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Summary 

In the application of factor analysis to empirical data, a statistical 
test  almost always indicates more factors than researchers expect. 
However, if one more factor is tried to be extracted, proper solutions 
cannot be obtained frequently and several problems arise. 

This paper investigates causes of the problems and proposes a prag- 
matic t rea tment  of improper solutions. Further ,  some recommendations 
are made on the practical application of factor analysis. 

1. Introduction 

Consider the factor analysis model 

(1.1) x = A f  +u  , 

where x is a random vector of p components representing observations, 
f is a random vector of k components representing common factors, u 
is a random vector of p components representing a unique part, which 
is made up of specific factors and errors, and A is a p•  (p>k) matrix 
of rank k representing factor loadings. It is assumed that  E{F}=0, 
E{u}=0, E{fu'}=O, E { f f ' } = I  (a unit matrix), and E{uu'}, denoted by 
~, is diagonal and positive definite. 

If AA contains more than one nonzero elements in every column, 
where A is any nonsingular matrix, A is called a common factor matrix 
([28]). If there exists a column in A whose elements become nearly zero 
except only one element by a suitable nonsingaIlar rotation, the factor 
corresponding to this column is said to be qvx~si-specific ([30]). If an 

estimate # of ~" is not positive definite, it is called a Heywood solution 
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is t ry of Education,  Science and Culture under  Contract  Number  61730015 and 61530017. 
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or an improper solution. The region where  one or more of the  unique 
variances are not  positive, it is called a Heywood region. 

Empirical data involve many common factors. Cattell ([5], p. 204) 
sorted factors into t rue factors, t ha t  are composed of i) factors large 
enough to wor th  dealing with, which are called main factors, and ii) 
trivial factors, and error factors. Researchers t rea t  not trivial factors 
but  main common factors. Rao [24] named the la t ter  dominant com- 
mon factors. In the application to psychological data, the  number  m0 
of main factors tha t  researchers expect is usually assumed to be known. 

Geweke and Singleton [9] studied the  cases where loading matrices 
did not  involve trivial factors by Monte Carlo experiments.  They re- 
ported as follows: "When  the usual regular i ty  conditions are satisfied 
and sample size is at least 30, the  asymptotic theory seems to be ap- 
propriate." However, for empirical data, a statistical tes t  almost al- 
ways indicates more factors. When the  number  m of factors being 
extracted is more than m0, problems arise frequently.  

In Section 2, some problems frequent ly  encountered are described. 
In Section 3, causes of the problems are investigated.  In Section 4, a 
t r ea tmen t  of improper solutions is proposed. Finally in Section 5, some 
recommendations are made. 

2. Problems encountered frequently 

2.1 Problems 

In the  application of factor analysis to empirical data, the  follow- 
ing situation was commonly met.  A solution with m0 factors was proper 

and the loadings -~0 were physically interpretable.  A chi-square tes t  
for m0-factor was, however, statistically significant ([13], [27]), and one 
tr ied to ext rac t  m 0 + l  factors. Then the  following problems (P1), (P2) 
and (P3) arose. 

(P1) The intermediate value ~ of the  i terat ive solution for ~" fre- 
quently tended to go into the Heywood region ([15], [20]). 

(P2) The element  ~ .  of ~ tha t  tended to be negative depended 
often on initial estimates ([32]). 

(P3) When the  variable corresponding to r  was deleted, another  

e lement  of ~ tended to be negative f requent ly  ([8]). 

These were pointed out since JSreskog [15] has proposed a rapidly con- 
vergent  method  to obtain the maximum likelihood estimates. 

To resolve (P1), J5reskog [15] proposed to eliminate the variable 

corresponding to 3 .  and carry out the  i teration on the conditional cor- 
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relation matr ix.  Fur ther ,  ideas for the  minres method ([12]) or Bayesian 
approach ([17], [19]) were proposed. None of them, however, sett led 
(P2) and (P3). 

In JSreskog's method, the i teration could not be continued when 
(P1) arose. Tumura and Sato [30] have shown tha t  Heywood solutions 
can be obtained by Jennrich and Robinson's method ([14]), which is a 
modification of JSreskog's method in the  sense of using eigenvalues of 

R-m~'R -in instead of those of ~- lnR~-Vf,  where R denotes a sample 
correlation matrix.  When methods capable of obtaining Heywood solu- 
tions, for example, Jennrich and Robinson's method,  were applied, an- 
other  problem (P4) arose. 

(P4) The iteration did not te rminate  frequently even in the Hey- 
wood region after  a sufficiently large number  of steps, consequently 
most  likely diverged ([30]). 

2.2 Example 

A set of data (m0--3), which consists of 810 observations of 10 vari- 
ables, was originally analyzed by Maxwell ([21], p. 55). Af ter  that ,  
analyses were carried out by Mattsson, Olsson and Ros6n [20] (JSreskog 
[15]), and Tumura, Fukutomi and Asoo [32]. Those results are shown 
in Lawley and Maxwell [18], pp. 44-46 and p. 34. 

For m----3, the obtained loadings -~a was interpretable (Table 2.1). 
However, the test  showed three-factor  hypothesis was significant (Z ~-  - 
78.5 > Z.~001 = 42.3). 

For m=4, all the problems (P1), (P2), (P3) and (P4) arose. Table 

2.2 shows (P1) and (P2); the 8th, the 6th or the 9th element of 
tended to be negative depending on initial estimates. And solutions, 

Table 2.1. Maxwell 's  data,  m----3, the  physically in- 
terpretable solution, va r imax  rota ted loadings. 

~" I I I  I I I  

1 .369 .653 --.204 .352 

2 .616 .129 --.133 .591 

3 .306 .469 --.204 .657 

4 .644 .348 --.119 .469 

5 .414 .726 --.082 .227 

6 .772 --.122 .433 --.160 

7 .336 -- .279 .754 --.130 

8 .641 --.039 .591 --.092 

9 .675 --.118 .532 --.167 

10 .622 --.028 .614 --.028 
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Table 2.2. Maxwell 's data, m = 4 ,  JSreskog's 
method, varimax rotated loadings. 

(1) 

~c I II III IV 

1 .382 .607 --.304 .395 --.029 

2 .618 .106 --.121 .595 --.040 

3 .303 .435 --.198 .682 --.060 

4 .639 .342 --.080 .475 --.110 

5 .364 .757 --.072- .233 --.061 

6 .779 --.115 .355 --.171 .230 

7 .273 --.245 .789 --.151 .148 

8 .001 --.043 .370 --.056 .926 

9 .691 --.114 .436 --.176 .273 

10 .611 --.003 .615 --.049 .092 

(2) 

1 .386 .609 --.272 .398 -- .103 

2 .619 .100 --.118 .596 --.048 

3 .305 .429 --.187 .685 --.081 

4 .645 .329 --.I05 .482 --.054 

5 .366 .753 --.074 .245 --.034 

6 .001 --.091 .298 --.116 .942 

7 .313 --.259 .765 --.159 .098 

8 .658 --.048 .543 --.085 .194 

9 .676 --.106 .526 --.185 .041 

10 .616 --.019 .613 --.042 .075 

(3) 

1 .368 .656 --.267 .345 --.I07 

2 .612 .133 --.124 .594 - - .0~ 

3 .305 .476 --.184 .653 --.088 

4 .645 .360 --.094 .459 --.076 

5 .415 .728 --.079 .218 --.031 

6 .772 --.124 .427 --.168 .048 

7 .311 --.274 .759 --.136 .138 

8 .665 --.052 .511 --.084 .254 

9 .001 --.106 .352 --.117 .922 

10 .596 --.012 .629 --.046 .079 

The used initial estimates are as follows: 
(1)  The value recommended by JSreskog [15]. 
(2 )  The value used by Tumura  et al. [32]. 
( 3 )  The value recommended by JSreskog, except 

~,9~.571 is replaced by .25. 
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Tab le  2.3. M a x w e l l ' s  da ta ,  ~ ob ta ined  by  de l e t ing  
t he  var iab le  t h a t  t e n d s  to go in to  t h e  H e y w o o d  

reg ion ,  m = 4 ,  J S r e s k o g ' s  m e t h o d .  

( 1 )  ( 2 )  ( 3 )  

1 .429 ,389 .368 

2 .621 .620 ,610 

3 .300 .303 ,305 

4 .642 .639 .636 

5 .001 ,353 ,403 

6 .798 ( ) ,773 

7 .321 .257 ,325 

8 ( ) .OOl .OOl 
9 .714 .689 ( ) 

10 .320 .617 ,561 

( 1 )  T h e  8 th  va r i ab l e  is de le ted .  
( 2 )  T h e  6th  va r i ab le  is de le ted .  
( 3 )  T h e  9th  va r i ab le  is de le ted .  

T h e  u sed  ini t ia l  e s t i m a t e s  a r e  t h e  v a l u e s  r e com-  
m e n d e d  by  ]S re skog  [15]. 

especially Factor IV, depended on initial estimates. Table 2.3 shows 
(P3); for instance, in case that  the 8th variable was deleted, the 5th 

element of ~r tended to be negative, as shown (1) in this table. Table 
2.4 shows (P4) ; in case that  the iteration was continued using Jennrich 
and Robinson's method, it did not terminate. 

T a b l e  2.4. M a x w e l l ' s  data ,  b e h a v i o r  of  t h e  i t e ra t ive  p rocess  ~,  m = 4 .  

( 1 ) T h e  va l ue  r e c o m m e n d e d  b y  j S r e s k o g  [15] is u s e d  for  an  ini t ia l  e s t i m a t e .  

iable 
1 2 3 4 5 6 7 8 9 10 

ini t ia l  es t .  

10 
11 
12 

2O 
30 
4O 
5O 
6O 
7O 
8O 
9O 

100 

�9 386 .597 .385 .559 .485 .633 .411 . 5 4 7  .571 .566 

�9 361 .584 .322 .629 .430 .766 .329 . 301  .669 .551 
.370 .603 .313 .636 .397 .773 .300 . 1 4 4  .686 .593 
�9 390 .631 .298 .643 .346 .783 .255 - - . 0 8 8  .702 .637 

�9 423 .665 .280 .649 .144 .792 .277 - - 1 . 5 7 1  .717 .617 
,412 .645 .291 .645 .263 .801 .264 - - 1 0 . 2 , 0 0  .721 .621 
,396 .629 .298 .644 .327 .800 .276 - - 1 7 . 6 6 3  .723 .608 
.397 .631 ... .642 .324 .801 .278 - - 2 6 . 7 9 7  . . ,  
.398 .633 ... .641 .323 --- .279 - - 3 6 . 7 9 7  ... .607 

. . . . . . . . . . . .  �9 322 . . . . . . .  46 .  797  . . . . . .  

. . . . . . . . . . . . . . . . . . .  280 - - 5 6 .  797  . . . . . .  

. . . . . .  �9 297 . 6 4 0  . . . . . . . . . .  66 .  797  . . . . . .  

. . . . . . . . . . . . . . . . . . . . . .  7 6 . 7 9 7  . . . . . .  
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Table  2.4�9 (Continued) 

( 2 )  T h e  value applied by T u m u r a  et al. [32] is used for  an initial es t imate.  

~ - ~  variable 
coun ' ' ~ "  N~ t ~ 1 2 3 4 5 6 7 8 9 10 

initial est.  

10 

12 
13 

20 
30 
40 
50 
60 
70 
80 
9O 

100 

.440 .670 .280 .660 .120 .110  .320 .660 �9 .630 

.434 .665 .273 .652 .169 . 084  .316 .659 .677 .621 

.412 .652 .281 .650 .270 . 035  .315 .660 .676 .619 

.378 .612 .310 .645 .382 -- .006 .312 .656 .675 .614 

�9 .. .629 .300 .647 .381 - - .439 .309 .673 .668 .616 
.400 .654 .283 .651 .307 - - 2 . 5 7 8  .315 .677 .671 .618 
.410 .659 .279 .652 .268 - - 9 . 8 9 7  ..- .680 .672 .619 
.409 ... .280 ... .272 - - 1 9 . 8 9 7  -.. .681 ... .618 
.407 .656 .281 ... .284 - - 2 9 . 8 9 7  . . . . . . . . . . . .  
.403 .654 .283 .651 .297 - - 3 9 . 8 9 7  .314 . . . . . . . . .  
.400 .651 .285 -.. .312 - - $ 9 . 8 9 7  . . . . . . . . .  .617 
.396 .647 .288 .650 .326 - - 5 9 . 8 9 7  -.- .680 . . . . . .  
.392 .643 .291 ..- .340 - - 6 9 . 8 9 7  . . . . . . . . . . . .  

T h e  s a m e  value as the above at least  in the  th ree  places of decimal is de- 

noted by ' - . . ' .  

3. Causes of the problems 

We investigate the reason why one more factor cannot be obtained 
frequent ly  in spite of the result of test .  Nonconvergence cases were 
studied ([1], [4]), however, when and why they occurred frequent ly in 
the  analysis of empirical data were not discussed. Some effects of triv- 
ial factors have been ignored in the past  study. 

Ezpeziment. The author wished to see if (P4) was caused by triv- 
ial factors. The s t ructure  which simulated empirical data with m0=2 
was treated.  The first m0+t  columns ( t = l ,  2, 3 and 4) of the matr ix  
given in Table 3.1 were used;  the  first two columns represent  main 
factor loadings and the remainings trivial factors. Sample correlation 
matrices with sample size 100 were generated from random numbers  
using formula (1.1), where f and u are distr ibuted as N(0, I) and N(0, 
diag (I--AA')), respectively. An iteration terminated after  the value of 
the  likelihood function changed less than  s in absolute value and the 

Table  3.1�9 Loading ma t r i x  used 

in the  expe r imen t s .  

�9 5 .I .2 --.15 .~ -- 15 

-- 2 .2  .15  . 2  - - . 1 5  

J .2 .65 - - . 2  - - . 1 5  - - . ~  .15 
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maximum norm of gradient  got  less than s, where  s = 1 0 - k  
Two (--m0) factors  were  ex t r ac t ed  and the  result  was classified as 

a proper  solution, a Heywood solution, and a nonconvergence case. 
Fur the r ,  the  hypothesis  for fac tor  size 2 was tested.  Next ,  3 factors  
were  ex t rac ted  from the same correlation mat r ix  and the  resul t  was 
classified. Two hundred and fif ty replications were  done for each t. 

Table 3.2 summarizes the  resu l t s ;  the  increase of t made the  tail 
of the  distribution of the  tes t  s tat is t ics  heavier  for m=mo, bu t  de- 
creased the  number  of proper solutions for m = m 0 + l .  I t  ascertained 
tha t  (P4) is due to several trivial factors.  

Population cases were dealt  wi th  in order to invest igate  the  causes. 
Suppose A satisfied a sufficient condition for the  extended uniqueness 
described in Appendix. If  k+s factors  were ex t rac ted  from a popula- 
tion covariance matr ix  Z=AA'+diag(I--AA') by  i terat ive procedures ;  
(1) the  obtained solution consisted of the  t rue  common factors  and s 
specific factors,  and (2) the  variables to which specific factors  were  ad- 
ded and those loadings depended on initial es t imates  ([32], Exper iment  

Table 3.2. Results of the extraction and the test  for m = m o ,  and 
the extraction for m = m 0 + l ;  when t trivial factors exist (Monte 
Carlo experiments with 250 replications for each t). 

wi. --~ m o 

m = m o + l  

proper solution 

Heywood solution 

nonconvergence 

--1~ level* 

--5 

--25 

--50 

--100 

proper solution 

Heywood solution 

nonconvergence 

m = m o  m = m o + l  

proper proper 

proper Heywood 

proper nonconv. 

Heywood proper 

Heywood Heywood 

Heywood nonconv. 

1 2 3 4 

100.0% 99.6% 99.6?o / 99.2% 

.0 .4 .4 .8 

.0 .0 .0 .0 

19.2 39.2 55.2 52.8 

42.8 66.0 78.0 80.0 

76.8 90.8 96.8 95.6 

88.8 97.6 99.6 99.2 

100.0 100.0 100.0 100.0 

60.8 53.2 20.4 16.8 

20.8 27.2 38.8 14.4 

18.4 19.6 40.8 68.8 

59.3 54.5 17.4 14.5 

25.0 28.5 42.1 15.5 

15.7 16.4 40.0 69.0 

.0 .0 .0 .0 

.0 .0 .5 .0 

.0 .6 .0 1.0 

Results of the extraction for m = m o + l  from the samples whose X z 
values for m = m o  are significant at the 5 ~  level. 

* Frequency of the test  statistics corresponding to the upper probabilities. 
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1). Problems (P1), (P2) and (P3) arose even in the population cases, 
which did not have unfitness for a model and sampling fluctuation. 
Sample covariance matrices were not exactly decomposed as (A.1) in 
probability one. Therefore quasi-specific factors appeared and (P4) 
arose. Nonconvergence cases ([1], [4]) or Heywood solutions ([6], [7], 
[25]) were investigated, however, this interpretation was not pointed 
out. 

4. Treatment of improper solutions 

4.1 Proposed treatment  

For r e=m0+1 ,  apply methods capable of obtaining Heywood solu- 

tions, and continue the iteration until all elements of ~r except one ele- 

ment  are stable. After that, rotate the indeterminate loadings A~o+l 
to satisfy 

(4.1) Zi~o+~T- [A~o; s ] ,  

where T is an orthogonal matrix of order m0+ l  and s represents spe- 

cific factor loadings. If (4.1) holds, interpret  A~o. 
For this rotation, the following iterative procedure is recommended : 

Step 0: Arrange columns of A~o+~ so that  the first m0 columns 
consist of main factor loadings and the last quasi-specific ones. Find 
the position of the maximum absolute value in the last column; say 
(i, m0+l) .  Set s'=(O, O, . . . ,  O). 

Step 1: Set (i, m0+l)  element of the current  loading matrix to 
the i-th element of s. 

Step 2: Rotate the loading matr ix by 

(4.2) T =  (A*'A~176 ~ , 

where A* is the current loading matrix and A~ [zi~0; s]. If every load- 
ing changes less than 8, a small positive constant for a convergence 
criterion, by the rotation, then stop; otherwise, re turn to Step 1. 

4.2 Bases o f  the treatment 

Unless such methods are applied and the iteration is continued, one 
cannot find out whether  quasi-specific factors appear. Fur ther  the ite- 
ration may terminate in the proper region passing through the Heywood 
region ([30], Example 1). 

The rotation matrix T is derived as follows: Consider the ortho- 
gonal matr ix T to fit a matrix A* to a target  matrix A ~ Suppose that  
the matrices A* and A ~ have the same order and are of full rank. The 
least squares fit is given by formula (4.2) ([10]), if a matrix A*'A ~ is 
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nonsingular.  Since experimenters possess information only about the  
position of the nonzero element of s, the use of an iterative procedure, 
which is called the incomplete Procrustean rotation ([26]), is proposed. 
When 3 is set to 10 -6, at most ten iterations are required to converge 
from author ' s  experience. 

The t r ea tment  worked well for many sets of empirical da ta ;  for 
example, the  data dealt by Mattsson, Olsson and Ros6n [20] (Bechtoldt 
([3], p. 412, Sample 1), Harman ([11], p. 82 and 137), Maxwell ([21], p. 
55) and Rao ([23], p. 110)), 35reskog ([I6], p. 152, Problem 2) and 
Maxwell ([22], p. 9). 

On the  other hand, Driel, Prins and Veltkamp [7] obtained a com- 

plex solution, a solution such as X - #  has at most  m--1  positive eigen- 
values. In such cases, they recommended to delete the variables which 
had large asymptotic variances ([6], [7]), however,  it did not settle the 
problems. By a suitable rotation, it  is found out very often tha t  the 
loadings of complex solutions consist of two par ts ;  (1) the real number  

loadings tha t  quite agree with A= 0, and (2) the real or imaginary num- 
ber loadings tha t  represent trivial factors or quasi-specific factors. 

4.3 Example 
The data dealt with in subsection 2.2 were analyzed. 
If the  iteration was continued using Jennrich and Robinson's method ; 

the  loadings corresponding to Factors I, II and III were nearly invari- 
ant, and, the  only one loading increased and the  remainings decreased 
in absolute value in the column corresponding to Factor IV, therefore,  
it became a quasi-specific factor. Table 2.4 shows the behavior of the 
i terat ive process. Remark tha t  the main factor loadings closely agreed 

with A~ independently initial estimates ((1), (2) and (3) in Table 4.1, cf. 

Table 4.1. Maxwell 's data, at the I00th iterative count, the rotated 

loadings fitting to Aa and specific factor loadings. 

1 .398 .608 --.302 . 3 7 6  .006 1 .395 .620 --.287 .372 --.003 

2 .632 .134 --.140 . 575  .002 2 .637 .138 --.134 . 5 7 0  .001 

3 .298 .452 --.213 . 6 7 3  .002 3 .291 .455 --.205 . 6 7 9  .000 

4 .643 .355 --.106 .469 --.005 4 .648 .352 --.118 . 4 6 3  .001 

5 .322 .797 --.060 .198 --.005 5 .342 .782 --.074 . 2 0 0  .002 

6 .802 --.130 .393 --.164 .012 6 --69.899 --.122 .433 --.160 8.407 

7 .279 --.271 .796 --.122 --.005 7 .314 --.267 .772 --.136 --.003 

8 --76.805 --.039 .591 --.092 8.800 8 .678 --.066 .558 --.076 .013 

9 .724 --.133 .480 --.168 .015 9 .675 --.116 .532 --.169 --.008 

10 .607 --.030 .626 --.019 --.006 10 .617 --.028 .617 --.026 --.002 

(1) (2) 

~" I II III IV ~" I II I I I  IV 
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Table 4.1. (Continued) 

( 3 )  ( 4 )  

~" I I I  I I I  IV ~" I I I  I I I  IV 

1 .357 .667 --.277 .348 --.004 1 .398 .612 -- .294 .376 .006 

2 .589 .114 --.137 .616 .003 2 .627 .131 -- .138 .580 .002 

3 .321 .476 --.205 .641 --.000 3 .300 .454 --.211 .671 .002 

4 .648 .354 --.115 .462 --.001 4 .644 .357 --.106 .466 --.006 

5 .444 .701 --.086 .241 .002 5 .329 .792 --.059 .201 -- .006 

6 .776 -- .124 .427 --.162 --.009 6 (de'ted) 
7 .293 -- .280 .783 --.120 --.005 7 .254 --.273 .811 --.119 -- .007 

8 .694 --.055 .542 --.090 .017 8 --62.789 --.039 .591 --.092 7.964 

9 --57.985 --.118 .532 --.167 7.659 9 .727 --.134 .474 --.171 .016 

10 .607 --.014 .626 --.039 --.004 10 .621 --.031 .614 --.025 --.006 

The  used ini t ial  est imates are as follows: 
(1) and  (4 ) . - -The  value recommended by 35reskog [15]. 
(2) . . -The  value  used by Tumura  et al. [32]. 
(3) . . -The  value recommended by J6reskog, except  (09--.571 is replaced by .25. 

Table  4.2. Maxwell 's  data, m=4, the  complex solution, the 

rotated loadings fitting the real n u m b e r  loadings to A3. 

~k av I II III IV 

1 .399 .036 .607 --.304 .375 .088i 
2 .628 .058 .131 --.139 .579 --.001i 

3 .299 .040 .453 --.216 .670 .009i 

4 .645 .038 .355 -- .133 .466 --.029i 
5 .329 .103 .792 -- .071 .199 --.01Ii 
6 .813 .047 --.125 .400 -- .164 .125i 
7 .275 .044 --.262 .802 -- .122 .036i 
8 2.179 2.296 --.089 .465 --.086 --1.188i 
9 .740 .048 --.127 .487 --.168 .11~8i 

10 .610 .045 --.021 .624 -- .023 .018i 

(i2=_1) 

Table 2.1). Further, even if the variable corresponding to ~ .  was de- 
leted, the above tendency persisted; for instance, the result of deletion 
of the 6th variable is shown in (4) in Table 4.1. Thus, actually, the 
main common factors were determined, and consequently, all the prob- 
lems (P1), (P2), (P3) and (P4) were overcome simultaneously. 

As for the complex solution obtained by Driel, Prins and Veltkamp 

([7], (5) in Table 4), the real number loadings quite agreed with -~3 by 
a rotation (Table 4.2, cf. Table 2.1). 
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5. Recommendations 

If a uniqueness condition of A is violated, samples from such pop- 
ulation yield improper solutions very often ([6]). A necessary condition 
for uniqueness is that  each column of AA has at least three nonzero 
elements for every nonsingular matrix A ([2], Theorem 5.6). 

The statistical test almost always indicates more factors in the 
analysis of empirical data. Hence, various goodness-of-fit indices were 
proposed and examined ([1], [27]). However, they were not taken 
account of the uniqueness condition and an existence of trivial factors. 
When we decide factor size, we should count factors that  have a great 
influence on at least three variables. 

After  deleting one or more of the variables from the original cor- 
relation matrix taking into consideration of the uniqueness condition, 
check whether  similar solutions can be obtained. Unless solutions are 
relatively consistent under the selection of test  batteries, results are 
unreliable ([8]). 

When we make test batteries, it is to be desired that  a hypotheti- 
cal loading matrix should satisfy the extended uniqueness condition. It 
is required in view of the following situations: 
1) Some variables are deleted in order to check the stability of solu- 
tions. 
2) Extraction of one more factor is often tried as a result of the test. 
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[29])) Let 

Appendix 

(A sufficient condition for the  extended uniqueness ([28], 

2" = A~A~ + ~', 

hold, where A~ is a p x k  matrix  (p>k) and ~ is a diagonal matrix .  
Suppose that there remain two disjoint submatrices of  rank k in  A~ 
after deletion o f  any r + l  rows of  A~. 

I f  2" has another decomposition such that 

where Az+, : 

~'k+s : 

p x ( k + s ) ,  rank A~+~=k+s, Ogs<_r, 
r and s are non-negative integers, 
a diagonal matrix ,  

then, there exists an orthogonal matr ix  Tk+~ such that A~+sT~+~=[A~; S~] 
where off-diag S~S~= O, namely, S~(p x s) represents specific factor load- 
ings. 

Under  the  condition of this theorem,  even if factor size is increas- 
ed up to k+s ,  no common factor  bu t  s specific factors are added, and, 
the  common factor  mat r ix  remains invariant .  This theorem reduces to 
Anderson and Rubin's ([2], Theorem 5.1), when r = 0 .  


