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Summary

In this paper, two types of robust estimators and approximate
confidence intervals for the difference of location parameters of corre-
lated random variables are proposed and investigated when some ob-
servations are missing. It is shown that the suggested estimators are
consistent and asymptotically normally distributed. In addition, the
proposed approximate confidence intervals are also shown to enjoy some
nice asymptotic properties.

1. Introduction

The problem of estimation of the difference of location parameters
of two correlated random variables with incomplete paired observations
can be described as follows: Let (X,Y) be a random vector with con-
tinuous joint distribution H(x, y) and marginal distributions Fi(z) and
Fyy) for X and Y respectively such that Fyz)=F\(x—0), 6 R. As-
sume that we have a fragmentary random sample {(X;, Y)),---, (X, Y.),
(Xt )3 (Ko )y (5 Yard)se oo, (¢, You)} observed from (X, Y), where
“.” denotes a missing observation. Then the problem is how to use
these data wisely to make an inference on the shift parameter 4.

In the situation that H(x, y) is a bivariate normal distribution, the
problem of estimation of the mean difference # has been extensively
studied ; see, in particular, papers by Anderson [1], Lin [10], [11], Lin
and Stivers [12], Mehta and Gurland [13] and Wilks [16]. Assuming
that X and Y are linearly related, Gupta and Rohatgi [5] proposed esti-
mators expressed as linear combinations of fragmentary sample means.
Recently Wei [15] proposed a nonparametric approach using the median
of all possible differences Y,-X,, i=1,---,n+m, j=1,---,n+l and
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(Y:i+Y,—X,—X))/2, 1=i<jsn. He compared this median estimator
with the estimators suggested by Lin and Stivers {12], Gupta and

Rohatgi [5] and a naive estimator :ﬁ‘: Y,/(n—l—l)—"in X./(n+m). The re-
=1 i=1

sults show that the median estimator performs quite satisfactory under
bivariate normal distribution and other estimators perform very poorly
under Gumbel’s bivariate exponential distribution.

In this article, two large classes of nonparametric estimators of 4
are studied in detail. Each class contains the median estimator as a
special case. The first class of estimators is the class of linear combi-
nations of sample quantiles derived from the empirical distributions
G =M [a S Iy, ~Xg0+8 3 IVAY,~X-X <2t)] where

1=1 7=1 S
o« and 8 are two nonnegative integers with a+8>0, M=e(n+m)(n+l)
+(Bn(n+1)/2), and I(-) is the usual indicator function. More specifi-
cally, estimators #* from this class can be expressed as

k ~
= Z C;épt
i=1

where ¢; are nonnegative constants, 0<p, <1, i=1,---, k and épi are de-
fined as

&, =inf {t: G)zp -

Note that the estimators #* considered here and below depend on «
and B. If we are unable to identify the pairing of X, with Y, i=1,

-+, n, then we simply choose 8=0. In Section 2, we see that if we
choose ¢; and p, properly, then 6* will be a consistent estimator of 4.
It is believed that suitable members of this class, such as 0.3,,40.4%,,
+0.3%,; and 0.25,,+0.58,,+0.258,, are more distributionally robust
and insensitive to spurious observations. The second group of estima-
tors considered here is the class of M-estimators. An M-estimator for
6 is a solution § of the equation

«F 5o -X-9+8 5 v(TtWi_o)=0,
isi 7=1 115750 2

where W,=Y,—X,, i=1;---,n. The function ¥ is usually skew-sym-
metric about 0. Typical ¥ considered in robust estimation are the
Huber [9] family Z(z)=min (k, max (—k, x)) and Hampel’s “redescenders”
[6] and [7] ete. In Section 2, sufficient conditions are given to ensure that
f is a consistent estimator of # with other good asymptotic properties.

In Section 8, we also study the important problem of constructing
approximate confidence intervals for §. Two approaches are examined.
The first approach is based on the sample quantiles. The second method
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is to derive approximate confidence intervals from M-estimates; see
Boos [2].

2. Nonparametric estimators of 8

Let K(t) and L(t) be the distribution functions of Y,—X, and (W,
+W,)/2, respectively. Define N=2n+m+1l and A,y=m/N, A,y=Il/N and
Aaw=n|N. We assume that there exists a constant 2, such that 0<2,
<Ay for all large N. In addition, we let 1,,—2,, 4=1,2,3. Through-
out this paper we assume that both K and L are symmetric with sym-
metry point 4. This implies that the distribution function G(t)=yK(t)
+8L(t), where y=1—38=0a(A;+ 23) (A2+ A3)/(a(A,+ 25) (A, + 25) + B(23[2)), is also
symmetric with symmetry point 4. The definitions of the estimators
6* and § are motivated by the fact that the empirical distribution G(t)
is a reliable estimator of the distribution G(t). Thus if we choose con-

stants ¢,>0 and 0<p,; <1 (¢=1,2,---, k) such that é ¢;=1 and ﬁ} b,
=0, where §, =inf {t: G(t)=p,}, then 0*=é clépi will be a consistent

estimator of 4. For examples, {¢=1, »,=1/2} or {¢,=0.3, ¢,=0.4, ¢;=
0.3, p,=1/3, p,=1/2, p,=2/3} or {¢=0.25,¢=0.5,¢=0.25 p,=1/4, p,=
1/2, p;=3/4}. On the other hand, if, in addition to some mild conditions,
we let ¥ be a skew-symmetric function such that there is only one

solution ¢ for gm F(x—t)dG(t)=0, then § can also be shown to be a

consistent estimator of 4.

In what follows, we first establish an almost sure representation
for sample quantiles &, (Theorem 2.1). Using this representation we
are able to obtain some useful asymptotic properties for #* (Corollary
2.1). Asymptotic normality and other properties of the M-estimators
f are stated in Theorems 2.2 and 2.3.

THEOREM 2.1. Let 0<p<1l and py=p+O(N""log N) '?), N—co.
Assume that the distributions K(t) and L(t) are twice differentiable at &,
with K'(&,)L'(¢,)>0, and F, satisfies a Lipschitz condition of order 1,
and 2,y=2,+O0(NV(log N}, i=1,2,3, N—oo. Then with probability 1,

g — —G(&) —3/4 3/4
—g,=— Py ulsy +O(N-*(log N)*),  N-»oo,
EPN b4 ‘}’NK’(@,)-{-(?NL'(EP) ( (Og ) ) oo

where

re=1—dy=a(n+m)(n+)/[a(n+m)(n+)+(fn(n+1)/2)]
(=7, N>o).

ProoF. See Appendix.
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. Using this almost sure representation and asymptotic properties of
G(t) we can easily establish the following

COROLLARY 2.1. (a) Let 2,y=2,+O0(N""log N)"*), N—oo, for j
=1,2,3. Assume that for each 1=1,---, k, K(t) and L(t) are both twice
differentiable at &, with K'(§,)L'(§,)>0 and F, satisfies a Lipschitz
condition of order 1. Then with probability 1,

VN
—— (f*—0)=0() , N .
«/loglogN( ) _( ) -

(b) If, in addition to the conditions assumed in (a), we let A,y=
,+O(INY), N—>oo, j=1,2,3. Then

m(ﬁ*"e)'—’N(O’ 0.2) ’ N—o o,
where 0<d*<oo is the asymptotic variance of VN GO*.

Remark. If ¢,=1 and p,=1/2, then the value of ¢ is given in Wei
[15]. In general, the asymptotic variances of other linear combinations
of sample quantiles are quite complicated. Fortunately, in Section 3,
we are able to suggest two types of approximate confidence intervals
without requiring the knowledge of the value of °.

We now focus our attention on the class of M-estimators. For a

given function ¥(x), we put 2 F(t):Sm' T(x—1t)dF(x) for any distribution

F. 1t is clear that if ¥ is skew-symmetric about 0, then # is a solu-
tion of Ax(t)=0 and A.(t)=0, and hence also a solution of 2,(f)=0. Let
the distribution function of W,=Y;— X, be denoted as Fj, and we defined :

ro=|"_Tw-HiFw) .

E0)=|__Te-dF@)
and

zt)=|"_#(L+t)drw) .
Throughout this paper, we assume Z.(t), 1=1, 2, 3, are measurable func-
tions. Also, we define the following functions involved in the expres-
sion of the asymptotic variance of VN 4:

w@=|__Tu-94F0) .,

]

w@={"_|" w(2—s)aH@ v,
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w0=|"_|" Be-9nw-9dHE@ ),

a@)=|"_|" Ba—sn(L L -s)dH@, v) ,

w0)="_|" Bw—9n(LL-s)dH( v) -

In Theorem 2.2, two sets of sufficient conditions are assumed in
order to establish asymptotic normality of the M-estimators. The
method of the proof is based on that given by Huber ([9], Lemmas 4
and 5) in conjunction with the projection technique.

THEOREM 2.2. (a) Assume the following conditions:
(i) ¥ s bounded, nondecreasing and skew-symmetric about 0;
(i1) 2¢(t) is differentiable at t=0 with A(6)<0;
(i) z,N=zz+o<-/}_W~>, N—oo, i=1,2,3;

(iv) gq,8), j=1,---,5, are continuous at s=4.
Then for any solution sequence 8 of the equation 14(t)=0,

VN{@-6)--N@©,¢), N—oo,

where

2
g, =

(O
and
s 3 1 1
A=r ( YR 23))q1( )+ qz(ﬁ)

27’223 )4y %(0) QS(ﬁ)
+
GF Gty WO+ <x 4 zz+xa>

(b) Let 6 be a solution sequence of A4(t)=0 satisfying §-2-6, N—
oo and assume the following conditions:

(i) 0 is a root of 1.(t)=0 and A.(t)=0;

(ii) ¥ has a bounded, uniformly continuous derivative ¥’ ;

(i) S:o_at— dK (%) and S” M‘ﬂdL(x) are finite and
Si’ a’*”(gt t); dK(m)+S ai”'(“ t)’ dL(x)%0.
Then

VN@-6)-N@©,6), Nooo,
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where

ag—_-ag/ [r S‘; ﬂ‘(amt——t)“‘,:,dK(”)” S‘; ﬂ%?—t)—\t:odL(x)]z .

ProOF. See Appendix.

Remarks. (1) In (a), condition (iii) can be relaxed if we assume
that 2,(t) and 2.(t) are both differentiable at t=6 with 2%4(4)<0.

(2) Regarding the condition imposed on # in (b), we note that if
¥ is a continuous and bounded function, 2,(f)=0 and that at 4, 2,(t)
changes sign only once in a neighborhood of #. Then there is a se-
quence of solution # such that with probability 1,

6—0, N—oox;

see Boos and Serfling ([3], Theorem 2.1).
(3) In condition (ii) of (b) we assume that ¥’ is bounded. Actu-
ally this condition can be replaced by only assuming that

E [S” —a%————%f:i}t=adF,(x)]z<w :

-co

—o0

S 2550 <.

and

E[Siw 3?1”((“’1;;0)/2—0 ,zgdﬂ(w)T(w .

In view of the proof for case (b) of Theorem 2.2 (see Appendix),
we easily see that if, with probability 1, § —8, N— oo, then under re-
gularity conditions similar to (a) of Corollary 2.1, we can obtain a
stronger result:

VN ~
m(ﬁ NH=0(1), N—oco,

with probability 1. The same result is also obtainable for case (a) by
using the following almost sure representation, similar to that given
in Theorem 2.1, for M-estimators. This representation is not only use-
ful for the purpose of establishing the LIL type result for 4 but also
valuable for constructing confidence intervals for 4. A weaker version
of a similar representation was derived by Boos [2].

Let ¥(f) be nondecreasing, left continuous, and strictly positive
(negative) for large positive (negative) values of ¢, and define, for any
distribution F,
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ro(d)=— Sl T(z—d)dF (@)= —2-(d)

and
rF () =inf [d: 7-(d)=t] , te (in£ 7)), sup r(x)) .

7#(d) is nondecreasing and right continuous and thus 77'(d)<s if and
only if d<ys(s). Furthermore, if 4 is the only root of 1,(f)=0, then
r7(0)=4.

THEOREM 2.3. Assume the following conditions:

(1) @) is bounded, nondecreasing and satisfies a Lipschitz condi-
tion of order 1;

(i) 7e(d) is twice differentiable at d=80 with 1:(8)>0;

(iii) @ s the root of 2;(t)=0;

(iv) Ax=14,+O0NN"Y(log N)¥), 1=1, 2, 3.
Then for py=0(N-'*(log N)/?), N— oo, we have, with probability 1,

-t _ =p1v“'76(0) _ _
(2.1) 73 (py)—0 ) +0(ry—1)+0(3y—9)

+O(N-**(log N)*) , N—ooo.
ProoF. A proof is sketched in the Appendix.

Remarks. (1) It should be noted that if we replace (ii) by as-
suming that 7.(d) and 7.(d) are both twice differentiable at d=6 with
75(0)>0, then with probability 1,

2.2) 13 (py)— 0= Py—75(6) +O(N-log N)¥, N—ooo,
75 ,4(0)

where
Gy(t)=7xK()+3yL(1) .

(2) Fix py=0, then f=73'(d) is a solution of the equation Sw U(x

—o0

—t)dé(x)zo, since ¥ is a continuous function. Using (2.2) or (2.3) we
immediately have, with probability 1,

VN

if some regularity conditions similar to (a) of Corollary 2.1 are satisfied.
(3) The members in Huber family (x)=min (k, max (—¥k, x)) satis-
fy condition (i) of Theorem 2.3.
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3. Confidence intervals for the difference of locations

Here we consider two methods of determining approximate confi-
dence intervals for 4 using Theorems 2.1 and 2.3, respectively.

According to Corollary 2.1, for the median estimator ¢*=§&, we
have ¥N(6*—0)—2>N(0, ¢%), N—>oo. If ¢* is known and let Z, denote
the 100(1—a) percentile of the standard normal distribution, then the
confidence interval I,=(6*—Z,(¢/¥N), 6*+Z,(s/¥N)) has confidence co-
efficient converging to 1—2a¢ as N—oo. Unfortunately, in most cases,
o* is not known and therefore the above approach is useless.

To propose a useful confidence interval for 4, we need to estimate
the asymptotic variance of +N §*.

From (2.1), it is not difficult to see that

YN(*—6)Joy—+N(©0,1), N—oo,

where
oy =a%/(ryK'(0)+ 5L/ ()",
where
1 2 H 45% A 1
0'2=[———-< Twv + T~ + N>+ Tnhsn (___2ﬁ>
12 21N+23N 23N+ 221\/ ZBN (R3N+11N)(13N+ 121\7) 2 '
43,7 1 doyyy (1
oo (o))
Zvtdiy \ - &) Dyt hg N E
0.=\" " F@Fy-0iHe, v,
0.=\"_|" F@FReI-y-m)dHE v,
and

0=\"_|"_ Fu-oF@E—-w-o)iHG, 1) .
(Note that if H(zx, y)=H(y, x) for all (z, y) € R* then §,=1/2—6,.) Also,
in view of the asymptotic variance ¢* of N 6* derived by Wei [15],
we have ¢4 —o¢?, N—oo.

Using our method it is enough to estimate simple parameters 6.
Let us first define

F@=m+m S IXs)  and  BO=n" N IY—XSh .

Then natural estimators of 6, are 4,:
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f=n"t ) B(X)-F(Y,— 6%,
1=1
F(X) Fy(20%—Y,+ X))

f,=n""!

i

)

and
bi=n~t 3 (Y~ 0%)- Fy(26* ~ Y, + X)) .

Their asymptotic properties are described in

COROLLARY 3.1. If F, and F, satisfy a Lipschitz condition of or-
der 1 and there is a sequence of positive integers ay— oo, N— oo, such
that with probability 1, ay(8*—60)—0, N—oo. Then with probability 1,

Bxf:i~0)—0, N—oo, i=1,2,3,
where
By=min (ay, N"*(log N) V%) .

Define py=—2Z,0,/vN and p,y=Z.0,/vN, where o% is the strong
consistent estimator of &* obtained by replacing 6; by 4, in the definition
of ¢°. Then the suggested distribution-free interval is I;}‘:(épw, épm).
The advantage of this approach is that we don’t need to estimate K'(4)
and L'(d). Furthermore, applying Corollary 3.1 and Theorem 2.1, it
can be shown that the confidence coefficient of [f—1—2a as N-»>co.
Also,

VN -(length of I})-">20Z,, N—oo.

Next we turn our attention to the second approach using the result
of Theorem 2.1. From (2.3) we see that under some suitable conditions,

VN (17 (@y)—0)—>N@©0,1), N—ooo,

oly
where

2
(=2

UN

1 1 43%
oi= r?( + )qo+ ¥ g6
[” Myt Ay Ayt Asy (0 dsy ©)

21 Aawy(0) ( 9.(6) 2:(9) ﬂ
+ s +47508 + .
(11N+13N)(22N+ ISN) vy 21N+ laN 12N+ ZSN

Hence the interval (v3'(py)—Z.(o%/VN), 73 (0y)+Z.(ck/¥YN)) has confi-
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dence coefficient converging to 1—2z as N—oo. Again, ¢, and 1% (0)
are in general not known and thus, as above, we have to find a way
to estimate q;(f). (It is not necessary to estimate 2%, (0).)

To estimate q,(d), let us first consider estimation of Z,(t), i=1, 2, 3.

The estimator of Z(t) considered here is ﬁ(t):(n+l)‘1§llf (Y;,—t) and
the estimator of Zy(f) is l?f‘z(t)z(n—}-m)“’:ﬁr@' (t—X,) and the estimator
of & is LF,(t) =n! 2 3@"( Y 2X‘ +t> The asymptotic properties of these
estimators are stated in

COROLLARY 3.2. Let ¥ be continuous and of finite variation ||¥|,.
Then with probability 1,

N'log N)“sup |T,(t)~F(t)| -0, N—ooo, i=1,2,3.
teR

The results of Corollary 3.2 lead us to consider the following type
of estimators for ¢.(9):

WO =+ B ET-D),
- o Yi—X: 5
au)=n- 3y 3( Lo Lg)

wO)=n" B HEX—HET~0),

aO=n" 3 X~ H( L),
aO=n" 3 B¥ D) B LX),

where 4 =730). Their asymptotic properties are summarized in

COROLLARY 3.3. Let the conditions of Corollary 3.2 be satisfied and
¥ be Lipschitz of order 1. If there is a sequence of positive real num-
bers afy—> 0o, N— oo such that with probability 1, ay(@—6)—0, N—oo,
then with probability 1,

'B‘{Vlat(ﬁ)—ql(ﬂ)l—‘)o ’ N— o0, 3=1,.-.+,5,
where By=min (e, N(log N)™'%).

In view of the properties of §,(6) described in Corollary 3.3, a natu-
ral estimator &} of ¢ can be obtained by replacing ¢.(8) by ¢.(6), t=1,
.-, 5, in the definition of ¢. If we do so and if the conditions of
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Corollary 3.3 are satisfied then with probability 1,
By|oi—at|—0, N—oo.

Based on the result, we now propose a second type of confidence in-
tervals for . We define two quantities qn=—2Z,(6o/vN) and gqu=

+Z.(3,/¥N). Then the distribution-free confidence interval sz(rg‘(qm),
73'(¢.y)) has some desirable properties. That is, the confidence coeffi-

cient of [y—1—2¢, N—oo and ¥N(length of I,)—2Z.0,, N—oo, where
o, is defined in part (a) of Theorem 2.2.
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Appendix

The proof of Theorem 2.1 consists of the following two lemmas.
In each of these lemmas, suitable conditions of the theorem are in action.

LEMMA Al. Let 0<p<l and py=p+0ON*(log N)'*), N—>oo. If
K'(¢)L'(¢,)>0 and 2,y=2,+0(N"(log N)*), N—oo, i=1,2,3, then
with probability 1,

épzv:ep"l'O(N-m(lOg Ny, N—oo.

PROOF. Let ey=¢,N""¥log N)V?, where ¢, is some positive constant
whose value will be specified later. Define

RO=[+m)n+0]* S 5 17, - X.<9).,
Ly=lm+DEr 3 IW+W,s20),
1t =(ntm)™ 3 (X4 —K O]
L=+ 3 F(¥,—)-K@)] ,

where F(t)=1—Fy(t). Write

80 =1k®~KO1- 1.0~ By =ln+m) (D" 5 3 o(X, 08,
where
9(X,, Y, )=[I(Y;— X.<t)~ K(B)]—[F X, +1)— KO - [F(Y,—)—K®)] ,
and realize that for any positive integer d and any sequence of con-
stants ty e R, E i[l 9(X;
pears only once in {3, Ji,---, 45 4}- Consequently,

(A1) E [SE)lt=0(N"9), N—oo,

Y, ty)=0, if there is a subseript which ap-

’C’

for any sequence of real numbers &y.
Now we consider

(A2) P (ézw >&pten)

<P (7Kt o)~ K(6,+ o)) > Erllot en) =P

+P (_5N[ﬁ(§p+ exn)—L(&,+en)]> GN(S,,—}—;N)—pN)

=U1N+Uv2N y say ,
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where
Gv(@)=7sK (@) +oxL(t) .

It is noted that if a=0 or f=0, then U,y=0 or U,y=0 for large N.
So, in the following we assume a#0 and B+#0. Now regarding the
first term on the right-hand side of (A2), we have

UwsP ( — 18+ e > T P+65N)‘p1v)

+P <—TNT1(Ep+ EN)> GN(ep—I—GSN)_pN)

+P <_TNT2(EP+ SN)> GN(EP—{—;N)_Z)N) .

Furthermore, according to (Al),

(A3) P(‘rNS(sp+eN)>G‘V(e"J’;”)—p”):O(N*Z), N—oo,

since for large N,
GN(Sp_l_ 5N)“‘pzvg—;"Gl($p)5N .

Also, using Hoeffding’s inequality (Hoeffding [8]), the standard argu-
ment establishes that

(A8) B[ =yl ten>Erlata=my)

+P(_TNT2(€p+€N)>Gw(ep‘[‘;zv)-‘pw>___O(N—2) , N—oo .

We now treat the second term on the right-hand side of (A2).
Define

L*(t):(’g)_1 5 IWAW,s20),

121

then there exists a constant ¢>0 such that for large N,

(88)  P(—0uL(e+ o)~ Lt o)) > Eoliat o) =)

<P (—L*($p+sy)+L(§p+ ey)> GN(Sp';‘;N)"pzv ——cN") )
N

Applying Hoeffding’s inequality for U-statistics (Hoeffding [8]) we can
show that the probability on the right-hand side of (A5) is also bound-
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ed by O(N™ if ¢ is properly chosen.
(A2), (A3), (A4) and (A5) imply that
P, >6&+en)=0(N"%), N—ooo.
A similar argument also shows that
P, <&—e)=O(N-?), N—oo.

Thus the assertion of the lemma follows immediately by applying the
Borel-Cantelli lemma.

LEMMA A2. Let 0<p<l. If both K'(t) and L'(t) are bounded in
a meighborhood of &, and F satisfies a Lipschitz condition of order 1,
then with probability 1,

sup  |[G(t+4,) —G(EN—[Galt+E) — Ga(8))]]
[t|ScN-V*log NY/2
=0(N"*(log N)*), N—oo,
where ¢ s a positive constant.

PROOF.‘ Write

Ay= sup [G(t+8,) —G(EN] — Gt +8)—GulEN
[¢|ScN-*(log N)'/2

<ty sup K (t+8,)—K(E)]—[K(E+&)—KE
[t|SeN-Y*(log N)* 2

+3y sup E(t+8,)— F(E ) —[L(t+&,)— L(E)! -
[t cN-1/%(log N)1/2

Define
Biy()=[K(t+&,)—K(E)]—[K¢t+E)—K(ED]
Bun(t)=[L(t+£,)— LN~ [LE+6,)—L(§] -

Choose dy as a sequence of positive integers such that dy~cN*(log N)*
and put %, y=7(cy/dy), where cy=cN Y (log N)"* and —dy=<r=<dy. De-
ﬁne Qr,N=[7]r,N! 7]r+1,N]! then for an tE Qr,Ny

Byy(() S Bon(nr41,v) +arn and Biw®) EBiv(prei,m) 0 n »
where o, y=K(#+1,5)—K(9-5) and o y=L(941,5)—L(7.5). Similarly,

Bix(&)ZBiv(7-,5)—rn and Byw(t)Z Box(nr,5) — a1,
for all €@, .

Thus
AySyymax {|Buy(n. )| —dySr=dy}
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+3y max {| Byy(n.5)|: —dySr=dy}
+rymax {a, y: —dySr=dy—1)
+oymax {o) y: —dySr<dy—1}.

Now, according to the conditions of Lemma A2, it is easy to see that

yymax [a, y: —dySrdy—1]+dymax el y: —dySr=<dy—1]
=O(N-%), N-soo.

Define ay=N"*log N)**, then using the condition that F} ¢ Lip (1)
and Bernstein’s inequality and (Al), for all r=—dy,---,dy, we have

P (l Blzv("]r,zv) > ay) )
=P (S(,,x)|>ax/6) J:P (15(8,) l? @x/6)+P (| Tu(7,, ) — Tu(Ep) 1> /)
+P (| Tu(nr0)—ToE)|>ay/3)=0O(N"Y), N-—ooo.

This implies that with probability 1,
7x Max [|Biy(n, »)|: —dy=r=dy]=0(N"*log N)*¥) , N—oo.
On the other hand,

Oy max [| Byy(n,»)|: —dySr=dy]
=0y max [| Biy(n,»)|: —dySr=dy]+ONN7) ,

where
Biy(@)=[L*({t+&,) —L*(E)] - [LE+£,) — L(&,)]

and L*(t) is defined in Lemma Al. Also, for a suitable choice of ¢,>0
and for all r=—dy, -, dy,

P (Biy(n, 0> N~ (log N)*)=0O(N"%), N—oo,

by applying a method similar to that used by Geertsema ([4], Lemma
4.2). As a consequence, with probability 1,

3y max [| Buy(n,.m)|: —dy2r2dy]=0(N ¥log N)*) , N— oo,
This and the above results establish the proof of the lemma.

Proor orF THEOREM 2.1. First, since both K and L are twice dif-
ferentiable at £,, thus with probability 1,

GN(épN) - GN(&p) = [‘rNK,(Ep) + 5NL’(€p)]
- (£,,—&)+O(N"(log N)), N—eoo,

by Lemma Al. Applying Lemma A2, we readily have, with probabil-
ity 1,
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GE,)—GE)=lryK'(&,)+3yL'(5)]
- (8,,—E)+O(N4log N}*), N—oo,

and consequently,

é —& = G(épw)_G(ep)
NPTy K8+ 3y LI(E,)

This completes the proof.

+O(N-(log N}**), N—ooo.

ProoOF orF THEOREM 2.2. Since ¥ is nondecreasing, therefore
P(2:®)<0)=P @<)=P (1s(t)<0) .

Define ¢, y=0-+20, N~ and let ® denote the standard normal distribu-
tion, then it is enough to show that

Ilvim P (14t »)=0)=0(2) , for each z¢R.

Recall that M=a(n+m)(n+l)+pn(n+1)/2 and write

P (a(t, ) <0)=P (MN(a S =Xt ) — Aelton)]

1=1 y=1

+5. 2. [Pt )t ) 2200

11sy8n

N-—o0, for all zeR.
Define

V=ra(ntm) ™S (XA ten) = 2t )]
() B Y —te) — At )]
=203 33 (BUWi/2) ~tox) = 2u(ten)]
Then it can be shown that

N[ 25t »)— (radxten) +Oxdsta )] —V}2-0, N—ooo,

by utilizing the condition that ¥ is a bounded function and results
similar to (Al) and the properties of the projection of a U-statistic.
Finally applying the Lindeberg-Feller theorem for double arrays of ran-
dom variables, the first assertion follows easily.
To establish a proof for the second assertion, we first note that
mimntl oU(Y;— X, —t)

(A6) 260)~25(0)=0—0)M "[“ =2 ot t=0
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+8

(Wt W=t
=0

1siSysn ot

where |§—0|<|§—6|. Hence we have

NG —5)
= —N'"24(6)
Ly rEmenl pp(Y, — X, —t) JU((W,+W,)[2—1) ] '
M {:a 1,Z=]1 Jév:‘l at t=é+ﬁl§1§§n at ) t=é

From our previous argument, we have seen that
—NY34(6)-% N(0, o) .

Also, using the projection technique in connection with the property
of 4,
n+m n+l 3¢(Y,—Xt—t)

M-l[
@2 ot

(W, +W))12—1)

1515750 ot

{7 T(x—1) = U (x—1t)
v SW LoD dK @)+ S_w LD | L@ .

This finishes the proof.

PROOF OF THEOREM 2.3. The proof is similar to that given in the
proof of Theorem 2.1. The key steps of the proof are to show

(A7) 73 (py)—0=0(N*(log N)'*) , N— oo,
with probability 1 and for constant ¢>>0,

(A8) sup |(rat+0)—75(0)) — (7s(t+0) —7a(9))]
[t|<cN-V¥(log N2
=0y —7)+0(8y—38)+O(N ~**(log N)**) ,

N—oo,

with probability 1. Using (A7), (A8), conditions on 7(d) and the con-
tinuity of ¥, the assertion of the theorem follows.



