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Summary 

The Spearman estimator is designed to be a nonparametrie estima- 
tor for the  expectation of a tolerance distribution. We characterize 
the  one-parameter families of distributions (the parameter  being the  
mean of the  distribution) for which the  Spearman estimator has asymp- 
totic efficiency one. In particular, when the  parameter  indexes the  
location, the  characterizing distribution is the  logistic distribution. In 
any other  case of efficiency one, the  family of distributions is given by 
certain transformations of a logistic distribution. 

1. Introduction 

Let F(x) denote the  (unknown) tolerance distribution of a quantal 
assay model. The objective is to est imate the  expectation of F by 
performing an experiment as follows. Specify a d > 0  (dose-interval), 
an x0 e [--d/2, d/2] and let x~=xo+id for i=O, _ 1 , . . . ,  _ k  be the  dose 
levels. Let  n~ experimental units be subjected to dose level x~ and sup- 
pose only R~, the proportion of the  n~ units responding to dose level x~, 
be observed. We assume tha t  the  R~ are independent and tha t  n~R~ is 
binomially distributed with parameters  n~ and F(x~). Quantal assay 
models are also used in reliability tes t ing (Weaver [14]) and in indus- 
t ry,  for example, in munitions tes t ing (Epstein and Churchman [5]). 

In applications it is a common practice to specify a parametr ic  re- 
presentation for F and estimate the  unknown parameters  from the data 
(Finney [8] and Berkson [1]). Spearman [13] introduced a nonparametric  
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est imator  for the  expectation /~ of F,  namely 

k--1 

(1.1) [t=R_~(x_k-d]2)+ ~, (x~+d]2)(R~+,-R~)+(1-R~)(~+g]2) 
t , = - k  

k 

=--x~+d]2-d ~, R~. 
i =  -Ir 

The est imator  /~ has been studied, for example, by Irwin ([10]), 
Finney ([6], [7]) and Brown ([2], [3]). In order to study the effect of 
the  location of x0 and the size of the  dose interval d, excluding the  
possibility of significant misplacement of the  range (x_~, x~) relative to 
the  central par t  of F, Irwin [10] and Finney [6] introduced an infinite 
exper iment  by let t ing k-~co. This can be viewed as a formalization 
of the  assumption tha t  the exper iment  always covers an appropriate 
range of doses. I t  follows from Brown ([2], [3]) tha t  in the  infinite 
experiment ,  t~ (obtained by le t t ing k-~co in (1.1)) is unbiased when x0 
is randomly chosen in (-d/2, d/2). Moreover, he computed the variance 
of t~ and arrived at the  following expression for the  asymptotic effi- 
ciency of t~ relative to a parametric family {F,: g e 0}, g being the  ex- 
pectation of F , ,  

F,(x)(1--F,(x)) 

Finney [6] computed e(g)=0.9813 for a normal location family and e(z) 
=1.000 for a logistic location family. Brown ([2], [3]) has extensively 
studied e(#) and evaluated it for various families of tolerance distri- 
butions. Brown [3] also constructs a class of Student ' s  distributions 
for which e(z ) can be made arbitrarily small. Brown [2] enquires 
whe the r  there  are some symmetric  distributions other  than the  logistic 
for which the  Spearman estimator has asymptotic efficiency equal to 
one. He asserts tha t  there are no other distributions and provides a 
proof which is not  quite correct. The same proof also appears in Rustagi 
([12], Section 8.2). 

In this paper we will prove tha t  Brown's assertion is still t rue  by 
giving a more general characterization which covers both location and 
scale families of distributions. Our main result  is tha t  the Spearman 
est imator  has efficiency equal to one for all # if and only if F , (x)=  
G(a(x)-r(f~)) where G is the distribution function of a standard logistic 
distribution and a(x), r(#) satisfy certain conditions. 

In Sections 2 and 3 we show how definition (1.2) still can be justi- 
fied as an asymptotic efficiency when, instead of dealing with the  some- 
wha t  artificial notion of an infinite experiment ,  one considers the  finite 
exper iment  described at the beginning of this section, taking limits in 
appropriate ways. Miller [11] suggests  three  types of asymptotic ap- 
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proaches and in our paper we follow the  most  practical approach, namely  
k--.oo. Also, throughout  our paper we implicitly assume tha t  d -~0  as 
]~----+ OO.  

2. The finite experiment 

We will consider the  exper iment  described in Section 1, assuming 
now tha t  d (=d~) and hence also the  x~ depend on k. The index k will, 
however ,  be mostly suppressed in the  following. Fur the rmore ,  we shall 
assume t h a t  (for given k) x0 is uni formly distr ibuted on ( - d / 2 ,  d/2), 
independent  of the  R ,  

We shall assume tha t  the  expectat ion /~ of the  tolerance distribu- 
tion F exists. Then, as is well-known (see e.g., Chung [4], p. 49), 

where  both the  infinite integrals  on the  r ight  hand side exist. 
Throughout  the  paper we will assume tha t  the  n~ are all equal and 

fixed, n~=n.  

LEMMA 1. 

where M - k + 1 ~ 2  (here and in  the sequel). 

PROOF. By the  last equation in (1.1) we have 

k 

(2.2) E(/~ I Xo)=Xo-kk 'd-g ~ F(x,) 
--/r 

which, by taking expectation w. r . t ,  x0, becomes 

k 

E N t F(y+ d)dy 
3 -d/~ 

--/~ ,) (z--1/2)d . - - k ' d  

f o f: = -- -~,~ F(x)dx + (1-- F ( x ) ) d x .  

So the  lemma follows by (2.1). 

LMEMA 2. 

Var/~ = (d/n) (x) (1 -- F(x))dx + O(d ~) . 
- -  t 

PROOF. We have 
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Var/~ =E[Var  (t~ [ xo)] + V a r  [E(# Ixo)] �9 

Now, by the  last equality of (1.1) we have 

k 

Var (/~ I x0) = (g2/n) ~ F(x~) (1-- F(x~)) 

so tha t  

E[Var (/~lx0)]-=(d/n) ~, I ~j~ F(y+id)(1-F(y+id))dy 
-~ J-gl2 

I~'~ F(x)(1-F(x))dx. =(din) -~,~ 

Next,  note tha t  

Var [E(/~ [ x0)] = E[E(/~ I x0) -E/~] 2 

Remark 3.1. 
condition tha t  

E[f~9 r , :  co �9 

where,  by (2.2), 

< K + d ~, [F((i + 1/2)d) - F ( ( i -  1/2)d)1 
- -  2 --/~ 

= ~ + d[F(k'd)- F ( -  k'd)] <= 3d/2 

where  we have used the fact tha t  F is non-increasing. Hence, com- 
bining the above results, we get the lemma. 

LEMMA 3. 

E(~-#)Z=(d/n) I~:,~ F(x)(1--F(x))dx+o(d) 

provided there exists a non-negative and non-decreasing function r on 
[0, co] with r as x-~oo, satisfying 

I~ r and f; r 

and kd--~ co as k--. co in such a way that 

r co. 

The condition on F is seen to be equivalent to the 
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where  X is a r .v.  with d . f . F .  Thus if F, for example, has a second 
moment ,  then  r will do in the  lemma and the  condition on d is 
t h a t  kd3n--~oo as k - . o o .  

PROOF. We have E(/~-- p)~=Var/~ + (E/~-/~)2, so by Lemma 2 we 
need only prove tha t  (E/~--/~)~=o(d) as k--,oo. By the  assumptions we 
have 

so t h a t  

)(1 F( n )(1 F( ))d r  x -- x x >  x -- x x 
k 'd  

(1-F(z))dx >-r  .,~ 

i| (1-- F(x))dx ~ ai/r 
k~ct 

Similarly we can show tha t  for a2-I~162 we have 

f -~,d F(x)dx < a2/r . 
- c o  

Thus, by Lemma 1, 

(Eta--/~)~ = O(1/~2(kd)) as k -~  ~ ,  

which is o(d) provided 1/r 

3. Efficiency of the Spearman estimator for a parametric family 

Let  {F,:/~ ~ 0} be a family of distribution functions on R. In the  
rest  of the  paper we will make  the  following assumptions. 

(A1) 0 is an open (finite or infinite) interval  on R. 

(A2) f xdF.(x)=t~ for all / ~ 0  (so f lxJdF.(x)<oo). 

(A3) x---->F.(x) is continuous on R for all Z ~ 0. 

The following assumption is needed in order  t ha t  the  Fisher- informa- 
tion (see below) has meaning :  

(A4) For  each fixed x ~ R, 8F.(x) exists on all of 0. 

(So [~---.F.(x) is, in part icular,  continuous on 0). 

Let  H =  [(x,/~) : x 6 R}, /L ~ O, 0 < F.(x) < 1, A(Z) = [x : (x, tO ~ H}, t~ 
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0, B(x)={/x : (x,/x) ~ H, x ~ R}. By (A3), A(/~) is an open interval on R. 
By (A4), B(x) is an open subset of 0 for each x e R. We shall make 
the  following additional assumptions. 

(A5) For each # e 0, x--+F,(x) is strictly increasing on A(/~) 
(so A(#) is the support of F,). 

(A6) For each x ~ R, B(x) is either empty  or is an open interval. 

(A7) x-+ aF,(x) is continuous on A(#) for each /x ~ 0. 

(A8) #_+~.F,(x) is continuous on B(x) for each x e R with 

B(x)r  

(A9) For each /~ e 0 there is an x ~ A(Z ) with aF,(x)r 

(A10) For each /~'~ 0 there is a function K~, integrable on R 
and an ~>0 such that  IOF~(x)/dl~[<=K~,(x) for all t~ e (/x'-  
~,/~'+~) and all x ~ R. 

The log-likelihood, given x0, of the  exper iment  is 

k 

log/(/xix0)= ~ [r, log F,(x,)+(n--r,) log (1-- F,(x,))} 
~=--/C 

and the  conditional Fisher-information is easily computed to be 

Er(alogZ?l ]=,, , 

Thus the  Fisher-information of the  randomized experiment  is 

r (a  logZl, l  = , ,  ~ d_, I ~,, 

This motivates the following definition of asymptotic efficiency of 
the  Spearman es t imator :  

E(/~)-l im [Var/~,]-1[h(/~)]-1= [V(#)I(#)] =1 , # e 0 
k ~ c o  

where 

= I .(.> F.(x.) (l-- F.(x) )dx , 



ASYMPTOTIC EFFICIENCY OF THE SPEARMAN ESTIMATOR 355 

ZEO. 

Note tha t  V(z)>O by (A3) and V(g)<co by (A2). Moreover, (A7) and 
(A9) imply tha t  I (Z)>0.  

If there  is a function r satisfying the  requirements  of Lemma 3 
for all F , ,  /~ e 0, then provided r as k--+co we have 

e(/~) ----lim [E(fi~-- ~ ) ' l - l [ / . ( ~ ) l  - '  . 
k ~ c o  

4. The main results 

In the  following, let R- = (-- co, 0), R + = (0, co). 

THEOREM 1. I f  {F,:/~ ~ 0} satisfies (A1)-(A9) and in addition e(l~ ) 
=1 for  all I~ e 0, then there is an open interval A=(a ,  b) ( - c o  ~ a < b  
~_co), a real funct ion a on A satis fying 

(nO) a is continuous and strictly increasing on A. 
(al) a(x) o - o o  as x ~ a, a ( x ) ~ + c o  as x ~ b. 

I _o a real 
funct ion ~" on 0 satisfying 

(r) r is continuously differentiable on 0 with r'(Z)> 0 for  all Z e 0. 
such that 

(4.1) F, (x )=( l  +e-~Cx)+~(")) -~ , x e A, l~ e 0 .  

PROOF. Put  F = F ,  in (2.1) and differentiate both sides with re- 
spect to /~. This gives, using Assumption (A10) and the  dominated 
convergence theorem 

(4.2) f . ( . )  { S F . ( x ) / ~  f~ldx = - Z . 

From Cauchy-Schwarz's inequality we get  for each /~ e 0, 

(4.3) e(I~)_I= V(z)I(I~)>=[fA(~ --~SF~(x) dx]~>j = - !A(~ 8F"(X) d x = l  

Thus, as we assume e(#)=l ,  equality holds at both inequality signs of 
(4.3). From the first of them we conclude tha t  there  is a #(/~) (not 
depending on x) such tha t  

(4.4) ISF,(x)/8yI _#(/~) for all x e A(/~), /~ e @ 
F,(x)(1-F~(x))  

(" for all" is equivalent to "a.e." because of (A3) and (A7)). From 
the  second, we conclude tha t  
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aFt(x) ~ 0  for all x ~ A(/~), F e 0 .  

Moreover, from (AS) and (A9) we conclude tha t  ~(.) is continuous on 
0 and tha t  p(~)>0 for all ~ e 0. 

Now by (4.4) we have, for any fixed x with B(x) r  

(4.5) aF,(x)lat  = -~(l~) for all I~ ~ B(x) 
F,(x)(1-F,(z)) 

which implies by integration tha t  for some a e 0 and a constant a(x) 
independent  of F we have 

Now fix /~ e 0. Then (4.6) and Assumptions (A3) and (A5) imply 
tha t  a is continuous and strictly increasing on A(Z), so (a0) is satisfied. 
Also, (A3) implies tha t  (al) must  hold with a=in fA(~) ,  b=supA(F).  
But then  A(/~) must  be independent of /~. To see tha t  (a2) holds, note 

tha t  I~ F~@)dx<co and -._f[ (1-F~(~))dx<oo (see Section 2). Now (a2) 

follows from this by put t ing  z = a  in (4.6). If we finally put  r(/~)-- 

~ p(t)dt it is seen that  (v) holds and we are done. J~ 

The theorem below implies the  sufficiency of the  conditions in The- 
orem 1. In fact  we obtain a slightly more general result. 

THEOREM 2. Let A be an open interval on R and let a be a real 
func t ion  on A satisfying (a0), (al) and (a2). Then there is an open inter- 
val 0 and a real funct ion 7 on 0 sat is fy ing (y) such that: 

(i) The f a m i l y  {F,: F e 0} given by (4.1) satisfies (A1)-(A9) and e(F) 
--1 f o r  all F e O. 

(ii) I f  G,(x)=(l+e-=(~)+~(")) -1, x ~ A, ~ e O' and f xdV,(x)= z f o r  all 

~ 0', then 0 ' ~ 0  and ~=r  on 0'. 

PROOF. (i) I t  is clear tha t  (A1) and (A3)-(A9) are satisfied. Let  

a be given as in the  theorem and consider first the  family {/~,: ~ e R} 

where  P~(x)=(l+e-=C:)+~) -t, x e A, ~ e R. Then (a2) clearly implies tha t  

for all ~ ~ R, so we have i ]xldF~(x)< co and can write  
J 
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(4.7) r xdF'~(x)=-fR_n -P~(x)dx+fR+n (1-~'~(x))dx . 

Now we have 

(4.8) aFt(x) _ e-~ ~ e~t~ < e~,lt 
~ (l+e-~(~)+~) ~ -  (l+e<~))(l+e-~(x)) - -  l+e-<~) 

so tha t  in a neighborhood of each ~ 6 R we have [~P;(x)/O~] bounded on 
R-N A by the integrable function, const (l+e-~ -~. This implies, using 
the dominated convergence theorem, that  

02 A 0~ 

By a similar argument on R+N A we obtain from (4.7) that  r is dif- 
ferentiable with 

(4.9) 0 ' ( ~ ) = - f  ~P~(X) dx>O for all 2 ~ R .  

Moreover, using (4.8) and the dominated convergence theorem once more 
we get that  r is continuous on R. Let 0 be the range of r which 
is an open interval since r is continuous and strictly increasing. Now 

reparametrize the family [F~: 2 ~R} by putt ing F,=-P~-~(,), ff e 0  and 

let r (z)=C- ' (z) .  Then f xdF,(x)= f xd2~-,(,)---t~ (so (A2) holds) and r 

clearly satisfies (r). Moreover, (4.8) implies tha t  (A10) holds. To see 
that  e(t~)=l for all ff ~0, note first tha t  ~F~(x)/affEO which follows 
by differentiating (4.1). Then substitute (4.1) into the left hand side 
of (4.4), to get an expression independent of x. Thus equality holds 
at both inequality signs in (4.3), and thus e(t~)~-l. 

For part  (ii) of the theorem, suppose /1 E 0'. Then we have G,= 
_P~(~)=F~(<,)) so that  

(4.10) /~= f xdG,(x)= f xdFo(~(,))=r . 

Hence /~ 6 0 and application of r to (4.10) yields ~(ff)=r 

5. Special cases 

5.1 The translatio~ case 
Let F0 be a continuous distribution function on R, strictly increas- 

ing on A(O)={x: 0<F0(x)<l} and with f xdFo(x)=O. Suppose further  

that  F0 is differentiable everywhere on R with fo(x)=F[(x) and suppose 
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tha t  f0 is continuous on A(0). Let 0 be an open interval on R and let 
[F,:/~ e O} be the  family given by 

(5.i) F , ( x )  = F o ( x - t * )  , x ~ R ,  t* ~ O . 

Then Assumptions (A1)-(A10) are satisfied with A(IL)=A(O)+t~, aF,(x)/ 
~=- fo (x - l~ ) .  Furthermore,  e(/~) is independent  of /~ e 0, given by 

(5 .2 )  -1 
Fo(x)(1--Fo(x)) 

COROLLARY 1. For a translation family given by (5.1) we have 
e=l i f  and only i f  A(O)=R and for some/9>0, Fo(x)=(l+e-~=) -~, x ~ R. 

PROOF. Sufficiency is well-known (Section 1), so we need to prove 
necessity. By Theorem 1 we have A(Z) independent  of /~. Since A(/~) 
=A(O)+t~ this implies tha t  A(0)=R.  Next,  since 0 is open we have 
for any /~ e 0, x ~ R and [h i sufficiently small, 

F.§ = F o ( x -  ~ - h )  = Y . ( x - h ) ,  

so subst i tut ion into (4.1) yields --a(x)+r(~+h)=--a(x--h)+r(g). Reor- 
dering, dividing by h and let t ing h--*0 we get  a'(x)=r'(g) for all x and 
p e 0 and hence they must  be equal to a constant which is positive by 
(r). Thus for some ~>0,  -a(x)+r(tt)=-p(x--l~)+~ where /} is a con- 
stant .  This gives Fo(x)=(l+e-~=+~) -1 from which it follows tha t  ~=0  

since f xdFo(x)=O. 

As remarked in Section 1, Brown [2] s ta ted a weaker result  than  
Corollary 1, namely tha t  the logistic family is the  only location family 
of symmetric distributions for which e=l. Corollary 1 implies tha t  
Brown's assertion holds with " s y m m e t r i c "  deleted from the s ta tement .  

The asymptotic efficiency e given by (5.2) has meaning whenever  
(A4) is satisfied, i.e. when we assume tha t  fo(x)=F~(x) exists for all 
x e R, wi thout  assuming continuity of f0 on A(0). We see tha t  a direct 
proof of Corollary 1 can be given in this case, using (5.2). In fact. 
applying Cauchy-Schwarz' inequality to (5.2) we ge t  

e-l>=[f fo(x)dx]~--1 

with equality if and only if there  is a constant  /~>0 with 

fo(X) - ~  for a.e. x 6 A(0). 
F o ( ~ ) ( i - F o ( x ) )  

By integrat ion and by the  continuity of F0 this implies tha t  for some a, 
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In Fo(x) =#x+a for all x~A(0)  
1-Fo(x) 

or Fo(x)=(l+e-B~+") -~, x ~ A(O). As F0 is required to be continuous on 

R we mus t  have A(0)=R and finally f xdFo=O implies a=0 .  Finally, 

we remark  tha t  the condition of Lemma 3 is satisfied here with, for 
example, r  ~ for any r > 0 .  

5.2 The scale case 
Let F1 be a continuous distribution function strictly increasing on 

A(1)--{x: 0<Fl (x )< l} ,  with f xdF,(x)=l. Suppose tha t  F~ is differenti- 

able everywhere on R, with f~(x)=F[(x) continuous on A(1). Let  0 be 
an open interval contained in R + and let {F,: ~ ~ 0} be the  family 
(" scale family ") given by 

(5.3) F,(x)=F~(x[~) , x ~ R, l~ ~ O. 

The Assumptions (A1)-(A10) are now satisfied, with  A(/~)=/~A(0), aFt(x)~ 
al~=--xl~-~f~(x/t~), and e(z)=e is given by 

x2f~(x) dx] -1. 
(5.4) e=[i~(,)Fl(x)(1-Fl(x))dx f,cl, Fl(x)(1--Fl(x)) 

Brown [2] has computed e for F~(x)=e -~, x>O to be 0.8319. The fol- 
lowing result  follows from our Theorems i and 2. 

COROLLARY 2. For a scale family given by (5.3) we have e<l  when- 
ever A(1)~R +. We have e = l  i f  and only i f  A(1)=R + and for some 
/~>1, 

F,(x)=(l +C(fl)x-~) -1 , x ~ R + 

where C(p) is a positive constant determined by 

#-'C(P)'/' f:  (1H-y)-' y-V, dy= 1. (5.5) 

PROOF. We have 

f,~(~) OF~(x)ot~ dx= f ~ fl(x//~)= f lx]f~(x)dx~ f xf~(x)dx=l 

so tha t  (4.2) implies tha t  e<=l with equality only when f Ixlf~(x)dx=l, 

i.e. when A(1)~R +. This proves the first par t  of the theorem. For 
the  rest,  sufficiency follows from Theorem 2 with A=R +, a(x)=fl In x. 
To prove necessity, note first tha t  we mus t  have A(1)c_R + and so since 
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A(#)=#A(1)  by Theorem 1 is independent  of /~ we must  have A(#)= 
R +. Next,  for each fixed x ~ R +, # ~ 0 and Ihl sufficiently small we have 
F,(x)=F~(x/#)=F~(~+~/x(x+h) which by (4.1) gives - a ( x ) + r ( / ~ ) = - a ( x +  
h) + r(#(x + h)/x) so tha t  

a(~+h) -a (x )  _ r(Z(x+h)/x)--r([~) 
h h 

Let t ing  h--*0 and using (r) we obtain 

= , 

Z 

for all x in R + and /~ eO. As observed in the  proof of Corollary 1, 
/~r'(/~)----~>0 is independent of ~ and so a(x )=~ln  x+~ ,  r(/~)=~ln ~ + p .  
That  is, if we put  # = 1  in (4.1), we get  

F1(x)=(l +Cx-~) -1 , x ~ R + 

for some C>0.  We require xgF~(x) = So in order tha t  

the  last integral  converge, we mus t  have ~>1  and in order tha t  it  
equals 1, a suitable substitution shows tha t  C=C(~) must  satisfy (5.5). 

As in the  translation ease, a direct proof using (5.4) will show tha t  
Corollary 2 holds t rue if the  continuity assumption of f~ on (A1) is 
dropped. 

I t  can be shown tha t  C(2)=(2/~) 2, C(3)=(3v~1~1 ~ (see Gradshteyn 
and Ryzhik [9], formulae 2.211 and 2.235). 

The condition of Lemma 3 is seen to be satisfied here with, for 
example, r  ~ for 0 < r < l - ~ .  

Acknowledgement 

The authors take this opportunity to thank  Professors Byron W. 
Brown, Jr.  and Rupert  Miller for their  encouragement  and help. They 
also thank  the  referee for a careful reading of the  manuscript.  

STANFORD UNI~EI~ITY* 
STANFORD UNIVERSITY** 

REFERENCES 

[ 1 ] Berkson, J. (1953). A statistically precise and relatively simple method of estimating 
the bioassay with quantal response, based on the logistic function, ]. Amer. Statist. 
Ass., 48, 565-599. 

* On leave from the University of Kentucky. 
** On leave from the Norwegian Institute of Technology, Trondheim, Norway. 



ASYMPTOTIC EFFICIENCY OF THE SPEARMAN ESTIMATOR 361 

[ 2 ] Brown, B. W. Jr. (1959). Some properties of the Spearman estimator in bioassay, 
Teeh. Report No. 6, Department of Statistics, University of Minnesota, Minneapolis, 
Minnesota. 

[ 3] Brown, B. W. Jr. (1961). Some properties of the Spearman estimator in bioassay, 
Biometrika, 48, 293-302. 

[ 4 ] Chung, K. L. (1974). A Course in Probability Theory, Academic Press, New York. 
[ 5 ] Epstein, B. and Churchman, C. W. (1944). On the statistics of sensitivity data, Ann. 

Math. Statist., 15, 90-96. 
[ 6 ] Finney,  D. J. (1950). The estimation of the mean of a normal tolerance distribution, 

Sankhy~, 10, 341-360. 
[7 ]  Finney, D. J. (1952). The estimation of the E.D. 50 for logistic response curve, 

Sankhy~, 12, 121-136. 
[8 ] Finney, D. J. (1971). Probit Analysis, 3rd ed., Cambridge University Press. 
[ 9 ] Gradshteyn, I. S. and Ryzhik, I. M. (1965). Table of Integrals and Products, Academic 

Press, New York. 
[10] Irwin, J. O. (1937). Statistical method applied to biological assays, J. R. Statist. Soe. 

(Suppl.), 4, 1-60. 
[11] Miller, R. G. (1973). Nonparametric estimators of the mean tolerance in bioassay, 

Biornetrika, 60, 535-542. 
[12] Rustagi, J. S. (1976). Variational Methods in Statistics, Academic Press, New York. 
[13] Spearman, C. (1908). The method of ' r i gh t  and wrong cases '  ( 'constant  s t imuli ' )  

without Gauss' formula, Brit. J. Psychol., 2, 227-242. 
[14] Weaver, O. R. (1957). Using attributes for measurement of continuous variables in 

the rocket industry, Proc. 12th Midwest Quality Control Conference, American Society 
for Quality Control. 


