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A B S T R A C T :  In this study, the stress based finite element method is coupled with the boundary 
element method in two different ways. In the first one, the ordinary distribution matrix is used for 
coupling. In the second one, the stress traction equilibrium is used at the interface line of both regions 
as a new coupling process. This new coupling procedure is presented without a distribution matrix. 
Several case studies are solved for the validation of the developed coupling procedure. The results of 
case studies are compared with the distribution matrix coupling, displacement based finite element 
method, assumed stress finite element method, boundary element method, ANSYS and analytical 
results whenever possible. It is shown that the coupling of the stress traction equilibrium with assumed 
stress finite elements gives as accurate results as those by the distribution matrix coupling. 
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1 INTRODUCTION 

The main purpose of coupling of the finite ele- 

ment method (FEM) and boundary element method 

(BEM) is to take the advantages of both methods for 

the solution of various engineering problems. Both 

methods have some advantages in certain applica- 

tions. While the BEM gives better results for the 

surface type problems like contact problems, FEM is 

more effective for the domain type problems. 

In this study, the assumed stress finite ele- 

ment (SFE) method and the boundary element (BE) 

method are coupled using both distribution ma- 

trix (DMC) and stress-traction equilibrium equations 

(STC). The results of both methods are compared to 

each other and other methods and it is observed that 

the coupling by the stress-traction equilibrium gives 

more accurate stresses. 

In the literature, it is seen that Zienkiewicz et 

al. [I] are one of the forerunners in studying the cou- 

pling process. They discussed the coupling in a gen- 

eral context. Later, Kelly et al. [2] proposed a method 

obtaining the symmetric stiffness matrices of the BE 

region which satisfy the equilibrium equation and ap- 

plied the method to a number of field problems in fluid 
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mechanics. Furthermore Felippa [3] used the coupling 

methods for a three dimensional structure submerged 

in an acoustic fluid. Beer [4] developed a general cou- 

pled BE and FE program in 1983. A number of special 

elements were included for the analysis of shell struc- 

tures and joint/interfaces. The same author analysed 

the unbounded problems in elastostatics by the cou- 

pling method [5]. He claimed that the BEM is very 

efficient for unbounded problems in elastostatics. 

The assumed stress finite elements were first pro- 

posed by Pian[ 6]. He derived the element stiffness ma- 

trices from an assumed stress distribution. Then Pin 

Tong [r] developed a new displacement hybrid finite el- 

ement model for solid continua. Pian et al. is] used a 

rational approach for assumed stress finite elements 

based on the Hellingner-Reissner principle. The same 

author studied the relations between incompatible 

displacement models and hybrid stress models [9]. He 

also proposed a rational approach for choosing stress 

terms for hybrid finite element formulations [1~ 

2 C O U P L I N G  P R O C E S S  B Y  S U B -  

R E G I O N A L  T E C H N I Q U E  

Although the subregion is a technique in 
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BEMs[11], the coupling process may also be thought 
as a subregional technique with the problem domain 
being divided into the two subdomains as BE and 
FE [12]. The stress-traction equilibrium approach may 
also be considered as a subregion technique due to 
the BE and FE subregions and the compatibility con- 
ditions on the interface line of two regions which is 
similar to the compatibility conditions in the subre- 
gion technique. 

When the subregional coupling technique is 

used, the imaginary constraints, which are explained 
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in Fig.l ,  must be considered at the interface line of the 
finite element and boundary element region. There 
are three types of boundary conditions. The first one 
includes the normal and tangential constraints at the 
interface line. The second one contains the normal 
constraints at the interface line. The last one includes 
only the tangential constraints at the interface. The 
type of the problem determines the type of imaginary 
boundary constraints. Some case studies are selected 
considering these different boundary constraints. 

F~ 
4 

imaginary tractions . ~ . ~  .. /;2 
by stress-traction ~ _ : i ! ~  

/~'~ equil ibrium ~t r~t / F1 

: : ~  ~ t  imaginary constraints 
F1 ~ / /  at the interface line 

Ft 
real displacements after 
applying the imaginary 
tractions at the interface line 

Fig.1 Imaginary constraints of coupling process for stress-traction equilibrium 

2.1 Coupl ing  by Dis tr ibut ion  Matr ix  

The stress vector on an element is written by 
Pian[q as follows 

S = R/3 (1) 

where J3 is the stress coefficients, R the element sur- 
face coordinates. 

The force and displacement relationship equa- 
tion is also written by Pian[ 6] as follows 

Q = kq (2) 

where 
k = T t H - 1 T  

T = f R tLdA  
JA 2 

H = I v  P t N P d v  

Equation (1) can be written in a new form by 
dividing the stress FEM region into two subregions as 

follows 

Q:FE I= rksFE ksFE lJ (3) QSFE, I q~n~ 
where QSFn is the force vector at the SFE domain, 
Q~FE~ the imaginary internal reaction force vector at 
the interface line, qSFE the displacement vector at the 
SFE domain, qSFE~ the imaginary displacement vec- 
tor at the interface line. 

The above equation may be solved for imaginary 
reaction force vector, QSFE~. 

After finding the imaginary reaction force vector 
at the interface line, the distribution matrix, M ,  may 
be used to transform it into the imaginary traction 
vector. So the distribution matrix [1] can be used as 
follows 

* M * QSFE~ = qSFE~ (4) 

Equation (3) can be rewritten in a new form sim- 
ilar to the general BE equation using Eq.(4) 

II MSFE~I .Q.sFE _--IksF E kSFE~[ qSFE (5) 
tSFE~ q~FE~ 
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where I is the unit matrix, MSFEi the distribution 
matrix at the interface line, QSFE the force vector at 

the SFE domain, t ;F  E the imaginary traction vector 
at the interface line. 

The general BE equation is as follows 

Hq = G t  (6) 

It can also be rewritten to include the BE do- 
main sub-matrix and interface BE sub-matrix as fol- 

lows 

where t* is the imaginary traction vector, qBE~ the B E ~  

real displacement vector. 
The traction compatibility must be satisfied for 

coupling purposes at the interface line as follows 

ts~E~ - BE~ (8) 

Then Eq.(6) may be solved for the real displace- 
ment vector, qBEi" After finding the real displacement 
vector at the interface line, the displacement conti- 
nuity requirement should be considered for coupling 

purposes 

qSFEi : qBEi : qi (9) 

As a result, the general coupling equation can 
be written using Eqs.(5) and (7) 

kSFE kSFE~ 0 
0 HBEI HBE 

I MSFEI 0 
--GBE~ GBE 

qSFE 
qi = 

qBE 

QSFE 
ti 

tBE 

(i0) 

2.2 C o u p l i n g  b y  Stress-Traction 
Equilibrium 
The coupling procedure is similar to the proce- 

dure mentioned in Sec.2.1. The distribution matrix, 
however, is not used for transformation. 

The imaginary stress components can be found 
while writing Eq.(1) in terms of interface and do- 
main sub-matrices and considering the imaginary con- 
straints at the interface line as shown in Fig.1. 

I $~FÈSsFE : I(R)SFE' (R)SFEI ;9~FE{I~SFE (11) 

Then these stress components can be trans- 
formed into tractions using stress-tractions equilib- 
rium equations as follows 

( s  * ) t* i = *il  + S x y i m  * th 
(12) 

ty i = ( S y l m  + Syxi  l) * th 

where l, rn are directional cosines of the interface, th  

is the thickness of the member. 

After finding the imaginary tractions at the in- 
terface line, the general BE equation can be used to 

find the real interface displacements by following the 
way shown in Fig. 1. 

t* BE~ (13) IHB~ ' HDEI qBEi =IGBE, GBEI tBE 
qBE 

3 C A S E  S T U D I E S  

Three different cases are used for the validations 

of the developed approaches. SFEM refers to the as- 
sumed stress finite element, DMC refers to coupling 
with distribution matr ix and STC refers to coupling 
with stress-traction equilibrium. 

3.1 A x i a l l y  L o a d e d  B a r  

This is a simple plane stress problem. A thin ax- 
ially loaded almninum bar is considered (E = 70 GPa; 
v = 0.3). The dimensions are shown in Fig.2(a). 
The SFEM, BEM and coupling models can be seen in 
Figs.2(b), 2(c)and 2(d). Axial displacement and axial 
stress distributions against the length of the bar are 

0.1 m- 7 -  

l m  

(a) 

"1 

10 kN 

 ffft~176 
I ~ 3 5 ? 9 II 13 15 17 19 ~i 5 k N  

(b) 

100 kN/m 

100 kN/m 
(c) 

5 kN 

: i : : IZI] ] I [ I I_- 
5 kN 

(d) 

Fig.2 (a) Axially loaded bar, (b) Stress 
FEM model, (c) BEM model, (d) 
Coupling model 
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shown in Figs.3 and 4. The results are exactly the 

same in all methods. 
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Fig.3 Axial  displacement distr ibution 
along upper surface of bar  
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Fig.5 (a) Cantilever beam, (b) FEM 
model, (c) BEM model, (d) Cou- 
pling model 

Fig.4 Axial  stress distr ibution along upper 
surface of bar 

3 .2  C a n t i l e v e r  B e a m  

This  case represen ts  a cant i lever  b e a m  unde r  a 

ver t ica l  end load  (Fig .5(a) ) .  S F E M ,  B E M  and  cou- 

p l ing  models  are shown in F igs .5(b) ,  5(c) and  5(d).  

T h e  b e a m  is m a d e  of a steel  ahoy ( E  = 2 1 0 G P a ;  

= 0.3). T h e  ver t ica l  d i sp lacement s  a n d  axia l  s t ress  

d i s t r ibu t ions  a long the  uppe r  surface of the  b e a m  can 

be  seen in Figs .6  and  7. The  STC gives more  accu ra t e  

ver t ica l  d i sp lacement  and  axia l  s t ress  resul ts  aga ins t  

t he  D M C  and  d i sp lacement  based  F E M .  

3 .3  S l i d e w a y  B a s e  

The  s l ideway base  under  the  ac t ion  of weight  of 

the  inner  pa r t  is considered.  The  m a t e r i a l  of the  base  

is the  g ray  cast  i ron  wi th  E = 100 G P a  and  u = 0.211. 

T h e  whole  a s sembly  mode l  is shown in Fig.8.  Because  
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Fig.6 Vertical displacement distr ibution 
along upper surface of beam 

of the  symmet ry ,  a ha l f  base  p a r t  is mode l l ed  as shown 

in Fig.9.  T h e  S F E M ,  B E M  and  coupl ing m o d e l  a re  
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Fig.9 Half model of the slideway with 
boundary constraints 

1.2 

shown in Figs.10, 11 and 12. The vertical displace- 

ment and axial stress distr ibutions on the line AB and 

vertical stress dis t r ibut ion on the line CD axe shown 

in Figs.13, 14 and 15. The BEM stresses on lines AB 

and CD are not accurate. This, of course, Comes from 

Fig.10 Stress FEM model of the slideway 
base 

F ig . l l  BEM model of the slideway base 

2004 

Fig.12 Coupling model of the slideway 
base 

the characterist ics of the model. The errors may be 

reduced using the integrat ion cells. In this study, how- 

ever, the errors are reduced in the coupling results. 

The STC coupling results are in good agreement with 

SFEM, Displacement F E M  and ANSYS against DMC 

results. 
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Fig.13 The vertical displacement (Uy) dis- 
t r ibution along line AB on the slide- 
way base 
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Fig.14 The axial stress (Sx) distribution 

along line AB on the slideway base 
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Fig.15 The verticalstress (Sy) distribution 
along line CD on the slideway base 

4 C O N C L U S I O N  

This  s tudy  shows tha t  the STC gives more accu- 

rate  stress results  t h a n  the DMC even in complicated 

81 

cases. The  reason of this, of course, comes from us- 

ing the stresses, ob ta ined  by assumed stress finite ele- 

ments ,  to find the noda l  t rac t ions  at the interface line. 

So STC approach may be used safely for more com- 

pl icated cases. In  fact, some more engineer ing cases 

may be considered to show the rel iabil i ty of the STC. 
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