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Summary

In the application of factor analysis to empirical data, a statistical
test almost always indicates more factors than researchers expect.
However, if one more factor is tried to be extracted, proper solutions
cannot be obtained frequently and several problems arise.

This paper investigates causes of the problems and proposes a prag-
matic treatment of improper solutions. Further, some recommendations
are made on the practical application of faetor analysis.

1. Introduction
Consider the factor analysis model
1.1 x=Aft+u,

where x is a random vector of p components representing observations,
f is a random vector of k components representing common factors, u
is a random vector of p components representing a unique part, which
is made up of specific factors and errors, and 4 is a pxk (p>k) matrix
of rank k representing factor loadings. It is assumed that E{f}=0,
E{u}=0, E{fu'}=0, E{ff'}=I (a unit matrix), and E{uu'}, denoted by
¥, is diagonal and positive definite.

If AA contains more than one nonzero elements in every column,
where A is any nonsingular matrix, 4 is called a common factor matriz
({28]). 1If there exists a eolumn in 4 whose elements become nearly zero
except only one element by a suitable nonsingular rotation, the factor
corresponding to this column is said to be quasi-specific ([30]). If an

estimate ¥ of ¥ is not positive definite, it is called @ Heywood solution
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or an improper solution. The region where one or more of the unique
variances are not positive, it is called a Heywood region.

Empirical data involve many common factors. Cattell ([5], p. 204)
sorted factors into true factors, that are composed of i) factors large
enough to worth dealing with, which are called main factors, and ii)
trivial factors, and error factors. Researchers treat not trivial factors
but main common factors. Rao [24] named the latter dominant com-
mon factors. In the application to psychological data, the number m,
of main factors that researchers expect is usually assumed to be known.

Geweke and Singleton [9] studied the cases where loading matrices
did not involve trivial factors by Monte Carlo experiments. They re-
ported as follows: “When the usual regularity conditions are satisfied
and sample size is at least 30, the asymptotic theory seems to be ap-
propriate.” However, for empirical data, a statistical test almost al-
ways indicates more factors. When the number m of factors being
extracted is more than m,, problems arise frequently.

In Section 2, some problems frequently encountered are described.
In Section 38, causes of the problems are investigated. In Section 4, a
treatment of improper solutions is proposed. Finally in Section 5, some
recommendations are made.

2. Problems encountered frequenily

2.1 Problems

In the application of factor analysis to empirical data, the follow-
ing situation was commonly met. A solution with m, factors was proper
and the loadings /fmo were physically interpretable. A chi-square fest
for my-factor was, however, statistically significant ([13], [27]), and one
tried to extract my-+1 factors. Then the following problems (P1), (P2)
and (P3) arose.

(P1) The intermediate value ¥ of the iterative solution for ¥ fre-
quently tended to go into the Heywood region ([15], [20]).

(P2) The element ¢, of ¥ that tended to be negative depended
often on initial estimates ([32]).

(P3) When the variable corresponding to ¢, was deleted, another
element of ¥ tended to be negative frequently ([8]).

These were pointed out since Joreskog [15] has proposed a rapidly con-
vergent method to obtain the maximum likelihood estimates.
To resolve (Pl), Joéreskog [15] proposed to eliminate the wvariable

corresponding to ¢, and carry out the iteration on the conditional cor-
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relation matrix. Further, ideas for the minres method ([12]) or Bayesian
approach ([17], [19]) were proposed. None of them, however, settled
(P2) and (P3).

In Jéreskog’s method, the iteration could not be continued when
(P1) arose. Tumura and Sato [30] have shown that Heywood solutions
can be obtained by Jennrich and Robinson’s method ([14]), which is a
modification of Joreskog’s method in the sense of using eigenvalues of

R-2FR-'* instead of those of F-*R¥F-*, where R denotes a sample
correlation matrix. When methods capable of obtaining Heywood solu-
tions, for example, Jennrich and Robinson’s method, were applied, an-
other problem (P4) arose.

(P4) The iteration did not terminate frequently even in the Hey-
wood region after a sufficiently large number of steps, consequently
most likely diverged ([30]).

2.2 Example

A set of data (m,=3), which consists of 810 observations of 10 vari-
ables, was originally analyzed by Maxwell ([21], p. 55). After that,
analyses were carried out by Mattsson, Olsson and Rosén [20] (Joreskog
[15]), and Tumura, Fukutomi and Asoco [32]. Those results are shown
in Lawley and Maxwell [18], pp. 44-46 and p. 34.

For m=3, the obtained loadings /L was interpretable (Table 2.1).
However, the test showed three-factor hypothesis was significant (y*=
78.5> y4n=42.3).

For m=4, all the problems (P1), (P2), (P3) and (P4) arose. Table
2.2 shows (P1) and (P2); the 8th, the 6th or the 9th element of &
tended to be negative depending on initial estimates. And solutions,

Table 2.1. Maxwell’s data, m =8, the physically in-
terpretable solution, varimax rotated loadings.

12 I I 11

1 .369 .653 —.204 .352
2 .616 .129 —.133 .591
3 .306 .469 —.204 .657
4 .644 .348 -.119 .469
5 414 726 —.082 .227
6 772 —.122 .433 ~.160
7 .336 —.279 .754 ~.130
8 .641 —.039 .591 ~.092
9 .675 —.118 .532 —.167
10 .622 —.028 .614 ~.028
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Table 2.2. Maxwell’s data, m=4, Joreskog’s
method, varimax rotated loadings.

(1)
¥ 1 1 I v
1 .382 607 —.304 .395 —.029
2 .618 .06 —.121 595 —.040
3 .303 435 —.198 682  —.060
4 .639 342 —.080 475 —.110
5 .364 757 —.072- 233 —.061
6 779 —.115 356 —~.171 .230
7 273 —.245 789 —~.151 .18
8 .001  —.043 370 ~.056 .926
9 691 —.114 436 ~.176 .273
10 .611  —.003 615 —.049 .092
(2)
1 .386 609  —.272 398 —.108
2 .619 100 —.118 596 —.048
3 .305 429 —.187 685  —.081
4 .645 329 —.105 482 —.054
5 .366 753 —.074 245  —.084
6 .001  —.091 298  —.116 .942
7 313 —.259 765  —.159 .098
8 658  —.048 .543  —.085 .194
9 676  —.106 526  —.185 041
10 616 —.019 613 —.042 .075
(3)
1 .368 656  —.267 345 —.107
2 .612 133 —.124 594 —.044
3 .305 476 —.184 653  —.088
4 645 360 —.094 459  —~ .07
5 .415 728 —.079 218 —.081
6 72 =124 427 —.168 048
7 311 —.274 759 —.136 .138
8 665  —.052 511 —.084 254
9 .001  —.106 352 —.117 .922
10 596 —.012 620 —.046 .079

The used initial estimates are as follows:

(1) The value recommended by Joreskog [15].

(2) The value used by Tumura et al. [32].

(3) The value recommended by Joreskog, except
$o=.571 is replaced by .25.
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Table 2.3. Maxwell’s data, ¥ obtained by deleting
the variable that tends to go into the Heywood
region, m=4, Joreskog’s method.

(1) (2) (3)

1 .429 .389 .368
2 .621 .620 .610
3 .300 .303 .305
4 .642 .639 .636
5 .001 .353 .403
6 .798 ¢ ) 773
7 .321 .257 .325
8 ¢ -001 001
9 714 .689 ()
10 .320 .617 .561

(1) The 8th variable is deleted.
(2) The 6th variable is deleted.
(3) The 9th variable is deleted.
The used initial estimates are the values recom-
mended by Joreskog [15].

especially Factor IV, depended on initial estimates. Table 2.3 shows
(P3); for instance, in case that the 8th variable was deleted, the 5th

element of 7 tended to be negative, as shown (1) in this table. Table
2.4 shows (P4); in case that the iteration was continued using Jennrich
and Robinson’s method, it did not terminate.

Table 2.4. Maxwell’s data, behavior of the iterative process ¥, m=4.

(1) The value recommended by Joreskog [15] is used for an initial estimate.

variable
N 1 2 3 4 5 6 7 8 9 10
count
initial est. .386 .597 .385 .559 .485 .633 .411 .547 .571 .566
10 .361 .584 .322 .629 .430 .766 .329 .301 .669 .551
11 .370  .603 .313 .636 .397 .773 .300 .144 .686 .593
12 .390 .631 .298 .643 .346 .783 .255 ~.088 .702 .637
20 .423 .665 .280 .649 .144 .792 .277 —1.571 .717 .617
30 .412 645 .291 .645 .263 .801 .264 —10.200 .721 .621
40 .396 .629 .298 .644 .327 .800 .276 —17.663 .723 .608
50 .397 .631 -+ 642 .324 .801 .278 -—26.797 @ .-
60 .398 .633 -+ .641 .323 - 219 —86.797 .- 607
70 1,322 e —16.797
80 .. .280 —56.797
90 <o 297 .640 e —66.797
100 e —76.797
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Table 2.4. (Continued)

(2) The value applied by Tumura et al. [32] is used for an initial estimate.

~~._ variable

N 1 2 3 4 5 6 7 8 9 10

count

initial est. | .440 .670 .280 .660 .120 110 .320 .660 .680 .630
10 434 .665 .273 .652 .169 .08, .316 .659 .677 .621
12 412 .652 .281 .650 .270 035 .315 .660 .676 .619
13 ‘378 .612 .310 .645 .382 —.006 .312 .656 .675 .614
20 . 629 .300 .647 .381 —.489 .309 .673 .668 .616
30 400 654 .283 .651 .307 —2.578 .315 .677 .671 .618
40 410 (659 .279 .652 .268 —9.897 .- .680 .672 .619
50 409 -.. 280 .. .272 —19.897 - .681  -. .618
60 407 .656 .281 ... .284 —29.897 - -
70 403 654 .283 .651 .297 —399.897 .314 - e .
80 400 651 285 . .312 —49.897 - e 61T
90 '396 .647 .288 .650 .326 —59.897 - .680 . ..
100 1302 643 .201 .- .340 —§9.897 - -

The same value as the above at least in the three places of decimal is de-
noted by ‘---’.

3. Causes of the problems

We investigate the reason why one more factor cannot be obtained
frequently in spite of the result of test. Nonconvergence cases were
studied ([1], [4]), however, when and why they occurred frequently in
the analysis of empirical data were not discussed. Some effects of triv-
ial factors have been ignored in the past study.

Experiment. The author wished to see if (P4) was caused by triv-
ial factors. The structure which simulated empirical data with m,=2
was treated. The first m,+t columns (¢=1, 2, 3 and 4) of the maftrix
given in Table 3.1 were used; the first two columns represent main
factor loadings and the remainings trivial factors. Sample correlation
matrices with sample size 100 were generated from random numbers
using formula (1.1), where f and u are distributed as N(0, I) and N(0,
diag (I—A4')), respectively. An iteration terminated after the value of
the likelihood function changed less than ¢ in absolute value and the

Table 3.1. Loading matrix used
in the experiments.

8 1 .15 .2 —.15 .27
a5 .1 .8 —.15 .2 —.15
7.2 =15 .2 —.15 —.2
65 2 —.2 —.15 .2 .15
1 8 .15 .2 .15 .2
1 .75 .2 —.15 —.2 —.15
2 7 -5 .2 .15 —.2
L.2 .65 —.2 —.15 —.2 .15
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maximum norm of gradient got less than e, where ¢=10"".

Two (=m,) factors were extracted and the result was classified as
a proper solution, a Heywood solution, and a nonconvergence case.
Further, the hypothesis for factor size 2 was tested. Next, 3 factors
were extracted from the same correlation matrix and the result was
classified. Two hundred and fifty replications were done for each t.

Table 3.2 summarizes the results; the increase of ¢ made the tail
of the distribution of the test statistics heavier for m=m,, but de-
creased the number of proper solutions for m=m,+1. It ascertained
that (P4) is due to several trivial factors.

Population cases were dealt with in order to investigate the causes.
Suppose A satisfied a sufficient condition for the extended uniqueness
described in Appendix. If k+s factors were extracted from a popula-
tion covariance matrix X=A4'+diag (I—A44") by iterative procedures;
(1) the obtained solution consisted of the true common factors and s
specific factors, and (2) the variables to which specific factors were ad-
ded and those loadings depended on initial estimates ([32], Experiment

Table 3.2. Results of the extraction and the test for m=m,, and
the extraction for m=mo+1; when { trivial factors exist (Monte
Carlo experiments with 250 replications for each ).

\N 1 2 3 4

proper solution 100.0% 99.6% 99.6% 99.29%

Heywood solution .0 4 4 .8

nonconvergence .0 .0 .0 .0

m=me —1% level* 19.2 39.2 55.2 52.8

-5 42.8 66.0 78.0 80.0

~25 76.8 90.8 96.8 95.6

~50 88.8 97.6 99.6 99.2

— 100 100.0 100.0 100.0 100.0

proper solution 60.8 53.2 20.4 16.8

m=mo+1 | Heywood solution 20.8 27.2 38.8 14.4

nonconvergence 18.4 19.6 40.8 68.8

m=my m=mo+1

proper proper 59.3 54.5 17.4 14.5

proper Heywood 25.0 28.5 42.1 15.5

E: proper nonconyv. 15.7 16.4 40.0 69.0

Heywood | proper .0 .0 .0 .0

Heywood | Heywood .0 .0 5 .0

Heywood | nonconv. .0 .6 .0 1.0

# Results of the extraction for m=m+1 from the samples whose y2
values for m=m, are significant at the 5% level.
* Frequency of the test statistics corresponding to the upper probabilities.
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1). Problems (P1), (P2) and (P3) arose even in the population cases,
which did not have unfitness for a model and sampling fluctuation.
Sample covariance matrices were not exactly decomposed as (A.l) in
probability one. Therefore quasi-specific factors appeared and (P4)
arose. Nonconvergence cases ([1], [4]) or Heywood solutions ([6], [7],
[25]) were investigated, however, this interpretation was not pointed
out.

4. Treatment of improper solutions

4.1 Proposed treatment
For m=m,-+1, apply methods capable of obtaining Heywood solu-
tions, and continue the iteration until all elements of ¥ except one ele-

ment are stable. After that, rotate the indeterminate loadings _/T,,,OH
to satisfy

(4.1) A1 T=[dny; 1 5

where T is an orthogonal matrix of order m,+1 and s represents spe-

cific factor loadings. If (4.1) holds, interpret /i,,,o.
For this rotation, the following iterative procedure is recommended :

Step 0: Arrange columns of /f,,,o+1 so that the first m, columns
consist of main factor loadings and the last quasi-specific ones. Find
the position of the maximum absolute value in the last column; say
(7, my+1). Set s'=(0,0,---,0).

Step 1: Set (¢, my+1) element of the current loading matrix to
the i-th element of s.

Step 2: Rotate the loading matrix by

4.2) T (A% A AV AR) VA% 0

where A* is the current loading matrix and A°=[/im0; s]. If every load-
ing changes less than d, a small positive constant for a convergence
criterion, by the rotation, then stop; otherwise, return to Step 1.

4.2 Bases of the treatment

Unless such methods are applied and the iteration is continued, one
cannot find out whether quasi-specific factors appear. Further the ite-
ration may terminate in the proper region passing through the Heywood
region ([30], Example 1).

The rotation matrix T is derived as follows: Consider the ortho-
gonal matrix T to fit a matrix A* to a target matrix 4°. Suppose that
the matrices 4* and 4° have the same order and are of full rank. The

least squares fit is given by formula (4.2) ([10]), if a matrix A4¥A° is
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nonsingular. Since experimenters possess information only about the
position of the nonzero element of s, the use of an iterative procedure,
which is called the incomplete Proecrustean rotation ([26]), is proposed.
When 4 is set to 107%, at most ten iterations are required to converge
from author’s experience.

The treatment worked well for many sets of empirical data; for
example, the data dealt by Mattsson, Olsson and Rosén [20] (Bechtoldt
([8], p. 412, Sample 1), Harman ({11], p. 82 and 137), Maxwell ([21], p.
55) and Rao ([23], p. 110)), Joreskog ([16], p. 152, Problem 2) and
Maxwell ([22], p. 9).

On the other hand, Driel, Prins and Veltkamp [7] obtained a com-

plex solution, a solution such as 3~ has at most m—1 positive eigen-
values. In such cases, they recommended to delete the variables which
had large asymptotic variances ([6], [7]), however, it did not settle the
problems. By a suitable rotation, it is found out very often that the
loadings of complex solutions consist of two parts; (1) the real number

loadings that quite agree with /imo, and (2) the real or imaginary num-
ber loadings that represent trivial factors or quasi-specific factors.

4.3 Example

The data dealt with in subsection 2.2 were analyzed.

If the iteration was continued using Jennrich and Robinson’s method;
the loadings corresponding to Factors I, II and III were nearly invari-
ant, and, the only one loading increased and the remainings decreased
in absolute value in the column corresponding to Factor IV, therefore,
it became a quasi-specific factor. Table 2.4 shows the behavior of the
iterative process. Remark that the main factor loadings closely agreed

with 4, independently initial estimates ((1), (2) and (3) in Table 4.1, cf.

Table 4.1. Maxwell’s data, at the 100th iterative count, the rotated
loadings fitting to /?a and specific factor loadings.

(1) (2)
¥ I I 111 v ¥ 1 I uI v

1 .398  .608 —.302 .376 .006 1 .395  .620 —.287 .372 —.003
2 632 .134 —.140 .575 .002 2 .637 .138 —.134 570 .00l
3 .298  .452 —.213 .673  .002 3 .201  .455 —.205 .679 .000
4 643 .355 —.106 .469 —.005 4 648 .352 —.118 .463 .001
5 .322 797 —.060 .198 —.005 5 .342 782 —.074 .200 .002
6 .802 —.130 .393 —.164 .012 6 —69.809 —.122 .433 —~.160 8.407
7 279 —.271 796 —.122 —.005 7 314 —.267  .772 —.136 —.003
8 —76.805 —.039 .591 —.092 8.800 8 .678 —.066 .558 —.076 .0I3
9 724 —.133  .480 —.168 .015 9 .675 ~.116  .532 —.169 --.008
10 .607 —.030 .626 —.019 —.006 10 617 —.028 .617 —.026 —.002
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Table 4.1. (Continued)
(3) (4)
13 I II 11 v ¥ I 1 Iz v

1 .357  .667 —.277 .348 —.004 1 .398  .612 —-.294 .376 .006
2 .589 .114 —.137 .616 .003 2 .627 .131 —.138 .580 .002
3 .321  .476 -—-.205 .641 —.000 3 .300 .454 —.211 .671 .002
4 .648  .354 —.115 .462 —.001 4 .644  .357 —.106 .466 —.006
5 444 .701 —.086 .241 .002 5 .329 792 —.059 .201 —.006
6 776 —.124 427 —.162 —.009 6 (deleted)

7 .293 —.280 .783 —.120 —.005 7. .254 —.273 .811 —.119 —.007
8 .694 —.055 .542 —.090 .017 8 —62.789 —.039 .591 —.092 7.964
9 —-57.985 —.118 .532 —.167 7.659 9 727 —.134 474 —.171 016
10 .607 —.014 .626 —.039 —.004 10 .621 —.031 .614 —.025 —.006

The used initial estimates are as follows:
(1) and (4) --- The value recommended by Jéreskog [15].

(2) - The value used by Tumura et al. [32].
(3) - The value recommended by Joreskog, except ¢oz=.571

is replaced by .25.

Table 4.2. Maxwell’s data, m=J, the complex solution, the
rotated loadings fitting the real number loadings to As.

Table 2.1).

¥ 5, I I 11 v

1 .399 .036 .607  —.304 .375 .088i
2 .628 .058 31 —.139 579 —.001i
3 .299 .040 453  —.216 .670 .009i
4 .645 .038 .355  —.133 466 —.029i
5 .329 .103 792 —.071 199 —.011i
6 .813 047  —.125 .400 .164 .125i
7 .275 04 —.262 .802 .122 .086i
8 179 2.296 —.089 .465 .086  —1.188i
9 740 048 —.127 .487 .168 .148i
10 .610 045  —.021 .624 .023 .018i
@#F=-1

Further, even if the variable corresponding to ¢, was de-

leted, the above tendency persisted; for instance, the result of deletion

of the 6th variable is shown in (4) in Table 4.1.

Thus, actually, the

main common factors were determined, and consequently, all the prob-
lems (P1), (P2), (P3) and (P4) were overcome simultaneously.
As for the complex solution obtained by Driel, Prins and Veltkamp

({71, (8) in Table 4), the real number loadings quite agreed with A, by
a rotation (Table 4.2, cf. Table 2.1).
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5. Recommendations

If a uniqueness condition of A4 is violated, samples from such pop-
ulation yield improper solutions very often ([6]). A necessary condition
for uniqueness is that each column of A4 has at least three nonzero
elements for every nonsingular matrix A ([2], Theorem 5.6).

The statistical test almost always indicates more factors in the
analysis of empirical data. Hence, various goodness-of-fit indices were
proposed and examined ([1], [27]). However, they were not taken
account of the uniqueness condition and an existence of trivial factors.
When we decide factor size, we should count factors that have a great
influence on at least three variables.

After deleting one or more of the variables from the original cor-
relation matrix taking into consideration of the uniqueness condition,
check whether similar solutions can be obtained. Unless solutions are
relatively consistent under the selection of test batteries, results are
unreliable ([8]).

When we make test batteries, it is to be desired that a hypotheti-
cal loading matrix should satisfy the extended uniqueness condition. It
is required in view of the following situations:

1) Some variables are deleted in order to check the stability of solu-
tions.
2) Extraction of one more factor is often tried as a result of the test.
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Appendix

THEOREM. (A sufficient condition for the extended uniqueness ([28],
[29D)) Let

=M 4+

hold, where A, is a pxXk matriz (p>k) and T, is a diagonal matriz.
Suppose that there remain two disjoint submatrices of rank k in A4,
after deletion of any r-+1 rows of A4,.

If 3 has another decomposition such that

(A1) =Ml e+
where Ag.,: pX(k+s), rank A,.=k+s, 0=s=r,
r and s are non-negative integers,
T.... a diagonal matriz,

then, there exists an orthogonal matrix T.., such that A Te..=[4c; Si]
where off-diag S,S/=0, namely, S, (pxs) represents specific factor load-
mgs.

Under the condition of this theorem, even if factor size is increas-
ed up to k+s, no common factor but s specific factors are added, and,
the common factor matrix remains invariant. This theorem reduces to
Anderson and Rubin’s ([2], Theorem 5.1), when r=0.



