.

imaginary constraints
at the interface line

applying the imaginary
tractions at the interface line

Fig.1 Imaginary constraints of coupling process for stress-traction equilibrium

2.1 Coupling by Distribution Matrix
The stress vector on an element is written by

Pianl® as follows

S=Rp (1)

where 3 is the stress coeflicients, R the element sur-
face coordinates.

The force and displacement relationship equa-
tion is also written by Pianl®l as follows

Q=kq (2)
where
k=T'H'T
T = R!'LdA
Az

H:/ P'NPdv
14

Equation (1) can be written in a new form by
dividing the stress FEM region into two subregions as

follows

QSFE

Q;FE:‘

where Qgpg is the force vector at the SFE domain,

4dsFE
*

SFE;

(3)

= |ksre  ksFE, |

Qspg, the imaginary internal reaction force vector at
the interface line, ggpy the displacement vector at the
SFE domain, qgpg, the imaginary displacement vec-
tor at the interface line.

The above equation may be solved for imaginary
reaction force vector, Qgpg, .

After finding the imaginary reaction force vector
at the interface line, the distribution matrix, M, may
be used to transform it into the imaginary traction
vector. So the distribution matrix/t! can be used as
follows

Q;FE,— = ngFE,- (4)
Equation (3) can be rewritten in a new form sim-
ilar to the general BE equation using Eq.(4)

Qsrg
tsrg

9SFE
*

SFE;

I Mspg,

(5)

= |ksre  ksFE,

1
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where I is the unit matrix, Mgpg, the distribution
matrix at the interface line, Qgpy, the force vector at
the SFE domain, tipg the imaginary traction vector
at the interface line.

The general BE equation is as follows

Hqg =Gt (6)

It can also be rewritten to include the BE do-
main sub-matrix and interface BE sub-matrix as fol-
lows

thi.
|Hge, Hgg| = |Gge, Gegl tiE’

(7

gBE;
dp

where ¢ is the imaginary traction vector, ggg, the
real displacement vector.

The traction compatibility must be satisfied for
coupling purposes at the interface line as follows

tsre, = —thE (8)

Then Eq.(6) may be solved for the real displace-
ment vector, ggg,. After finding the real displacement
vector at the interface line, the displacement conti-
nuity requirement should be considered for coupling
purposes

dsrE; =~ 9BE; — 4; (9)
As a result, the general coupling equation can
be written using Eqgs.(5) and (7)

ksre ksFE; 0 q‘SIFE
0 Hgg, Hgg ¢
dBE

o o9
0 —GBRE; GBE " '
BE

2.2 Coupling by Stress-Traction

Equilibrium

The coupling procedure is similar to the proce-
dure mentioned in Sec.2.1. The distribution matrix,
however, is not used for transformation.

The imaginary stress components can be found
while writing Eq.(1) in terms of interface and do-
main sub-matrices and considering the imaginary con-
straints at the interface line as shown in Fig.1.

BsrE;
BsrE

*
SsrE;

=|(R .
Sern |(R)sre; (R)sre|

(11)

Then these stress components can be trans-

formed into tractions using stress-tractions equilib-
rium equations as follows

(12)
tr; = (Sym + Syul) x th

yxi

where [, m are directional cosines of the interface, th
is the thickness of the member.

After finding the imaginary tractions at the in-
terface line, the general BE equation can be used to
find the real interface displacements by following the
way shown in Fig.1.

*
BE;

|Hge, Haggl tt
BE

4z, = |Gpe, GsEl (13)
ds

3 CASE STUDIES

Three different cases are used for the validations
of the developed approaches. SFEM refers to the as-
sumed stress finite element, DMC refers to coupling
with distribution matrix and STC refers to coupling
with stress-traction equilibrium.

3.1 Axially Loaded Bar

This is a simple plane stress problem. A thin ax-
ially loaded aluminum bar is considered (E = 70 GPa;
v = 0.3). The dimensions are shown in Fig.2(a).
The SFEM, BEM and coupling models can be seen in
Figs.2(b), 2(c)and 2(d). Axial displacement and axial
stress distributions against the length of the bar are
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Fig.2 (a) Axially loaded bar, (b) Stress
FEM model, (c) BEM model, (d)
Coupling model
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shown in Figs.3 and 4. The results are exactly the g 1000 N
same in all methods. g
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Fig.4 Axial stress distribution along upper
surface of bar

3.2 Cantilever Beam

This case represents a cantilever beam under a
vertical end load (Fig.5(a)). SFEM, BEM and cou-
pling models are shown in Figs.5(b), 5(c) and 5(d).
The beam is made of a steel alloy (E = 210GPa;
v = 0.3). The vertical displacements and axial stress
distributions along the upper surface of the beam can
be seen in Figs.6 and 7. The STC gives more accurate

vertical displacement and axial stress results against
the DMC and displacement based FEM.

3.3 Slideway Base

The slideway base under the action of weight of
the inner part is considered. The material of the base
is the gray cast iron with £ = 100 GPa and v = 0.211.
The whole assembly model is shown in Fig.8. Because

pling model
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Fig.6 Vertical displacement distribution
along upper surface of beam

of the symmetry, a half base part is modelled as shown
in Fig.9. The SFEM, BEM and coupling model are
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Fig.7 Axial stress distribution along up-
per surface of beam
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Fig.8 Slideway under the action of inner

part weight
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Fig.9 Half model of the slideway with
boundary constraints

shown in Figs.10, 11 and 12. The vertical displace-
ment and axial stress distributions on the line AB and
vertical stress distribution on the line CD are shown
in Figs.13, 14 and 15. The BEM stresses on lines AB
and CD are not accurate. This, of course, comes from

Fig.10 Stress FEM model of the slideway
base
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Fig.11 BEM model of the slideway base

Fig.12 Coupling model of the slideway
base

2004

the characteristics of the model. The errors may be
reduced using the integration cells. In this study, how-
ever, the errors are reduced in the coupling results.
The STC coupling results are in good agreement with
SFEM, Displacement FEM and ANSYS against DMC

results.
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Fig.13 The vertical displacement (Uy) dis-
tribution along line AB on the slide-
way base
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Fig.14 The axial stress (Sz) distribution
along line AB on the slideway base
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Fig.15 The vertical stress (Sy) distribution
along line CD on the slideway base

4 CONCLUSION

This study shows that the STC gives more accu-
rate stress results than the DMC even in complicated

Guzelbey IH et al.: Coupling of Assumed SFEM and BEM 81

cases. The reason of this, of course, comes from us-
ing the stresses, obtained by assumed stress finite ele-
ments, to find the nodal tractions at the interface line.
So STC approach may be used safely for more com-
plicated cases. In fact, some more engineering cases
may be considered to show the reliability of the STC.
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