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Summary 

A k-in-a-row procedure is proposed to select the most demanded 
element in a set of n elements. We show that  the least favorable 
configuration of the proposed procedure which always selects the ele- 
ment when the same element has been demanded (or observed) k times 
in a row has a simple form similar to those of classical selection pro- 
cedures. Moreover, numerical evidences are provided to illustrate the 
fact that  k-in-a-row procedure is bet ter  than the usual inverse sampl- 
ing procedure and fixed sample size procedure when the distance be- 
tween the most demanded element and the other elements is large and 
when the number of elements is small. 

1. Introduction 

The k-in-a-row policy was considered by Kan and Ross [6] in study- 
ing the optimal list ordering problem. In the list ordering problem, 
we are given a set of n elements el, e~,-.., e~ which are to be arranged 
in some order. At each unit of time element e~ is demanded with 
probability p~ and replaced according to some replacement policy. The 
k-in-a-row policy makes a replacement when e~ has been demanded k 
times in a row. Kan and Ross [6] showed that  for the move-to-the- 
front  policy the average position of the next element demanded is a 
monotone decreasing function of k. 

In this paper, we apply the k-in-a-row rule to the ranking and 
selection theory. Let ~,,~2,-'-, ~ be n multinomial cells with cell 

probabilities p,, P2," �9 ", P~ where ~. p~=l. The ordered values of p~, P2, 

�9 --, p~ are denoted by Pcl~, Pc~," ' ,  Pc~. The experimenter is interested 
in selecting the cell with the largest cell probability Pc~. The prob- 
ability requirement of making a correct selection (hereinafter, referred 
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to as CS) under  a proposed procedure R is given by 

(1.1) P (CS]R)>=P* 

whenever  pc~l/pc~_l~>_~*, where (P*, ~*) is preassigned. 
Bechhofer, Elmaghraby and Morse [2] studied a fixed-sample size 

procedure (FSP) and Cacoullos and Sobel [3], motivated by Banach 
match-box problem (cf. Feller [5]), proposed a sequential type inverse 
sampling procedure (ISP) for selecting the  largest  multinomial cell 
probability. On selecting the multinomial cell wi th  the smallest prob- 
ability, Alam and Thompson [1] studied a fixed-sample size procedure 
and Chen [4] studied an inverse sampling procedure. In Section 2 of 
this paper, we propose the k-in-a-row procedure, which saves memory 
space and is sequential, and s tudy its least favorable configuration 
(LFC). In Section 3, we provide the  tables for the P(CSIR) under  
LFC and their  corresponding expected number  of observations required. 
We also make remarks on the tables and the  comparison of our proce- 
dure R with FSP and ISP. 

2. k-in-a-row procedure  R 

Procedure R:  Observations are taken one at a t ime and the  sam- 
pling is terminated when one of the  cells ~ has been observed k times 
in a row. Select the cell ~ as being the  best (i.e. the cell with the 
largest  probability Pcn~). 

The least favorable configuration (LFC) is the  parameter  vector 
(p~, p~, . . . ,  p~) in the parameter  space {(p, P 2 , ' " ,  p~)Ep[~-l]<=pcnJ~ *} tha t  
will give us the smallest P (CSIR). Once we know the form of the 
LFC, we can compute N, the sample size, required to achieve the 
probability requirement  P*.  

In order to find the LFC for the  procedure R, we need the fol- 
lowing proposition by Kan and Ross [6]. 

PROPOSITION 2.1. Given a sequence of  independent multinomial 

trials--each resulting in outcome i with probability p~, ~ p~=l.  Then 

the probability that a run of k~ successive trials all resulting in outcome 
number i occurs before any run of  k~ successive i outcomes, i = 2 , . . - ,  n 
equals 

(2.1) p~!(1--p~)/(1--p~,O 

From (2.1), the  P(CSIR) can be wr i t ten  as 
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(2.2) P(CSIR)  = P~.3( -Pc.l)l( -Pc.~) 

p~](l--pE~l/(i--p~,~) 

Before  we s ta te  and prove the  main theorem on LFC, we need 
the following lemma. 

LEMMA 2.1. The real-valued function f ( x ) =  x*(1-x)  has a non- 
1 - x  ~ 

decreasing derivative when k-- 1 > x -  x ~ k + l  = 1 - x  ~+1 for  positive x and k>=l. 

PROOF. The second der ivat ive  of f (x)  can be easily obtained as 

(2.3) f " ( x )=  t kx~-2[ (k-1)(1--x~+l)+(k+ll(xk--x)(i- xg~ ] for k>__2 

0 for k = l .  

Since x > 0, thus  f " (x )  >= 0 when k--  1 >_ x--  x ~ 
k+l -- l--x k+i 

THEOREM 2.1. The LFC under the procedure R is in the following 
f orw% : 

(2.4) 0 =pil l=pil l  . . . . .  p[~]~_p[~+~]<=p[~+~] . . . . .  Pc~-~]<Pc~] 

where h is an integer satisfying O<_h<_k--2 and pE~]/p[,_~j=a*. 

PROOF. We s ta r t  with  the  general  configuration 

(2.5) Pc,] ---- P[~]--<-"" ~ P~-I] < P[~l 

where  Pc~]/P[,-,]>= a*. 
Fix all the  p[,]'s except  p~] and PEw Let  x=pcw then p ~ , ] = l - x -  

~,PE,] and P(CS[R) becomes a function of only one variable x. I t  can 
g = 3  

be wr i t t en  as 

P (CS [ R) = f(P~]) 
f ( x ) +  l - x -  PE,~ + f(PE,~) 

Since the  der ivat ive x - x -  Pc~] Pc,] = f '  x - f '  - x  

) ' ' > 0  Pc~] =f(P[2])--f(Pc1])= by Lemma 2.1, thus  P(CS[R) is non-de- 

creasing in x for k - - l >  x- -x  ~ k + l - - 1 - - x  *+1 Consider the  following cases:  

Case 1. When k = l ,  it is clear tha t  P(CS[R) is non-decreasing in 
x for all x. 
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Case 2. 

Case 3. 

Thus 

When k=2 ,  k - l _ l > x - x ~ . _  for all xE(0,1) .  
k + l  3 -  1 - x  4 

k-I > l>=x>__ x - x  ~ 
When k~3 ,  k-k1 2 l_x~+~ since O<=x~pE~ ~ and 

k - - I  >_ ,~.--x ~ 
k - l - I  - -  l - - x  ~+i 

for all the  possible values of k and thus 

P(CSIR) is non-increasing in x for all x e (0, 1). Therefore, we can 
move Pc~ toward Pc~-l~ (simultaneously move PE,~ to 0) and won ' t  in- 
crease the  value of P(CSLR). Repea ted  the  above a rgument  to all the  
p:~'s. We will finally change the  configuration (2.5) to (2.4) and ob- 
tain the  same or smaller P(CSIR). Thus the  LFC must  be in the  
form (2.4). 

With the  help of the above theorem, i t  is now easy to find the  
LFC by considering P (CSIR) as a real-valued function of a single vari- 
able Y=Pc~. The tables of the  P(CSIR) under  LFC for various k, 
and ~* values are provided in the next  section. 

3. Tables and remarks 

In Table A, we provide the  P(CSIR) values under  LFC for n = 2 ,  3 
and 4, k = 2  to 6, and ~*=2, 3, 5 and 10. We also calculate the  ex- 
pected number  of total observations required under  LFC and they are 
the  values in the  parenthesis ( ) r ight  next  to the corresponding P (CS). 

R e m a r k  1. The expected number  of total observations required 
using the  proposed procedure R, E(T) under  any configuration (p~, P2, 
�9 . . ,  p~) can be calculated by the formula (cf. Ross [7]): 

(3.1) E ( T ) -  1 
~, pb(i-p~) 
i=i l-p~ 

By Lemma 2.1, we can prove tha t  E(T) at tains its maximum at 
the  configuration 

(3.2) Pcl~ --Pc~l - - " "  --PE~-I~--P:~J~*- 

Although we have not been able to prove tha t  (3.2) is the LFC under  
procedure R, the  numerical evidences show tha t  the  LFC for all the  
cases we considered in Table A is indeed (3.2). Since the calculation 
of P(CSIR) under the simple formula (2.1) by computer  is an inexpen- 
sive job, the  identification of the  exact LFC is only of theoretical in- 
terest .  
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Table A. Exact P(CSIR) and E(T) under LFC for n=2,  3 and 4, k=2  to 6, 
and ~*=2, 3, 5 and 10. 
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n----2 

~ , ~  2 3 4 5 6 

2 .7619 (2.85) .8455 (6.02) .9078 (11.06) .9483 (18.75) .9722 (30.30) 
3 .8653 (2.69) .9387 (5.14) .9752 (8.42) .9907 (12.73) .9966 (18.41) 
5 .9409 (2.48) .9834 (4.29) .9958 (6.41) .9990 (8.92) .9998 (11.91) 

10 .9828 (2.27) .9975 (3.63) .9996 (5.10) .9999 (6.71) .9999 (8.48) 

n=3  

~ , ~  2 3 4 5 6 

2 .6257 (3.75) .7623 (10.33) .8610 (24.73) .9248 (54.26) .9612 (113.22) 
3 .7714 (3.42) .8952 (8.12) .9587 (16.09) .9850 (29.20) .9948 (50.81) 
5 .9002 (2.96) .9734 (5.77) .9939 (9.53) .9987 (14.62) .9997 (21.61) 

10 .9696 (2.53) .9958 (4.28) .9995 (6.31) .9999 (8.72) .9999 (11.59) 

n=4  

~ , ~  2 3 4 5 6 

2 .5333 (4.66) .6794 (16.56) .8038 (50.99) .8898 (143.35) .9414 (381.48) 
3 .7000 (4.19) .8600 (12.04) .9452 (28.36) .9804 (60.78) .9932 (125.15) 
5 .8607 (3.49) .9629 (7.68) .9917 (14.04) .9983 (23.86) .9996 (39.24) 

10 .9548 (2.83) .9938 (5.09) .9992 (7.91) .9999 (11.53) .9996 (16.21) 

Remark 2. In Table A, we use Theorem 2.1 and formula (2.2) 
to find the LFC and use formula (2.2) and (3.1) to calculate the P(CStR) 
and E(T) under LFC. Suppose that  x=PE,,~, then the upper and lower 
limits of x are U=1/(1+(1/~*)) and L=l/(l+(n-1)/3*) respectively. 
When x is fixed, we can find the integer h by the inequality 

- -  k ] ~ /J[n] 

P[~7 since there is at most one P~+I~ value such that  0_~p[~+l~__<pc~_n= ~, 

Thus we can compute P(CSIR) using (2.2) under the configuration 

(3.4) X �9 gr ) 
O, 0 , . . . ,  PE~+~, -~-,-~-,'", 7 '  x . 

When we compute Table A, we let the x value run from L to U with 
each increment I•  We find that  the minimum P(CS[R) always 
happens when the configuration is at (3.2). 
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Remark 3. A reasonable criteria for comparing two sequential 
procedures is the size of E(T) under the same p*, ~* and n values. 
Comparing our Table A with the Table II in Cacoullos and Sobel [3], 
we can see the procedure R will do a bet ter  job for large 3" and 
small n. For example, with p*=.75, ~*=2 and n=2, E(T[R)=2.8571 
<3.96=E(TlISP) .  Suppose one is to compare procedure R with FSP, 
he can use E(T) and N the sample size respectively. Procedure R 
also gives bet ter  result for large /}* and small n. For example, with 
p*=.95, ~*=3 and n=3 ,  E(TIR)=16.0971<17-Nrs~ (cf. Table /k-3 of 
Bechhofer, Elmaghraby and Morse [2]). There are also other advan- 
tages of Procedure R. It saves the memory space (cf. Kan and Ross 
[6]). It  is also suitable for additive model (that if we require Pcn~--PEn-1] 
>--3" instead of pc,~/pc,_l~>--3*) which neither FSP nor ISP can do. The 
result of the LFC for additive model under procedure R can be simi- 
larly proved to be 

(3.5) iocl~ = P~2~ = " "  = PE~-I~ = Pc,~- ~* �9 

Remark 4. Other goals in ranking and selection (e.g. comparison 
with a control or a standard, subset selection, partitioning . . . .  ) can 
also be achieved by k-in-a-row procedure. With the technique we use 
in Theorem 2.1, we should be able to obtain the similar result for 
LFC under these goals. 
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