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Summary 

The problem of characterizing the  normal law associated with linear 
forms and processes, as well as with quadratic forms, is considered. 
The classical condition of constancy of regression is replaced by a dis- 
t inct  condition of high-order uncorrelatedness. 

1. Introduction 

Let  {U~} be a finite or infinite sequence of independent random 
variables and let X and Y be a pair of linear forms in the  U~'s. Vari- 
ous stochastic properties of X and Y have been used to characterize 
the  normali ty of the U)s. Among these are independence (the Darmois- 
Skitovich theorem [1], [5] and [8] and its extensions ([2], Chap. 3)), the  
proper ty  of identical distributions (Marcinkiewicz theorem [5] and [6], and 
its extension ([2], Chap. 4)) and the property of constancy of regression 
(the Kagan-Linnik-Rao theorem and its extensions ([2], Chap. 5)). The 
characterization of normality of the  U~'s by independence or constancy 
of regression has also been extended in several directions to various 
special cases of linear and nonlinear polynomial statistics (see [5], Chap. 
5 and [2], Chaps. 4 and 6). For stochastic integrals with respect to pro- 
cesses of independent increments, characterization of the  Brownian 
motion has been considered by Lugannani and Thomas [4]. For station- 
ary t ime series, Slud [9] provided a characterization for certain linear 
autoregressive processes. 

In this note we consider characterization problems associated with 
linear and quadratic forms as well as with  linear processes in identically 
distr ibuted {U~}. The principal feature  of the  characterization results 
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obtained here  is the  fact tha t  the  classical condition of constancy of 
regression E[L21L~]=0 of one statistic L2 on another  L1 is replaced 
here by the  condition of high-order uncorrelatedness, i.e., by coy {L~, 
L~}=0 for certain values of the positive integers l, k. For linear forms 
and processes E[L2iL1]=0 implies coy {L~, L~}=O so tha t  the  new con- 
ditions are generally weaker than constancy of regression. On the  
other  hand, the  new characterization presupposes the  existence of mo- 
meats .  A by-product of the approach taken here  is the  fact tha t  given 
an integer  p>=3, one can characterize the  distribution F of the  UJs as 
being approximately normal with moments  identical to those of a nor- 
mal distribution up to the given order p. For the  special case of two 
linear forms satisfying a constancy of regression condition, a result  of 
this type was given in [7], Theorem 5. 

Characterization results associated with linear forms are presented 
in Section 2, those for quadratic forms in Section 3. Characterization 
results associated with, possibly nonstationary, linear processes of the  
form 

( I . i )  Y.= ~, h~,~U~, n = 0 ,  •  
i=~:o 

are given in Section 4. The derivations are collected in Section 5; a 
unified approach is adopted and all results are shown to follow from a 
simple recursive relationship (Lemma 5.1) concerning the covariance 
s t ruc ture  of products of the U~'s. 

2. Linear forms 

Let {U,}~vl be a finite sequence of independent  identically distr ibuted 
random variables with EIU~lP<co, for some integer  p>~3, such tha t  
E[U~]=0, and Var [U~]=a2>O. Define the  two linear forms 

N N 
(2.1) x =  z a,U~ , Y =  ~,  b~U~ . 

For every integer  k>=2, define 

N 
(2.2) r~(l) = Z (a~)~(b~) ~-~ , l= 1 , . . . ,  k - -  1 ,  

and note tha t  when r2(1)=0 the  random variables X and Y are uncor- 
related. We have the following result. 

THEOREM 2.1. Let r~(1)=0 and p ~ 3  be a f ixed integer. I f  f o r  
every integer k = 3 , . .  ., p there exists an  integer l~, l ~ l ~  <~k-1,  such that 
r~(lk)r then the condition cov{X% Y~-~k}=0, f o r  k = 3 , - . . ,  p, implies  
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that the distribution F of the UJs has the same moments structure up 
to order p as that of a normal variate ~(0, a2). 

If we choose l~=1 in Theorem 2.1, then the  condition coy {X, yk-~} 
=0  for k = 3 , . - - ,  p is implied by E [XIY]=0.  Thus the characterization 
result  of Rao ([7], Theorem 5), valid under  a constant regression con- 
dition, is seen to be a special case of Theorem 2.1. Next  we have the  
characterization of the normal law as follows (compare with the  cor- 
responding characterization ([2], Theorem 5.5.2) under a constant re- 
gression condition). 

COROLLARY 2.1. I f ,  in  addition, E[U~p~oo for  all n = 1 , 2 , . . . ,  
and the conditions in Theorem 2.1 are satisfied for  all k=3,  4 , . . . ,  (i.e., 
p=oo) then the Ujs are normally distributed, ~(0, a~). 

By imposing stronger conditions on the  vectors a = ( a l , . . . ,  aN)' and b 
= ( b , . . . ,  b~)', the normality of the  U~'s can be deduced under a weaker 
requirement  on the covariance of the  powers of X and Y. As r2(1)=0 
is identical to the orthogonality of the  vectors a and b, the notion of str ict  
orthogonali ty is defined by the  additional requirement  tha t  for every 
integer  k>=3, 

(2.3) r~(I)~e0 for all l = 1 , . . - ,  k - 1 .  

The smallest dimension strictly orthogonal vectors a and b can have is 
N=3.  An example is the vectors a= (1 ,  1 , - -2/a) '  and b=(1, 1, a)', 1< 
a<2 .  We then have from Theorem 2.1 the following result. 

COROLLARY 2.2. Let EIU~]"<oo forall  n = l ,  2 , . . .  and assume that 
the vectors a and b are strictly orthogonal. I f  for  every integer k>=3, 
we have coy {X% Y~-~k}=0 for some integer lk, l <=l~ <=k--1, then the UJs 
are normally distributed, ~(0, a2). 

The extension of Theorem 2.1 and its corollaries to linear forms 
with a denumerable number of variables {U~}7=1 is immediate. For ex- 
ample, the  counterpart  to Corollary 2.1 is as follows: Let 

(2.4) X-=~,a~U~ , Y- -~ ,b ,U,  

where E[U~]p<oo for all p = l ,  2 , . . . .  Then X and Y have finite mo- 
ments  of all orders provided 

(2.5) ~ (a,)2p<oo , ~, (b~)2P<oo for all p = l ,  2 , . . . .  

A sufficient condition for (2.5) to hold is dear ly  
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(2.5)' :~, a ' ; < o o  , ~ ,  b~,< ~ . 
$=I ~=i 

Now define for every integer k~2 ,  

(2.6) ~k(l)= ~, (a~)~(bO k-~ , l = l , . - - ,  k - -1 .  

We then have the following version of Corollary 2.1 (compare with the 
corresponding characterization of the normal law under a constant re- 
gression condition ([2], Theorems 5.6.4 and 5.6.5)). 

COROLLARY 2.3. Let ~2(1)=0. I f  for  every integer k>=3 there exists 
an integer l~, l ~ l ~ < k - 1  such that ~k(l~)r then the condition cov {X~, 
Y~-t~}=0 for all k=3,  4 , . . .  implies that the U,'s are normally distributed 
~(0, ,7~). 

3. Linear and quadratic forms 

The characterization of the normal law by the independence of 
linear and quadratic forms is well known ([5], Chap. 5 and [2], Chap. 4). 
Some characterization results, associated with such forms, through the 
property of constancy of regression are given in [2], Section 6.3. As in 
Section 2 we replace the condition of constancy of regression by the 
condition of high-order uncorrelatedness of the linear and quadratic 
forms. 

Let U = ( U , . . . ,  U~)' be a vector of independent identically distri- 
buted random variables such that  EtUdp<r for all p = l ,  2 , . . .  and 
E[U~]=0, Var [U~]=a~>O. Define the linear form 

(3 .1 )  X =  a' U 

and the two quadratic forms 

(3.2) T =  U ' B U ,  S =  U'QU 

where B=[b,,i] and Q=[q~.j] are two real N x N  symmetric matrices. 

I t  is well known that  when U is normally distributed, X and T (re- 
spectively T and S) are independent if and only if B a = 0  (respectively 

B Q=0) (see [5], p. 70). As in Section 2, we define 

N 

~ ( l ) = : ~  (a~)t(b,) (k-~m, k>=3,  l = l , . . . ,  k - - l ,  k - l  even 

and 

N 

F~(I)=~, (b,)~(q,) ~-~ , k_~l, l = 1 , . . . ,  k - - 1 .  
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The normality of the U,'s is deduced from the uncorrelatedness of 
certain powers of the linear and quadratic statistics X and T as fol- 
lows (compare with the corresponding result through constant regres- 
sion of T on X ([2], Theorem 6.3.1)). 

THEOREM 3.1. Let B a = O. I f  for  every integer k>= 3 there exists 

an integer l~, with l~ l~<k  and k - l~  is even, such that ~(l~)r then 
the condition coy {X% T(~-~Pn}=0 for  all integers k ~ 3  implies that the 
U~'s are normally distributed, ~(0, a2). 

Evidently it suffices that  the h~/pothesis in Theorem 3.1 be satisfied 
for lk=l  when k is odd and l~=2 when k is even. 

The best known example related to Theorem 3.1 is that  the con- 
stant regression of the sample variance T on the sample mean X of a 
random sample from a population implies the normality of the under- 
lying distribution ([2], Theorem 6.3.1). On the other hand, specializing 
Theorem 3.1 to this case, we have 

, 1 a = - ~ ( 1 , . . . ,  i ) ,  B =  1 [I--Naa'] 
- N 

so tha t  B a =  0 and ~(1) r 0 for k>__3 and l=  1 , . . - ,  k -  1 are automatically 

satisfied. Hence if the U,'s have finite moments of all orders then their 
normality is implied by the uncorrelatedness of certain powers of the 
sample mean and variance as specified in Theorem 3.1. 

Next  we characterize the distribution F of the U,'s by uncorrelated- 
ness of certain powers of the two quadratic statistics T and S of (3.2). 
In this case it is necessary to assume the symmetry  of the distribution 
F since the covariance of two quadratic forms provides no information 
on odd moments of F. 

THEOREM 3.2. Let F be a symmetric distribution and let BQ=O. 

I f  for  every integer k ~ 2  there exists an integer l~, l~_lk<k such that 
l'k(l~)r then the condition coy{T% S~-~k}=0 for  all k>=2 implies the 
normality of  the distribution F. 

In view of the recursive nature of the proof it is possible, as in 
Theorem 2.1, to state versions of Theorems 3.1 and 3.2 under which 
F is characterized as being approximately normal with moments match- 
ing those of a normal variate ~(0, a 2) up to a given order p. This is 
the case, for example, when the conditions in Theorem 3.1 are satisfied 
only for k = 3 , . . . ,  p. 
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4. Linear processes 

In this section we consider a characterization problem associated 
with linear processes defined as follows. Let  {U~}7=_~ be an infinite 
sequence of independent identically distr ibuted random variables such 
tha t  E]U~]P<r for all p=1,2, . . . ,  and E[U,]=0,  Var[U,]=a~>0.  De- 
fine the  output  process 

(4.1) Y~= ~ h,.~U~, n=O, +_I,... 

h r where,  for each integer n, { .,~}~=_~ is a sequence of real numbers  satis- 
fying 

(4.2) ~, h:~<oo. 

The process {Y~} is well defined in the  mean-square sense with mean 
zero and covariance function 

(4.3) r(n, m)=a 2 ~ h,,~h,~.~. 

The process {Y,} may be viewed as the  output  of a, possibly time- 
varying, linear filter with  "whi te  noise" input  {U~}. Our concern is 
the  characterization of the  distribution F of the  input  process {U~} as 
normal, or approximately normal, by high-order covariance properties 
of the  output  process {Y,}. We limit ourselves to the characterization 
of normal i ty ;  the  other  case of approximate normality, with normal 
moments  up to a given order, can be obtained by a truncation argu- 
men t  as in Theorem 2.1. 

The process {Y~} has finite moments  of all orders provided 

2k . . .  , (4.4) ~ h~.~<~, k=l ,  2, 
i =  - - a a  

for all integers n ;  a sufficient condition for (4.4) to hold is clearly 

(4.4)' 

for all integers n - - a  condition assumed henceforth.  For each integer  
k-> 2, define 

(4.5) r,(t" n, ~ ) =  ~ h' h ~-' t=  l , .  k -  , n , i  m,~ , " " ,  , 
~=--ao 

and note t ha t  r~(1;n,m)=r(n, m)/a2=O for all n:/:m implies tha t  the  
process {Y~} is uncorrelated. As in previous sections we characterize 
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the normality of the U~'s by the property of high-order uncorrelated- 
hess of the output process {Y.}. The proof of the following result is 
identical to that  of Theorem 2.1 and Corollary 2.1 and is omitted. 

THEOREM 4.1. Let r2(1; n, m)=0  for all n r  I f  for every integer 
k>=3 there exists a triplet of integers (l~, n~, m~) with l_~l~=<k-1 and 
n~r such that r~(l~;n~,m~)r then the condition cov {YJ**, Y~-~}=0 
far all integers k~3  implies that the U~'s are normally distributed, ~(0, 42). 

Evidently the results of Section 2 (Corollary 2.3) can also be applied 
to characterize normality of the U~'s if one identifies the two variates 
X and Y of Section 2 with the values of the process {Y~} at two fixed 
instants of t ime; no such a restriction is imposed in Theorem 4.1. 
Loosely speaking, Theorem 4.1 deduces normality of the input process 
(U~} from uncorrelatedness of powers of the output process {Y~} at some 
instants of time. A more clear picture emerges in case the process 
{Y~} is also stationary, which is considered below. 

In the stationary case, we have 

(4.6) Y~= ~ h~_~U~, n = 0 ,  _+1,... , 
~ = - - r  

where {h~} represents the impulse response of a time-invariant filter 
satisfying 

(4.7) h:<oo.  
~ = - - ~  

The covariance function of the process (4.6) is given by 

(4.8) r(n)=a ~ ~, h,h,+,, 
t =  - - n o  

and its spectral density r by 

(4.9) r  IH(e~) [~, - u ~ 2 _ < ~ ,  

where the transfer function H(e*O is defined in the L~ sense by 

(4.10) H(d9= ~ h~e - ~  �9 
n = - o o  

I t  is clear that  when IH(d~)i=Const. (a " w h i t e "  filter) then {Y.} is a 
discrete-time white noise process. The condition f H(dOl=Const. is equiv- 
alent to r~(n)=0 for all n ~ 0  where for every integer k>=2, r~(n) is 
defined by 

(4.11) rk(n): ~ h~h~7~, n = 0 ,  + 1 , . - - .  
l =  - - c a  



424 ELIAS MASRY AND BERNARD PICINBONO 

The following simple result follows immediately from Theorem 4.1. 

COROLLARY 4.1. Assume the linear time-invariant filter {h~} is 
white and for  every integer k>=3, r~(n)r  for  some n=n~r I f  for  
every integer k ~ 3 ,  coy {Y0, Y2-1}=0 for  all n r  then the input process 
{U~} is normal. 

Note tha t  the  above characterization by high-order uncorrelated- 
hess is implied by the constant regression condition E [Y0[Y.] =0  for all 
h e 0 .  

The condition in Corollary 4.1 on the  uncorrelatedness of the  powers 
of the  process {Y~} can be considerably weakened provided s tronger  
conditions are imposed on the filter {h~}. We shall call a filter satisfy- 
ing (4.7) strictly white if it is white (r2(n)---O for n ~ 0 )  and, in addi- 
tion, for every integer  k~3 ,  

(4.12) r~(n)r for all h e 0 .  

An example of a strictly white filter is given by 

t 
0,  n < 0  

hn= a ,  n = 0 ,  ~ /2" /2~a<1  

-- (1--a2)a ~-I , O<n  

for which the  condition (4.12) is easily verified. We then have the  
following result.  

COROLLARY 4.2. Assume the linear time-invariant filter {h~} to be 
strictly white. I f  for  every integer k~3 ,  coy {Y0, Y2-~}=0 at some in- 
stant n-=n~aO, then the input process {U~} is normal. 

I t  would be of interest  to generalize the  results of this section to 
the  case where  the  input process {U~} is correlated. In this case one 
seeks the  characterization of the  input  {U~} as a normal process, based 
on appropriate stochastic properties of the  output  process {Yn}. 

5. Derivations 

Let {U~} be a finite or infinite sequence of independent  identically 
distr ibuted random variables having finite absolute moments  up to or- 
der p, where  p>=2 is a fixed integer.  Let  

(5.1) e~=cum~ {U~}, k = l ,  2 , . . . ,  p ,  

be the k-th cumulant  of U~. When U~ is :~(m, a S) we have c~---e~ with 
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(5.2) e ~ = m ,  e~=a 2, e~=0  for k>=3. 

For  any in teger  k ~ p  define the  covariance funct ion  

(5.3) C~,~[i~]=C~,~[i, . . . , i~] 

= c o y  U,:, ]-[ , / = l , . .  ., k - 1  , 
J=l 3=/+I 

w here  i , . . . ,  i~ are arb i t rary  in tegers .  When  the  U,'s are normal,  we 
denote  the  covariance (5.3) by CIr.  The proper t ies  of C~.~[i ~] are given 
by the  following simple lemma.  

LEMMA 5.1. Let k be a positive integer, k ~ p .  
( i )  I f  cj=c? f o r  j = l , . . . ,  k, then 

C~,,[ic~']=C~,~[i ~'1 . 

(ii) I f  - ~ c~--c~ f o r  j = l , . . . ,  k - - l ,  then 

c~ ,  , [ i ~ ]  = c~ ,  ~ [ i ~ ' ]  + (e~ - c ~ ) a [ i  ~ 1  

where 

5[ic~)]= { 1 ,  i l = i 2 = ' " = i ~  

O, otherwise.  

PROOF. Since the  U/s  are i.i.d, r andom variables,  C~,z[i c~)] is given 
by a finite sum of products  of the  marg ina l  cumulan ts  e , . . . ,  c~. More- 
over,  the  cumulan t  c~ contr ibutes  to C~,~[i <~)] only when  i ,=i~= . . . .  i~. 
Hence one can wri te  

(5.4) C ric'~l--srick~le +Cl 5ric~mF rtc ~ - "  i ~k~] /c.~L J - -  t J ~ \ - -  L J./ ,~,~k~ . ~ D = I ,  , 

where  the  precise s t ruc ture  of Fk,,[" ; �9 ] can be obtained f rom the  rules 
of Leonov and Shirayev [3] bu t  is not  needed here .  In part icular ,  when  
the  U/ s  are normal  ~ ( m ,  a 2) we have  

C~,,[~ l-a[~ ]e~+{1-a[, ]}F~,,[{ Jb:, ,  ( 5 . 5 )  ~ "'~) - "~' ~ "~' c ~ ~ - 1 " i ~ ' l  �9 

The l emma follows immedia te ly  f rom (5.4) and (5.5). 

PROOF OF THEOREM 2.1. We first note  t h a t  E [ X ] = E [ Y ] = O  and 
cov {X, Y}=s Using L e m m a  5.1 we show, in a recursive man-  
ner ,  t h a t  the  cumulants  {c~} of the  random variable U~ sat isfy c~=c~ = 
0 for k = 3 , . . . ,  p f rom which the  resul t  follows. Fix  k, 3=<k=<p, and 
let  

R~(/)=~ coy {X ~, Y~-~}, / = 1 , .  �9  k - l ,  
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and by (2.1) and (5.3), 

I,!, o,,] �9 

As the first step in the recursion we show c~=O: Since the 
independent  with zero means, it  is seen directly from (5.3) tha t  

C3,,[ ic3~] = E [U~]~[i ~3~] = c,5[i <~'1 . 

U~'s are 

Thus, by (5.6), 

N 

R3(1)=c3 ~ (a,)~(b,)3-z=c3r3(l) , /=1,  2.  
z = l  

The condition R8(13)=0 now implies c3=0=c~. Suppose we have shown 
tha t  Q=c~ for j = l , . . . ,  k - 1 .  We prove tha t  R~(l~)=O implies c~=c~. 
Using Lemma 5.1 (ii) and (2.2) in (5.6), we obtain 

(5.7) R k ( l ) = ~ " ' ~  I~=T[~a'JllJ=~-[+l 1 '  (~1,--.,~) b v C~ ~[ic~] + (c~- c~)r~(l) , 

l = l , . . . , k - 1 .  

The multiple sum in (5.7) is clearly identical to R~(I)-~ cov {X~, Y~-t} 
where  Xo and Y~ denote the (normal) linear forms when the Us's are 
2Z(0, a~). Thus 

(5.8) RJl)=RZ(1)+(c~-cZ)r~(1), / = 1 , . . . ,  k - 1 .  

Since r2(1)=0, the random variables Xo and Ya are uncorrelated and, 
being normal, are also independent.  Hence R~(l)-O so that  

(5.9) Rk(l)=(c~-cZ)rJl) , 1=1,. . . ,  k--1.  

Finally the  condition RJ/~)=0 implies c~=c~ since r~(/~)r 

PROOF OF COROLLARY 2.1. By Theorem 2.1 we have c~-- c~ z for all 
k = l ,  2 , . . .  and the  result follows. 

PROOF OF THEOREM 3.1. I t  is similar to tha t  of Theorem 2.1. 
Define for every integer k>_-3, 

(5.10) _~J/)=cov {X t, T (~-z~n} , 1=1,. . . ,  k - - l ,  k - l  even ,  

and by (3.1)-(3.2), we have 

(~'1' "'"%~) L j =L-]-I 

where  C~,~[i c~] is defined in (5.3). Using Lemma 5.1 one obtains, as in 
the  proof of Theorem 2.1, 
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(5.12) R,(I) = R~ (l) + ( c~-- c~)~'~(l) , 

where  / ~ ( / ) = c o v  {X~, T~ ~-~)/2} and X~ and To are the  l inear and quad- 
rat ic  forms  (3.1) and (3.2) when  the  U,'s are ~7(0, a2). Since Ba=0, 
Xa and Ta are independent  ([5], Theorem 4.1.2). Hence / ~ ( / ) = 0  and 
(5.12) becomes 

R,,(l) = (ck-  c~)f,,:(l), l-= 1,- �9 k -  1 wi th  k - l  e v e n ,  

so t h a t  c~,=c~ under  the  condition /~,(/ ,)=0. 

PROOF OF THEOREM 3.2. We first note  t h a t  the  cumulan ts  cz,_t=0 
for  k = 1 , 2 , . . ,  so it  suffices to show e2,=0 for k = 2 , 3 , . - - .  Define for 
every  in teger  k>=2, 

(5.13) /~(/) = c o y  {T ~, S ~-z} , l = 1 , .  �9  k - 1 .  

Then  by (3.2), 

( I'''"~2k ) LJ=2t+ 1 tl~j,~k_l+jJ 2~,2lk ] 

where C2,.u[i c2.~] is defined in (5.3). Using Lemma 5.1 (ii), as in the 

proof of Theorem 3.1, and noting that BQ--_0 implies R,a(t)--cov [T~, 

S~-~}=0 ([5], Theorem 4.1.4), we have 

R k ( l ) : ( c 2 k - c ~ , ) r , ( l ) ,  k~2, t = l , . . . ,  k- - l ,  

Thus  c2~ = c~, since /~(l,) = 0 and F~(l,) r O. 
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