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Summary 

In this paper, two types of robust estimators and approximate 
confidence intervals for the  difference of location parameters  of corre- 
lated random variables are proposed and investigated when some ob- 
servations are missing. I t  is shown tha t  the  suggested estimators are 
consistent and asymptotically normally distributed. In addition, the 
proposed approximate confidence intervals are also shown to enjoy some 
nice asymptotic properties. 

1. Introduction 

The problem of estimation of the  difference of location parameters  
of two correlated random variables with incomplete paired observations 
can be described as follows : Let (X, Y) be a random vector wi th  con- 
tinuous joint distribution H(x, y) and marginal distributions Fl(x) and 
F~(y) for X and Y respectively such tha t  F~(x)=Fl(x--~), ~ 6 R. As- 
sume tha t  we have a f ragmentary  random sample {(X1, Y~),--., (X~, yn), 
(X~+, . ) , - . . ,  (Xn+~, .), (., Yn+,),..., (., Y~+~)} observed from (X, Y), where 
" . "  denotes a missing observation. Then the  problem is how to use 
these data wisely to make an inference on the  shift  parameter  8. 

In the  situation tha t  H(x, y) is a bivariate normal distribution, the  
problem of estimation of the mean difference 0 has been extensively 
s tudied;  see, in particular, papers by Anderson [1], Lin [10], [11], Lin 
and Stivers [12], Mehta and Gurland [13] and Wilks [16]. Assuming 
tha t  X and Y are linearly related, Gupta and Rohatgi [5] proposed esti- 
mators  expressed as linear combinations of f ragmentary  sample means. 
Recently Wei [15] proposed a nonparametric approach using the  median 
of all possible differences Yj-X~, i = l , . . . , n + m ,  ] = l , . . - , n + I  and 
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(Y~+Yj--X~--Xj)/2, l~_i~_j~_n. He compared this median est imator  
with the  estimators suggested by Lin and Stivers [12], Gupta and 

n+L n+m, 

Rohatgi [5] and a naive estimator 5?. Y~/(n+l)-- ~ XJ(n+m). The re- 
J:l i:l 

sults show that the median estimator performs quite satisfactory under 
bivariate normal distribution and other estimators perform very poorly 
under Gumbel's bivariate exponential distribution. 

In this article, two large classes of nonparametric estimators of # 
are studied in detail. Each class contains the median estimator as a 
special case. The first class of estimators is the class of linear combi- 
nations of sample quantiles derived frbm the empirical distributions 

G(t)=M-1 ~ ~1 3--I, I(Yj-X~_t)+~ ~, I(Y~+Yj-N-X,<__2t) , where  
J = l  l<:z<:J ~ t  

a and ~ are two nonnegative integers  with a + ~ > 0 ,  M=a(n+m)(n+l) 
+(~n(n+l)/2), and I(-) is the usual indicator function. More specifi- 
cally, est imators 0* from this class can be expressed as 

0* = Z c ,~ , , ,  

where c~ are nonnegative constants, 0 < p ~ < l ,  i=1, . . . ,  k and ~p~ are de- 
fined as 

Sp, = inf {t: G(t) >= p~} . 

Note tha t  the  estimators 0* considered here  and below depend on a 
and ~. If we are unable to identify the  pairing of X~ with Y~, i = 1 ,  
�9 . . ,  n, then  we simply choose ~=0.  In Section 2, we see tha t  if we 
choose c~ and p~ properly, then 8* will be a consistent est imator of 8. 
I t  is believed tha t  suitable members  of this class, such as 0.3@1/3+0.4@~/~ 
+0.3~m and 0.25~/4+0.5~n+0.25~3/4 are more distributionally robust  
and insensitive to spurious observations. The second group of estima- 
tors considered here is the  class of M-estimators. An M-estimator for 

is a solution ~ of the  equation 

o ~ ,  p ,~ ' (Y~-x~-c )+~ Z ~" W~+W~ c = o  
i = l  J = l  I ~ t N J N n  2 ' 

where W~=Y~-X~, i= l ; . . . ,  n. The function ~" is usually skew-sym- 
metr ic  about 0. Typical ~" considered in robust estimation are the  
Huber  [9] family ~'(x)= min (k, max ( - k ,  x)) and Hampel 's  "redescenders" 
[6] and [7] etc. In Section 2, sufficient conditions are given to ensure tha t  

is a consistent estimator of 8 with other  good asymptotic properties. 
In Section 3, we also study the  impor tant  problem of construct ing 

approximate confidence intervals for 8. Two approaches are examined. 
The first approach is based on the  sample quantiles. The second method  
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is to derive approximate confidence intervals from M-estimates;  see 
Boos [2]. 

2. Nonparametric estimators of 

Let K(t) and L(t) be the distribution functions of Y2-X~ and (W~ 
+W2)/2, respectively. Define N = 2 n + m + l  and ~ = m / N ,  ~z~-=I/N and 
23~=n/N. We assume tha t  there  exists a constant ~0 such tha t  0<2o 
=<~3~ for all large N. In addition, we let LN--*L, i=1, 2, 3. Through- 
out this paper we assume tha t  both K and L are symmetric  with sym- 
me t ry  point t~. This implies tha t  the  distribution function G(t)---rK(t) 
+ ~L(t), where r = 1-- 3 = a ( ~ +  ~8) (~ § ~3)/(~(~ + 23) (~2 + ~3) +/~(2~/2)), is also 
symmetr ic  with symmetry  point 0. The definitions of the  estimators 

t~* and t~ are motivated by the  fact tha t  the  empirical distribution G(t) 
is a reliable estimator of the distribution G(t). Thus if we choose con- 

k k 

stants e~>0 and 0 < p ~ < l  ( i=1,  2 , . . . ,  k) such tha t  ~ e , = l  and ~, e~$~ 
z = l  ~=I 

k 

=8,  where  ~=inf{t:G(t)>=p~}, then O*=~e ,~ ,  will be a consistent 

est imator  of 8. For examples, {c~=1, p,=1/2} or {c,=0.3, c~--0.4, c~= 
0.3, p~--1/3, p~=l/2, p~=2/3} or {e~=0.25, c~=0.5, e~=0.25, p~=1/4, p2 = 
1/2, p3=3/4}. On the other hand, if, in addition to some mild conditions, 
we let ~ be a skew-symmetric function such tha t  there  is only one 

solution 0 for f ~ ~'(x-t)gG(t)=O, then  5 can also be shown to be a 
j -  

consistent estimator of 8. 
In wha t  follows, we first establish an almost sure representation 

for sample quantiles ~ (Theorem 2.1). Using this representation we 
are able to obtain some useful asymptotic properties for t~* (Corollary 
2.1). Asymptotic normality and other  properties of the M-estimators 
t~ are s tated in Theorems 2.2 and 2.3. 

THEOREM 2.1. Let 0 < p < l  and pN=p+O(N-1/~(log N)-ln), N--->c~. 
Assume that the distributions K(t) and L(t) are twice differentiable at $p 
with K'($p)L'($p)>O, and FI satisfies a Lipschitz condition of order 1, 
and ~ = ~ + O(N-~nOog N)l/z), i = 1, 2, 3, N--* ~ .  Then with probability 1, 

P~ -  G($P) + O(N-~/4(log N) 3/4) , N--* co, 
~ -  ~ =  y~K'($~) + ~L'($~) 

where 

r~ = 1-- $~-- a(n + m) (n + l)/[a(n + m) (n + l) + (t~n(n-+- 1)/2)] 

(--* r, N - + ~ )  . 

PROOF. See Appendix. 
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Using this almost sure representation and asymptotic properties of 
G(t) we can easily establish the following 

COROLLARY 2.1. (a) Let ~=~+O(N-I/2(log N)~n), N - o ~ ,  for ] 
=1, 2, 3. Assume that for each i = 1 , . . - ,  k, K(t) and L(t) are both twice 
differentiable at ~ with K'(~)L' (~)>O and F, satisfies a Lipschitz 
condition of order 1. Then with probability 1, 

j F  
(#*-- #) = O(1) ,  N--*  oo. 

~/log log N 

(b) I f ,  in addition to the conditions assumed in (a), we let IjN= 
lj+O(N-~n), N---.oo, j = l ,  2, 3. Then 

J-~(~*- 8)-~ N(o, ~) , N--. oo, 

where O<a2<oo is the asymptotic variance of ~/-N#*. 

Remark. If c~= 1 and p~= 1/2, then the value of a ~ is given in Wei 
[15]. In general, the asymptotic variances of other linear combinations 
of sample quantiles are quite complicated. Fortunately, in Section 3, 
we are able to suggest two types of approximate confidence intervals 
without requiring the knowledge of the value of a ~. 

We now focus our attention on the class of M-estimators. For a 

given function ~'(x), we put ~(t)= f : :  ~r(x--t)dr(x) for any distribution 

F. It  is clear that  if ~" is skew-symmetric about 0, then 8 is a solu- 
tion of ~K(t)=O and ~L(t)=0, and hence also a solution of ]~(t)=0. Let 
the distribution function of W~ = Y~-X~ be denoted as F~, and we defined : 

and 

 (y-t)dF2(y) , 

Z ( t ) =  f ~ - .  ~r(t- x)dF1(x), 

f ~ ( t )  = w . 
- - c o  

Throughout this paper, we assume ~(t), i=1 ,  2, 3, are measurable func- 
tions. Also, we define the following functions involved in the expres- 
sion of the asymptotic variance of ~ t ~ :  

S: q~(s) = ~ ~ - ( y -  s )dF~(y)  , 

�9 
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f:o fL 

~(x-s )~(y - - s )dH(x ,  y) , 

~ ( x - s ) ~ (  y - -x  _ s)dH(x, y) 
2 

qs(s)=f~ f ~ - ~ ( Y - S ) ~ (  Y - X - s )  dH(x' y) 

In Theorem 2.2, two sets of sufficient conditions are assumed in 
order to establish asymptotic normality of the M-estimators. The 
method of the proof is based on that  given by Huber ([9], Lemmas 4 
and 5) in conjunction with the projection technique. 

THEOREM 2.2. (a) Assume the following conditions: 
( i )  ~ is bounded, nondecreasing and skew-symmetric about 0; 
(ii) 2a(t) is differentiable at t=# with ~ ( # ) < 0 ;  

(iii) A ~ = I , + O ( - ~ N ) ,  N--.co, i=1 ,  2 ,3 ;  

(iv) q3(s), j = l , . . . ,  5, are continuous at s=8. 
Then for any solution sequence # of the equation l&(t)=0, 

~(#- o) ~, N(o, ~) ,  N ~  ~,,  

where 

and 

O" 1 - -  (~(#))~ 

a~= y/.[ i I ~ 4~ 2 
- -  2 ~)) q~(#) + ~ q2(#) (~,+,~) ~ (,h+ 

2r2~a ~ '# ' - -4  ~/ q~(#) + qs(#) u~( ) t  T | - -  - - / .  -~ (~+~)(~+~) ~ ~+~ ~+~/ 

(b) Let # be a solution sequence of 2~(t)=O satisfying # p .#, N--~ 
co and assume the following conditions: 

( i )  # is a root of 2~(t)=O and 2L(t)=O; 
(ii) ~ has a bounded, uniformly continuous derivative :r,; 

(iii) f ~ a~(x- t )  = dK(x) and f:  a~r(x-t) ~= dL(x) are finite and 
-~ at ~ at 

f ~_~ a~(x-t)at =odK(x) + f~_.. a~(x-t)at It:o dL(x)--#O" 

Then 

#-~(8-  o) ~, N(O, ~) ,  N---, ~,,  
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where 

a~=a2~ I:~ a~r(x--t).lt= dK(x)+~ f:~ O~r(x--t) It= alL(x)] 2" 
at at 

PROOF. See Appendix. 

Remarks. (1 )  In (a), condition (iii) can be relaxed if we assume 
tha t  2~(t) and 2~(t) are both differentiable at t--t~ with ~(~)<0 .  

( 2 )  Regarding the condition imposed on 8 in (b), we note that  if 
~" is a continuous and bounded function, ~(t~)=0 and that  at t~, ~a(t) 
changes sign only once in a neighborhood of th Then there is a se- 
quence of solution ~ such that  with probability 1, 

0 - - * 0  , N - - ,  co  ; 

see Boos and Serfling ([3], Theorem 2.1). 
( 3 )  In condition (ii) of (b) we assume tha t  ~r, is bounded. 

ally this condition can be replaced by only assuming that  
Actu- 

[I E a~'(Y~-x-t) F~(x <oo, 
-| at 

EII:~ a~r(y-X~--t) t=edF~(y)]2<~ 
at 

and 

El f :  | a~'((W~+w)/2--t) ,=odF3(w)]~< ~ . 
at 

In view of the proof for case (b) of Theorem 2.2 (see Appendix), 
we easily see tha t  if, with probability 1, t~--*0, N-ooo,  then under re- 
gularity conditions similar to (a) of Corollary 2.1, we can obtain a 
stronger result : 

~r~ ( ~ -  0) = 0(1),  N--, co,  
J log log N 

with probability 1. The same result is also obtainable for case (a) by 
using the following almost sure representation, similar to that  given 
in Theorem 2.1, for M-estimators. This representation is not only use- 
ful for the purpose of establishing the LIL type result for t~ but also 
valuable for constructing confidence intervals for t~. A weaker version 
of a similar representation was derived by Boos [2]. 

Let ~'(t) be nondecreasing, left continuous, and strictly positive 
(negative) for large positive (negative) values of t, and define, for any 
distribution F, 
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r , ( d ) =  - e ( x - d ) d F ( x ) =  - 

and 

r?'(t) =inf  [d: rr(d)>-_t], t e (inf re(x), sup re(x)) . 
x e  l~ x e  R 

r~(d) is nondecreasing and right continuous and thus r~(d)<=s if and 
only if dNre(s). Furthermore, if 0 is the only root of 2e(t)=0, then 
rp(0) = O. 

THEOREM 2.3. Assume the following conditions: 
( i )  ~lr(t) is bounded, nondeereasing and satisfies a Lipschitz condi- 

tion of order 1; 
(ii) ra(d) is twice differentiable at d=O with r~(0)>0; 
(iii) 0 is the root of ~o(t)=0; 
(iv) ~,r 2, +O(N-~n(log N)m), i=1, 2, 3. 

Then for  pN=O(N-W2(log N)W2), N--+c~, we have, with probability 1, 

(2.1) r~l(p~)- 0 - p'~- r~(O) ~_ O(r , , -r)  + 0 ( ~ -  ~) 
r'~(o) 

+O(N-W~(log N) w~) , N--~ oo . 

PROOF. A proof is sketched in the Appendix. 

Remarks. (1)  It should be noted that if we replace (ii) by as- 
suming that  rK(d) and rL(d) are both twice differentiable at d=O with 
ra(0)>0, then with probability 1, 

(2.2) 

where 

r~(p .~)_  # = p ~ - r e ( o )  FO(N_3/,(log N)3/,) , N - - - ~  C ~  , 

G~(t)  = rNK( t )  + ~NL(t) . 

2) Fix p~=0, then 0=r~l(#) is a solution of the equation f ~_~/r(x ( 

-t)dG(x)=O, since ~r is a continuous function. Using (2.2) or (2.3) we 
immediately have, with probability 1, 

J N  (#--#)----0(1), N-+eo ,  
a/log log N 

if some regularity conditions similar to (a) of Corollary 2.1 are satisfied. 
( 3 ) The members in Huber family ~r(x)=rain (k, max (--k, x)) satis- 

fy condition (i) of Theorem 2.3. 
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3. Confidence intervals for the difference of locations 

Here we consider two methods of de termining  approximate confi- 
dence intervals  for 8 using Theorems 2.1 and 2.3, respectively.  

According to Corollary 2.1, for the  median es t imator  0*--~j2 we 

have ~/-N(O*--O)~--~N(O, as), N - . o o .  I f  a s is known and let Z~ denote 
the  100(1-a)  percenti le of the  s tandard normal  distribution, then  the  
confidence interval  I~=(O*-Z~(a/~/-N), O*+Z.(a/~/-N)) has confidence co- 
efficient converging to 1 - 2 a  as N--*r162 Unfor tuna te ly ,  in most  cases, 
a s is not  known and therefore  the  above approach is useless. 

To propose a useful confidence interval  for 0, we need to es t imate  
the  asymptot ic  variance of ~/-N0*. 

From (2.1), it is not  difficult to see t h a t  

J-N(O*- O)/a~r ~ , N(O, 1) ,  N---* oo, 

where  

where  

= + , 

and 

~3~ + ~1~ 23~ + ~z~ ' 

(Note t ha t  if H(x, y)=H(y, x) for all (x, y) 6 R 2 then  o2=l/2-as.) Also, 
in view of the  asymptot ic  variance a s of ~/Na* derived by Wei [15], 
we have a~v--~ a s, N - ~  c~. 

Using our method it  is enough to es t imate  simple paramete rs  0,. 
Let  us first define 

~'1(t)=(n+m) -~ "~ I ( X ~ t )  and &(t) = n  -~ ~, I(Y,-X,~_t) . 
Z = l  ~ = 1  

Then na tura l  es t imators  of 8~ are  8~: 
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* , ( Y , - - O * )  , 

0s=n-' ~ F~(X~). ~'3(20"-- Y,+ X~) 
"e=l 

and 

03=n-' ~ Fs(Y~-0*)-~'3(20*-Y~+X~). 

Their asymptotic properties are described in 

COROLLARY 3.1. I f  F1 and F3 satisfy a Lipschitz condition of or- 
der 1 and there is a sequence of positive integers ~N--~co, N--.cr such 
that with probability 1, a~(O*-O)-*O, N--.oo. Then with probability 1, 

fl~(O~- 0)--. O, N-- .  ~ ,  i =  1, 2, 3,  

where 

/~N=min (a~, N1n(log N) -'n) . 

Define ply=-Z.a~.#4 'N and p2~=Z.as].~/-_~, where a~ is the strong 
consistent estimator of a s obtained by replacing 0~ by t~ in the definition 
of a ~. Then the suggested distribution-free interval is I~*=(~p,~v, ~2N)" 
The advantage of this approach is that  we don't need to estimate K'(O) 
and L'(O). Furthermore, applying Corollary 3.1 and Theorem 2.1, it 
can be shown that  the confidence coefficient of I~*---~l--2a as N--~oo. 
Also, 

,/-N. (length of I~*) P, 2aZ~ , N--* c~ . 

Next  we turn our attention to the second approach using the result 
of Theorem 2.1. From (2.3) we see that  under some suitable conditions, 

4 ~  (r~'(p,,)- o) ~, N(O, 1), N--, co, 
,G 

where 

( ~ 9 )  2 _  r ~ 

~(0) ' 

1 4a~- a~= [r~( 1 ~ -  -7~ )q,(O)+--~---~-q.,.(O) 
21~+28~ s~-l- sN sN 

_~ 2r~2sNq,(O) ~-47z~Oz~(" q,(O) + q~(O) ) ] .  

Hence the interval (r~1(pN)-Z.(a}/~-N), 7$1(p.v)+Z.(a~]~)) has confi- 
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dence coefficient converging to 1 - 2 a  as N--~oo. Again, a0 and 2~(0)  
are  in general  not  known and thus,  as above, we have to find a way  
to es t imate  q,(O). (It is not necessary to es t imate  2~s(0).) 

To es t imate  q,(O), let us first consider est imation of E(t), i = l ,  2, 3. 

The es t imator  of ~(t)  considered here  is ~rl(t)=(n+l) -~=+~ ~, ~r(y~-t) and 

the  es t imator  of ~(t)  is ~ ( t ) = ( n + m ) - l " ~ r ( t - X O  and the  es t imator  

.) c , ro ,ort ie=  t e=e 
,=1 2 

es t imators  are  s ta ted in 

COROLLARY 3.2. Let ~r be continuous and of  finite variation [[~r[[ v. 
Then with probability 1, 

^ 

Nln(logN)-l/~sup t~r,(t)-~r,(t)[--.O, N - . o o ,  i = 1 ,  2, 3 .  
t E R  

The results  of Corollary 3.2 lead us to consider the  following type  
of es t imators  for q,(0): 

n + l  ^ 

0~(0)=(n+l)-I :~, ~ ( Y , - 6 ) ,  
t = l  

t = I  2 ' 

O~(O)=n-1 ~, ~,(X,--8) ~(Y,--~) , 

~=i 2 ' 

~=i 2 ' 

where  8=r~1(0). Their  asymptotic  propert ies  are  summarized in 

COROLLARY 3.3. Let the conditions of  Corollary 3.2 be satisfied and 
~r be Lipschitz of  order 1. I f  there is a sequence of  positive real num- 
bers a,v---~co; N--~ co such that with probability 1, a'v(O- 8)--* O, N--+ oo, 
then with probability 1, 

f ^ ~.~[q~(O)-q,(O)l-~O, N--.oo, i = 1 , . . . ,  5 

w h e r e  ' - -  " ' p,v--mm (a.,  N'/~(log N)-1/2). 

In view of the  properties of ~(8) described in Corollary 3.3, a natu-  
^ 2  ral es t imator  ao of al can be obtained by replacing q,(8) by ~,(0), i = l ,  

�9 . . , 5 ,  in the  definition of ~.  I f  we do so and if the  conditions of 
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Corollary 3.3 are satisfied then with probability 1, 

~1,~-,,~I~o, N-~oo. 

Based on the  result, we now propose a second type of confidence in- 
tervals for O. We define two quantit ies q1:~---Zo(~o/,/-N) and q2~= 
+Z~(~;o/J-N). Then the distribution-free confidence interval IN=(r~1(ql~), 
r~l(q2~)) has some desirable properties. That  is, the  confidence coeffi- 

cient of _T~v--~l-2a, N--~oo and ~/-N(length of I~)--~2Z~al, N--,oo, where 
at is defined in part  (a) of Theorem 2.2. 
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Appendix 

The proof of Theorem 2.1 consists of the following two lemmas. 
In each of these  lemmas, suitable conditions of the  theorem are in action. 

LEMMA A1. Let 0 < p < l  and p~=p+O(N-'/2(log N)'/2), N--.oo. I f  
K ' ( ~ ) L ' ( ~ ) > 0  and L~=~,+O(N-~/~(log N)m), N--.~o, i - - 1 , 2 , 3 ,  then 
with probability 1, 

~,~= $~,+O(N-'nOog N)  'n) , N--* oo. 

PROOF. Let  ~r=c0N-'/2(log N)  In, where  e0 is some positive constant  
whose value will be specified later .  Define 

n + ~ z  n + t  

K(t)=[(n+m)(n+l)]  -~ 52, ~, I(Yj-X~<=t) , 
~,=i J = l  

L(t)=[n(n+l)/2] -~ ~, I(W~+Wj~_2t), 

^ n + m  

Tt(t)=(n+m)-~ ~ [F2(X~+t)--K(t)], 

T2(t)=(n +l)-' ~+' ~. [F,(Ys--t)--K(t)],  

where  _P~(t) = I-- F~(t). Write  
^ n + r a  n + l  

S(t)=[fif(t)--K(t)]- T~(t)- T~(t)=[(n+m)(n+l)]-' 52, ~ g(X.  Yj, t) , 
~=I J=l  

where  

g(X,  Y~, t) = [ I (Y j -  X~ ~ t) - K(t)] -- [F2(X, + t) -- K(t)] -- [ _~1( Y j -  t) -- K( t ) ] ,  

and realize tha t  for any positive in teger  d and any sequence of con- 
d 

stants  t~ ~ R, E ]-[ g(X, k, Y~,, t~)=O, if the re  is a subscript which ap- 
k = l  

pears only once in {i,, ] 1 , ' " ,  id, ]d}- Consequently, 
^ 

(AI) E [S(tN)] d = O(N -~) , N--, oo, 

for any sequence of real numbers  tN. 
Now we consider 

(A2) P (#p~ > Sp+ ~) 

~ P  ( - r ~ [ K ( ~ p + 6 ~ ) - - K ( ~ + ~ ) ] >  G~(~p+~,)-p.v.) 

+ P (-$~[L(~p+~r ~)] > G'v($P+2~)-P~ ) 
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G~(t) = r~K(t) + a~,L(t) . 

It  is noted that  if a=0  or ~=0, then UI~=0 or U2.=0 for large N. 
So, in the following we assume a r  and ~r  Now regarding the 
first term on the right-hand side of (A2), we have 

U ~ P  ( - r ~ S ( ~ p + ~ ) >  G~(~, -~)-p~)  

+ P ( -  r~T2(~,+ ~) > G~(~p+6~)-P~ ) . 

Furthermore, according to (A1), 

(A3) P(-rNS(~,+~)> G~v(~'~)-P~)=O(N-~) , N---~ , 

since for large N, 

> 1  , 

=-ff G 

Also, using Hoeffding's inequality (Hoeffding [8]), the standard argu- 
ment establishes that  

(A4) P(--~'N~'I(~,+~v)> GN(~p-~,)--p~,.) 

+ P  (-r~T2(~,+ ~ ) >  G~(~'+~)-P'v)=O(N-2), N---~oo. 

We now treat  the second term on the right-hand side of (A2). 
Define 

L*(t) = ~ I(W,+W,<=2t), 
l_~<y__.n 

then there exists a constant c>0 such that for large N, 

(A5) P (-~{L(~,+~)-L(~,+r GN(~,-~,v)--P~) 
(--L*(~p+ ~ ) + L ( ~ +  ~ ) >  G~(~,+ ~ ) - p ~  --cN- ')  . < P  

- -  2~N 

Applying Hoeffding's inequality for U-statistics (Hoeffding [8]) we can 
show that  the probability on the right-hand side of (A5) is also bound- 
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ed by O(N -~) if c is properly chosen. 
(A2), (A3), (A4) and (A5) imply that  

p ( ~ n > ~ + ~ A = O ( N - ~ ) ,  y - ~ o o .  

A similar argument  also shows tha t  

P (~n<$~-~n)---O(N -~) , N---~oo. 

Thus the assertion of the lemma follows immediately by applying the 
Borel-Cantelli lemma. 

LEYlMA A2. Let 0 < p < l .  I f  both K'(t) and L'(t) are bounded in 
a neighborhood of $~ and F, satisfies a Lipschitz condition of order 1, 
then with probability 1, 

sup I[O(t+~,)-O($~)]-[Gn(t+~)-G~(~)][ 
[ t [ ~ c N - V 2 ( l o g N )  */~ 

=O(N-~/~(logN) ~/') , N - . o o ,  

where c is a positive constant. 

Define 

PROOF. W r i t e  

A n -  sup 
It[< cN-~n(log N) v~ 

~7~ sup 
I t l ~ c N - V Z ( l o g  N )  ~ ~- 

+ ~ sup 
[t[_~cN-~/~(log N )  t/~ 

lie(t+ ~)-  0($~)1- [G.(t + ~ ) - ~ ( ~ ) 1 1  

I [K(t + ~p) -- R($p)] -- [K(t+ ~p) - K ( ~ ) ]  [ 
^ ^ 

l[L(t + $~)- L(r - [L(t + ~)--  L($~)] l.  

B1N(t) = [R(t + $~) - R(~)1 - [K(t + ~)  - K(~, ) ] ,  

B=n(t) = [L(t + ~)-L($~)1-  [L(t + Sp)- L(~)1. 

Choose dr  as a sequence of positive integers such tha t  dn NcN~/~(log N) 1/= 
and put V~,~=r(cn/dn), where cn=cN-~/2(logN) tn and -dn<-_r<=dn. De- 
fine Qr,~=[W,N, ,~,+t,n], then for all t e Qr,N, 

B2n(t) < B=n(7;~+~,n) + a',zr and B~(t) < BIN(7;~+~,n) + ~..~ , 

where a~,n=K(~;~+l,n)--K(v.,n) and ak~----L(w+~,n)--L(v~,n). Similarly, 

B~n(t)>-_B~n(~r,N)-a~,~ and B~n(t)~B2~(~,~)--a~,~ 

for all t~Or,~.  

Thus 

A~ ~ rN max {I B~N(V~.~) I : -- d r _  r ~ dr} 
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+~N max  {IB2~(v,.~)I: - d ~ _ r ~ _ d ~ }  

+ r ~  max  {a~,N: - d ~ < r - < d N - 1 }  
l �9 +$N max  {a,,~. --dN<=r<=dN--1} . 

Now, according to the  conditions of L e m m a  A2, it  is easy to see t h a t  

rN max  [a,,N: - d N < r ~ d ~ - l ]  + ~ m a x  [a'~,N: - d ~ < r - < d N -  1] 

= O ( N  -3/') , N--* oo . 

Define aN=N-~/4(log N )  a/4, t hen  us ing  the  condition t h a t  F, 6 Lip (1) 
and Berns te in ' s  inequali ty and (_il), for all r = - - d N , . - . ,  dx, we have 

P (IB~N(V~,N) I> aN) 

< P (I ,S(n,-, N) I>  aNI6) + P (I S(~,,) I > ar16) + P (I 7',(n~-,~) -- T , (~)  l > aN/8) 
^ ^ 

+ P (ITz(n, ,N)-  T2(~p)I>aNI3)=O(N -~) , N - , o o  . 

This implies t h a t  wi th  probabil i ty 1, 

r~ max  [IBI~(W,N)I: - d N <  r<dN] =O(N-~/~(log N )  ~/') , N - - , oo  . 

On the  o ther  hand,  

~N max [IB~,v(r]~,r) l: - - d ~ < r < d ~ ]  

= ~N max  []B'N(Vr,~)[ : --dN~__r~__gN] + O ( N  -~) , 

where  

B ~ ( t ) :  [L*(t + ~p) - L*(~p)] - [L(t + $p) - L(~)]  

and L*(t)  is defined in L e m m a  A1. Also, for a suitable choice of c1>0 
and for all r = - - d N , . . . , d N ,  

P (1B~N(V~r. N) I> ciN-a/~(log N )  a/~) = O ( N  -z) , N----~ oo ,  

by applying a me thod  similar to t h a t  used by Geer tsema ([4], L e m m a  
4.2). As a consequence, wi th  probabil i ty 1, 

~ m a x  [IB2.~(vr,N)I : - d N < r < d N ]  =O(N-a/4(log N )  a/') , N o  oo . 

This and the  above results  establish the  proof  of the  lemma.  

PROOF OF THEOREM 2.1. Firs t ,  since both  K and L are twice dif- 
ferent iable  a t  ~p, thus  wi th  probabil i ty 1, 

GN(~pN)-- GN(~p) = [r~K'(~p) + dNL'(~)] 

�9 (~PN-- SP) + O(N-' (  l~  N ) ) ,  N--+ oo,  

by L e m m a  A1. Applying L e m m a  A2, we readily have,  wi th  probabil- 
i ty  1, 
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G(~,~) - r  = [r~K'($p)+ 0~L'($,)I 
�9 (~p~- ~)  + O(N-"/'(log N)  3/,) , 

and consequently, 

G!~)-G(~p) +O(y_3/,(log Y)~/~) 
~ - -  ~ = r~K (~) + 8,vL (~) 

This completes the  proof. 

PROOF OF THEOREM 2.2. Since ~" is nondecreasing, therefore 

P (2~(t)<0)~P (t~=<t)~P (i~(t)~_0). 

Define t,,N=O+za~N -~/2 and let r denote the  standard normal distribu- 
tion, then it is enough to show tha t  

lira P (i~(t,,~)-<0)=r , for each z e R .  
N~e~ 

Recall tha t  M=a(n+m)(n+l)+pn(n+l)[2 and write  

( n+m n+l 
P(2~(t~,N)=<0)=P M-~ao~N ''2 a ~ Z [~r(Yj--X~-t,..,-)-~(t~,N)] 

3=i 

l~-~<2Nn 2 
N--,oo, for all z e R .  

Define 

n+l  

+ ( n + / ) - '  E [~(Y,--t~,~,)--~K(t,,.,,)l 
3=I 

-- 2kv ~, [~ ( (Wd2) -  t~,N)- 2L(t~,N)] �9 

Then it can be shown tha t  

N'~{[~ ~(t~,~)- (r~,Ct~,~) + ~,~,~(t~,,,))]- 9} ". o, y - - - >  OO , 

by utilizing the  condition that  ~r is a bounded function and results 
similar to (A1) and the properties of the  projection of a U-statistic. 
Finally applying the Lindeberg-Feller theorem for double arrays of ran- 
dom variables, the  first assertion follows easily. 

To establish a proof for the second assertion, we first note tha t  

(A6) i .+~,.+, a~r(g j -x , - t )  t=o aa(O)-~a(o)=(O-o)M-' a E :E 
~=1 j=l Ot 



where 15-o[:<_lg-Ol. 
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-Ffl E a~lr((W,-FW~)/2--t) ] 
1<~_~_~ at t=~ 

Hence we have 

- N m  ,b( O) 

347 

[ =+'~=+' ~T(Y~--X, - - t )  t=g+~ a~'( (W,+W3)12- t )  ] 
From our previous argument, we have seen that 

- N ' / 2 ~ ( O )  ~ ,N(O,  ~ )  . 

Also, using the projection technique in connection with the property 
of ~, 

M-l  n+~=+~= j=1 a~(r,--X,-t)at t=O+fl I~_,~-,~-~Z a~'((W,+W~)/2-t)at t=#] 

" f~ a~r(x--t)" t=o d K ( x ) + ~  f" a~(x-- t )  t :odL(x )  - - ' r  . ~t - -  at " 

This finishes the proof. 

PROOF OF THEOREM 2.3. The proof is similar to that  given in the 
proof of Theorem 2.1. The key steps of the proof are to show 

(A7) Y~(p~) -- @: O(N-m(log N )  ~/2) , N--~ c~ , 

with probability 1 and for constant c>0,  

(AS) sup I(r~(t+o)-re(a))-(r~(t+o)-r~(a))[ 
I t [ <= c N- I /2 ( log  IV) 1/2 

= O(r~ -- r) + 0(~ -- ~) + O(N -~/4(log N) 3/~) , 
N-----)" O0 

with probability 1. Using (A7), (AS), conditions on r~(d) and the con- 
tinuity of ~r, the assertion of the theorem follows. 


