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Summary 

A new notion of an obstruct ive residual likelihood is proposed and 
explored. Examples where  the  conditional max imum likelihood esti- 
mator  is preferable  to the unconditional max imum likelihood es t imator  
are  discussed. In these examples the  residual likelihood can be ob- 
s t ruct ive  in deriving a preferable est imator ,  when  the  max imum likeli- 
hood cri ter ion is applied. This notion is different  from a similar notion 
ancillarity,  which simply emphasizes t ha t  a residual likelihood is un- 
informat ive.  

1. Introduction 

Consider an estimation problem of a scalar pa ramete r  of in teres t  
6 based on p(x; 6,/~), under  the  existence of a nuisance (vector) para- 
me te r  /~. We will assume tha t  the  dominat ing measure  and the  sup- 
port  are  common with parameters .  Suppose t h a t  there  exists a statis- 
tic t such t h a t  the  density is factored into p(x; 8, #)=pc(x; 61t).pr(t; 6, #) 
where  pr(t; 8, t~) is the  marginal  densi ty  of t, t ha t  is, pr(t;6,l~)=- 

f p(x;  with ~2= The former  t e rm is r e fe r red  to as 8, l~)dx { x l t ( x ) = t }  . 

a conditional density, and the  la t te r  as a residual density. When we 
regard  them as likelihoods, we will wr i te  L, LC and LR in place of p, 
pc and pr,  respectively. In many  situations an est imator  of 6 based on 
the  conditional likelihood is recommended r a the r  than tha t  based on the  
unconditional likelihood. Neyman  and Scott  [17] presented explicit ex- 
amples showing tha t  the  unconditional max imum likelihood es t imator  
(m.l.e.) can be inconsistent, and also tha t  i t  can be inefficient even if 
i t  is consistent.  Andersen [2] showed tha t  under  mild regular i ty  con- 
ditions the  conditional m.l.e, is consistent  and efficient. 

Much effort has been devoted to s tudy the  reasons why  the  con- 
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ditional m.l.e, can be superior to the unconditional m.l.e. Most interest  
has been paid to the notion of ancillarity introduced by Fisher [5]. 
A statistic t is called to be ancillary with respect to a parameter  of 
interest  8, if the conditional distribution of x given t does not depend 
on /~ and t is noninformative with respect to 8. When t is ancillary, 
it is believed tha t  we can find an appropriate estimator based on the 
conditional likelihood given t, which is not inferior to all possible esti- 
mators based on the unconditional likelihood. Several definitions of 
ancillarity such as B, S, G, M, affine and weak ancillarity have been 
introduced (Barndorff-Nielsen [3] and [4]). Godambe [8] and [9] intro- 
duced and discussed other notions of ancillarity. 

Our attention will be limited to the conditional and the uncondi- 
tional m.l.e. 's. The limitation of our interest  to the maximum likeli- 
hood criterion does not seem too restrictive in practice. When a model 
contains many nuisance parameters, an estimator other than tha t  based 
on the maximum likelihood criterion is likely to be difficult to obtain. 
We know that  some estimators of common odds ratio in multiple 2 •  
tables are undesirable (see Fleiss [6]). It  seems tha t  the conditional 
m.l.e, is believed to be strictly superior to the unconditional m.l.e. 
Since the difference between the two estimators comes from the re- 
sidual likelihood, the residual likelihood may be obstructive in deriving 
a preferable estimator of 8. On the other hand, it is obvious tha t  the 
conditional m.l.e, is not always superior to the unconditional m.l.e. The 
notion of an obstructive residual likelihood is roughly defined as follows : 
If a residual likelihood satisfies a condition for obstructiveness, then the 
conditional m.l.e, is superior to the unconditional m.l.e. 

The aim of this paper is to propose a definition of a notion of an 
obstructive residual likelihood. The notion is intuitively appealing and 
relates directly with possible biasedness and inconsistency of the un- 
conditional m.l.e. A notion of an obstructive residual likelihood is in- 
troduced in Section 2. In the following section some properties are 
presented. Some examples of an obstructive residual likelihood with 
explicit form are discussed in Section 4. Section 5 provides an example 
in contrast, where a residual likelihood is not obstructive. Finally, 
two notions of ancillarity are discussed in Section 6. 

2. Obstructive residual likelihood 

Suppose  tha t  a scalar parameter # in a likelihood L(x; 0, I.') is in 
an open interval I in _R ~, and tha t  the i-th component of a nuisance 
parameter  / ~ = ( ~ v ' " ,  ~ ) '  is in an open interval J, in R ~. The closure 

of I and J~ in the extended real value are wri t ten as _7 and 3 .  As in 
the Introduction we assume that  there exists a statistic t such tha t  
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(2.1) L(x; 8, y)=LC(x; 81t).LR(t; 8, y) . 

We assume tha t  each likelihood is first differentiable, and tha t  each 
estimation equation has a unique solution. For simplicity of descrip- 
tion, the  ordinary derivative is denoted by a prime and the partial 
derivative is denoted by a subscript of a corresponding variable. I t  is 
convenient to rewrite (2ol) as LL(x; 8, y)=LLC(x; 81t)+LLR(t; 8, y) 
with LL(. )=logL( . )  and vice versa. The conditional m.l.e, is given 
by a unique solution of the estimation equation, 

(2.2) LLC'(x; 8It) = O. 

On the other  hand, the unconditional m.l.e, is given under  regulari ty 
conditions by a unique solution of the  estimation equation 

(2.3) LLC'(x; 81t)§ 8, y(8))=0 

with a unique solution y(8) of the  equation 

(2.4) LLR,~(t; 8, y)=O i = 1 , . . . ,  k ,  

where we suppress t in y(8, t). 
Before introducing an obstructive residual likelihood, we proceed 

to recall some favorable properties of a likelihood L(x; 8) when no 
nuisance parameter  exists. The log-likelihood LL(x; 8) is expected to 
be strictly increasing in 8 up to 6 and strictly decreasing af ter  6;  in 
other  words, LL(x; 8) is unimodal. In addition 6 is required not to 
be a constant  but  to distribute around a t rue  value 80. A regular i ty 
condition for this requirement  is unbiasedness, E(LL'(x; 8) 18)=0. Re- 
gulari ty conditions for the asymptotic normali ty can be consulted in 
a s tandard textbook (Rao [18], for example). Our notion of obstruc- 
tiveness corresponds to adverse properties in contrast  with the  above 
favorable ones. Write R(t; 8)=supLR(t; 8, #), (=LR(t; 8, y(8))). Aitkin 

Y 

[1] called this type of an induced likelihood the  profile likelihood. 

DEFINITION 1. A residual likelihood LR(t; 8, y) is said to be ob- 

s truct ive in est imating 8, if there  exists a point 8~ ~ I ,  not  depending 
on the  data, and a subset T of the  range of t, such tha t  

( i ) For a fixed t ~ T, R(t; 8) is strictly decreasing for 8=<8~, and 
it is strictly increasing for 8>8~. 

( i i )  For a fixed t e  T, R( t ;8)  is constant,  and Pr(TIS, y )<l  for 
any 8 and 12. 

The point 8~ is said to be the stable minimum point. 

The condition ( i )  is essential in the  above definition. The defini- 
tion means tha t  a global behavior of R(t; 8) is reversely unimodal 
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when the  stable minimum point is in I,  and tha t  it is strictly mono- 

tone when the  point is on a boundary of _T. Therefore, R( t ;0)  always 

attains the  max imum at a boundary of T. 
We introduce another notion of a residual likelihood, which means 

tha t  the  residual likelihood is useless in distinguishing the difference 
between the  conditional and the unconditional m.l.e. 's .  

DEFINITION 2. A residual likelihood LR(t; 8,/~) is said to be plain 
in es t imat ing 0, if R(t ;8)  is constant for any t. 

The above definition is interpreted as a l imit ing case of the condi- 
tion ( i i )  in Definition 1. It  is obvious tha t  both the  m.l.e. 's  are iden- 
tical, when the  residual likelihood is plain. 

3. Some properties 

First ,  we note tha t  the notion of an obstructive residual likelihood 
is invar iant  under  a strictly monotone transformation.  The invariance 
proper ty  is presumed in likelihood estimation. 

PROPOSITION l.  ( i )  Suppose f (x)  in a first differentiable and 
strictly monotone function on the common support of  p(x; O, l~). Let 
y = ( Y l , " ' ,  y , ) '=( f (x l ) , . . . ,  f(x=)) and s=s(y)--t(f-~(yl), . . . ,  f-~(y~)). I f  
LR(t;  O, tt) is obstructive, then the residual likelihood of  the induced 
likelihood LR(s ; O, t~) is also obstructive. 

( i i )  Suppose g is strictly monotone in 0 with the domain I, and 
let h = ( h , - . . ,  h~) be strictly monotone in t~, componentwise, with the do- 
main  J~ •  • J~. I f  LR(t; 8, t~) is obstructive, then LR(t; g(O), (hl(g~), 
�9 " ,  hk(t~k))') is also obstructive. 

The following two properties show tha t  the formal application of 
the max imum likelihood criterion to pr(t ;  8,/~) yields an undesirable 
est imator.  In Propositions 3 and 4 we presume tha t  the conditional 
m.l.e,  is unbiased and consistent in contrast  with  the unconditional 
m.l.e. In fact,  we know that  the  assumption is of ten true.  

PROPOSITION 2. Suppose that crude values of a sample x are un- 
available and that only a summary statistic t(x) is available. Then the 

m.l.e, of  0 is on the boundaries, [ - I .  

PROPOSITION 3. Suppose that the residual likelihood is obstructive. 
Let 6o and O~ be the conditional and the unconditional re.I.e.'s, respec- 
tively. Then it holds that for t ~ T:  ( i ) I f  8~ is on the lower boundary 
of  I, then 8=>t~, ( i i)  i f  O ~ I ,  then t~>8o>8~, 0=>8~>8~ or 8,--8c= 
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6~ and (iii) i f  6~ is on the upper bound of I, then ~,<~o. 

COROLLARY. I f  8~ is on a boundary of Y and ~o is unbiased, then 

O~ is not unbiased. 

Next ,  we consider possible inconsistency of the  unconditional m.l.e. 
Le t  {p~(x~ ;8,/~,)} be a sequence of densi ty functions, where  n ,  the  di- 
mension of x ,  is s tr ict ly increasing in s. Suppose tha t  p,(x~; 6,/~s) is 
fac tored  into pc~(x~; 61tO.pr~(t~; 8,/~,). We say tha t  a sequence of re- 
sidual likelihoods has the  common stable minimum point 6~, if every  
residual likelihood has a stable minimum point common wi th  s. Here  
we regard  any point as the stable minimum point when the  residual 
likelihood is plain. 

The unconditional m.l.e, is likely to be inconsistent when the  num- 
ber  of s t r a t a  tends to infinity as s--~ oo. We outline the  reason as 
follows : Le t  

and 

x'  __{,.I x~+,p) 

S 

p(x,; 8, p,(xJ_ ;8, {pc (xJ;61t ).pr (t  ;8, z0}. 

When LRj(t j ;6,  ~ )  has a common stable minimum point, all the  first 
der ivat ives  of R~(tj;8) have a common sign or they  are 0. Le t  n ' be 
the  dimension of x ~, and k ~ be the  dimension of ~ .  Suppose tha t  n ~ 
is bounded and the norm of Z~ is bounded. Then we can expect  t ha t  
LLC[(x~;6o[tO/~/n~-k~ has a normal asymptot ic  distr ibution while 
LLR'~(x~ ; 6o, Z~(6o))/(n~-kO converges in probabil i ty to a nonzero constant .  

The following proposition is useful  in checking the possible incon- 
sis tency of the  unconditional m.l.e, in practical examples.  

PROPOSITION 4. Suppose that standard regularity conditions on 
LLs(x8 ; 8, t~8) and LLC~(xs ; 8 l t~) concerning the first and the second deriv- 
atives for  asymptotic normality are satisfied. Assume that LLR~(t, ;80, 
tt,(80))/(ns--kO does not converge to 0 in probability when the true values 
of the parameters are 8o and ~o. Then the unconditional m.l.e, is not 
consistent. 

The S-ancillarity is widely used. A stat is t ic  t is said to be S-ancil- 
lary if the  family of marginal  densities {pr(t; 8, ~)} given 8 does not  
depend on 8. This restrict ion seems to be too strong.  In fact ,  as we 
will discuss in Section 4, the  conditional m.he.  is widely accepted, even 
when t in (2.1) is not  S-ancillary. A weaker  and more practical  notion 
M-ancillarity will be discussed in Section 6. 
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PROPOSITION 5. 

likelihood is plain. 
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I f  a statistic t is S-ancillary, then the residual 

4. Examples 

In this section we give examples with explicit forms of likelihoods 
of which residual likelihoods are obstructive. I t  may appear tha t  the  
notion of an obstructive likelihood is restrictive. We find, however,  
t ha t  some likelihoods appearing in familiar models satisfy the conditions 
of the  notion. The estimation of the variance in a normal population 
and tha t  of the  common odds ratio esi)ecially are of practical impor- 
tance. They will be discussed in Examples 4.1 and 4.3. 

Example 4.1. (Multiple regression) Let  x = ( x , . . . ,  x~)' be a sample 
from a multiple regression model, 

x=Z/2+O, , 

where Z is an n •  design matr ix  of rank k < n ,  , is an n-dimensional 
normal error  with mean 0 and variance-covariance matr ix  I.  The 
parameter  spaces of 0 and /2 are (0, oo) and R ~. Let  t be the least 
square est imator of /2, t=(Z'Z)-IZ 'x .  The likelihood is factored into 

1 exp -2-~l lx-Z/2] l  ~ (4.1) L(x; O,/2)= (4 2~ 0)" 

_ 1 - 2 - ~ x ' ( I -  Z(Z 'Z)- 'Z ' )x  -- (~/2~ O) ~-~ exp 

1 1 exp ---~-02 II Z(Z 'Z) - tZ 'x - -  Z/2 [[2 

=LC(x;  Ol0.LR(t;  0,/2). 

I t  follows tha t  the  residual likelihood is obstructive with the stable mini- 
m u m  point ~ = o o .  The conditional likelihood is regular,  unless x -  
Z(Z'Z)- tZ 'x ,  which holds with probability 0 for any 80 and /20. From 
Proposition 3 it  follows tha t  #c>#~ with probability 1. The conditional 
and the  unconditional m.l .e. 's  are expressed explicitly by O~--nO~l(n-k) 
and #~=x' ( I -Z(Z 'Z) - tZ ' )x /n .  The conditional m.l.e, is unbiased. 

Before comparing the risks between these estimators we consider 
a sequence of models, 

(4.2) x ,= Z~/2 + O~ , 

where Z, is a design matr ix  of rank ks (<n~) and ~-~N(O, I,~). The 
number  n8 is assumed to be strictly increasing. When we consider the  
sequence of estimators, we will wri te  #c~ and #~,. The following two 
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facts are well known: ( i )  The conditional m.l.e, is unbiased while 
the unconditional m.l.e, is strictly downward biased. ( i i )  ~c~ is con- 
sistent. Unless the limit k~/n~ is 0 as s tends to infinity, 0~, is not 
consistent. Consider the special model that  Neyman and Scott [17] 
discussed; the model is given by setting 

Z -rZ~'  
~+I-L0 ' e0+11 

in (4.2), where e,+l is an qn,+l (>2)-dimensional vector with each com- 
ponent 1. They showed that  the-unconditional m.l.e, is not always 
consistent. It is easily shown that  ~= is not efficient, unless the limit 
of kdJ--~ is 0. This result presents a simpler example of a consistent 
but inefficient estimator than that  given by Neyman and Scott [17]. 

Next we compare the risks of the two estimators under a reason- 
able loss. Modifying the Kullback-Leibler separator, we employ a loss 
function of an estimator (~, ~), which is expressed by 

(4.3) Loss (0,/i[00,/~0)=E{--log , (w;  02, ~0)IP(w; ~,/~)1' 
p(w; o, i,) 

where (00, ~0) is a true value. This becomes, in our case, 

n~z-}- 
- - n  log ~-t-  2 . n log 0o+ 20~ 

The risk of an estimator (0, ~) is defined by Risk (0, fi ; 00,/~0)=E(Loss (0, 
fi[00,/~0)[p(x; 0o,/~0)). Note that  the likelihood (4.1) is maximized at fi 
=(Z'Z)-~Z'x and that  E(--log 8olp(x; 0o, Z0)) is bounded. It follows that  

Risk (~,/~; 00,/~o)--Risk (8~,/~ ; 0o, tto) 

2 log ( n - k ) -  2 log nI,(x; 00, 

= 2 [k/n+log (1--k/n)} < O. 

The result is summarized as follows: Under the loss in (4.3) the risk 
of ((~,/~) is strictly less than that  of (~, / / )  for any (0Q, V0). In other 
words the latter is inadmissible for every k and n. 

Example 4.2. (Single measurement) Assume that  a known den- 
sity f(x) is strongly unimodal, symmetric at 0 and positive on Rk Let 

(4.4) x=Z~+O~ , 

where , is an n-dimensional random error with mutually independent 
components having the common density f(x), and Z is an n •  de- 
sign matrix for a positive integer /~ less than n such that  
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- [ _ 0 ,  e._~ ' 

where e~_~ is the  (n-k)-dimensional  vector with each component 1. 
Let  v '=(~ ' ,  c) with a known constant c and set t = ( x , . . . ,  x~)'. The 
likelihood is factored into 

1 

=LC(x; 8lt).LR(t; 8, ~ 

The model may  be interpreted as follows. Suppose tha t  n observations 
are obtained to est imate measurement  error using a s tandard instru- 
men t  with a known weight  c. But  k measurements  among them are 
found to be obtained using different ins t ruments  with unknown weights.  
Note tha t  the  conditional likelihood disregards measurements  obtained 
using false instruments .  Note also tha t  the formal equivalence of (4.1) 
and (4.5) when f (x )  is the standard normal density and e=O. 

The residual likelihood is obstructive with the stable minimum point 
8 ~ = ~  and the conditional likelihood satisfies regular i ty conditions. 
Proposition 3 implies that  8o>~,. The likelihood equations based on 
the conditional and the unconditional likelihoods are wri t ten  as 

- ~2, f'((x~-c)[8) x~-c g =0  
,=~+1 f((x,--c)/8) 8 ~ 8 

with g = n - - k  and n, respectively. Roughly speaking, the difference be- 
tween the  two estimators increases in kin is large. 

Example 4.3. (Logit model) Let  x = ( x , . . . ,  x~)', n>=2 and x~ be 
a sample f rom binomial distribution with the  incidence probability 
p(x~; 8 , /~)=exp (z~8+/~)/(l+exp (z~8+/~)) where ~, (z~--~)2r Kalbfleish 
and Sprot t  [12] studied this case in their  Example 2.2 with restr icted 
values of z under  the different notation. The likelihood is factored into 

(4.6) 
~t 

L(x  ; 8,/~) =-[[ {exp x,(z~8 +/~)/(1 + exp (z~8 +/~))} 

= exp x~(z~O ~ -~ exp (z~8 
,OE~ 3EO 

• [ ~:] ]-[ exp (z,8) exp t/~ } 
~0 -F[ ( l + e x p  (zfl+tO) 

=LC(x; 81t).LR(t; 8, tO, 

where t = : E  x~ and �9 denotes the set of all subsets r 1 6 2  r of 
size t from {1, 2 , - . . ,  n}. A theorem in Yanagimoto and Kamakura  
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LR 
0.5- 

%%% 

- 1'2 

Fig. 1. 

-~ 0 ~ ~'2 
Behavior of R(t; 8) induced from the  logit model 
where the covariates consist of N1 '3  and M 0 ' s :  The  
real line shows the  case (N, M, t)-=(12, 12, 9) and the  
dashed line (N, M, t)=(20, 9, 10). 

[19] implies tha t  the residual likelihood is obstructive with the  stable 
minimum point 8~=0. The exceptional sample region T in Definition 1 
is {0, n}. An illustrative figure is given in Figure 1. When t is 0 or 
n, both the  conditional and residual likelihoods are constant.  When 
8o=0, Proposition 3 yields 1~l>l~c I if ei ther of the two exists and is not 
equal to 0. Note that  8o=0 means all the binomial distributions have 
a common incidence probability. 

The difference between the conditional and the  unconditional m.l.e. 's  
is likely to become large, when many s t ra ta  are taken into account as 
in Example 4.1. Many strata often appear, for instance, in case-control 
studies. Let  x~---(x~_l, x s') with x~=(x~, . . . ,  x~)' ,  and let each x ~ have 
the likelihood given by replacing x, ~, z~ in (4.6) with x ~, t~, z~. Set- 
t ing t ~=~  x~j (=n~5~), we find tha t  the  residual likelihood is obstructive 
with the  common stable minimum point 8~=0. The conditional likeli- 
hood satisfies standard regulari ty conditions. 

When each covariate z~j takes only dichotomous values 0 and 1, 
the  problem for est imating 8 is known as tha t  for est imating the 
common log-odds ratio. Much at tent ion has been paid to this specific 
problem, which can be referred to in Fleiss [6] and Gart [7]. Hauck 
et  al. [10] and Lubin [16] conducted simulation studies, and concluded 
tha t  8c~ is superior to ~ under  various conditions. Since ~o~ is shown 
to be consistent under very mild conditions, 6~ is likely to be incon- 
sistent as shown in Proposition 4. The bias can be large when all the 
n~ are small. Especially when n~=2 for any i and ~ exists, i t  is 
known tha t  0o~=(112)~,. Yanagimoto and Yamamoto [20] suggested 
tha t  LLC'(x~;SIt, . . . , t~)=~,LLC'~(x~;SIt~) is well approximated by 
~(a/~8)LL~(x~;(n~-l)~/n~, [~((n~--l)8/n~)), where /~(6) is the unique 
solution of (a/a~,)LLR,(t~; 8,/~,(~))=0. This means tha t  @~ is approxi- 
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mated by mOld(m-1 ) when n,=~n for every i. 

Example 4.4. (Negative binomial distribution) Let x=(x l , . . . ,  x~)' 
be a sample from a negative binomial distribution with probability 
function 

t~=]~ ( o + ~ ' - I  )} ~z~(1 -# )~  ( = L ( x ;  0, ~)). 

The parameter  spaces of 8 and # are (0, oo) and (0, 1), respectively. 
Let t = Z  x~. The likelihood can be factored into 

=LC(x; 81t).LR(t; 8, #). 

Since the maximum of LR(t; 8, #) for a fixed 8 is attained uniquely 
at #(8)=t/(nS+t), it follows that  

R(t; 8)= ( r i B + t - I ) . -  .(nS) t~(nS) ~ 
t! (nO+t) ~+' 

From this we get the residual likelihood is obstructive with the stable 
minimum point 8~=0, if t>0 .  Since logLC(x;8tt)  is concave in 8 
when t>0 ,  the conditional likelihood is unimodal when t>0 .  Proposi- 
tion 3 implies that  ~<8~ when either of the two exists. 

Kalbfleish and Sprott [12] briefly discussed this model with strata. 
The likelihood of x'~=(x ~', ., �9 . x ~') is 

8 

(4.7) L(x~; 8, [~)=]-[ L~(x~; 8, ~ ) ,  
~=1  

where Z , = ( # ' , . . . ,  ~')'. They gave a figure for LC(.) and LR(.), and 
concluded tha t  the behavior of LC(.) is regular and LR(.) does not 
vary rapidly when 8 is not too small. Our approach provides clearer 
insight. Under the model (4.7) and mild regulari ty conditions 8r is 
consistent, while @~ is not necessarily consistent. The unconditional 
m.l.e, is likely to be upward biased. 

Other examples of an obstructive residual likelihood appear in the 
gamma distribution with its density (z~-~/#~)(exp--z/~)/F(8) and the 
exponential distribution with unknown support with its density (1/8). 
e x p - ( z - ~ ) / 8 .  In fact, the conditional distribution given a sample 
mean from the gamma distribution is a function only of the shape 
parameter,  and the residual likelihood is obstructive. This suggests the 
superiority of the conditional m.l.e, to the unconditional m.l.e. To 
make sure, fur ther  discussion is necessary. This will be done else- 
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where .  In the  la t te r  example Lindsay [15] shows the  factor izat ion of 
the  likelihood and possible inconsistency of the  uncondit ional  m.l .e ,  by 
se t t ing  t - -x ( , ,  the  smallest  order  stat is t ic .  

5. Further example 

In the  preceding section we gave examples  of obs t ruc t ive  residual 
likelihoods. I t  is obvious t h a t  a residual likelihood does not  necessari-  
ly sa t is fy  the  condition, even though  the  full likelihood is formal ly  
fac tored  into two t e rms  as in (2/1). In this section we discuss an ex- 
ample where  the  residual likelihood is not  obstruct ive.  We will find 
t h a t  the  conditional m.l.e,  is not  necessari ly recommended ,  even when  
i t  possesses an op t imum proper ty .  This example  shows t h a t  we should 
look careful ly  at  the  behavior  of the  residual likelihood before we apply 
the  condit ional  m.l .e.  

Example 5.1. Let  the  first m components  of x - - ( w l , . . . ,  x,)', m <  
n,  be 

(5.1) x~=c+O~ 

and the  remain ing  components  for i > m  be 

(5.2) x ~ = 0 + 0 r  

where  c is a known constant ,  ~ = ( ~ 1 , " ' ,  ~,)' and v = ( v ~ + , . . . ,  v~)' are 
independen t  normal  errors,  N(0, I,) and N(0, I,_~). The common para- 
me t e r  space of 0 and /2 is (0, oo). This se tup is simple and realistic, 
since the  l a t t e r  n - m  values can be regarded  as measu remen t s  wi th  
addit ional  errors,  con tamina ted  in a s t andard  m e a s u r e m e n t  process, by  
which the  first m measu remen t s  are obtained.  

Set  t = ( x ~ + , - - . ,  x,)'. The likelihood is factored into 

(5.3) L(x '8 , / 2 )=  =]~ 1 exp -- (x,--c) 2 ' = 4 ~ 0  

X -~- 1 e x p (  
~=,,,+~ ~/2~(0~-t-/2 2) 

=LC(x;  O[t).LR(t; 0,/2). 

Write  sl = ~ (x~-- c) 2 and s2 = ~, (x~-  c) 2. 

(4  2~ 0) ~-~ exp s~ 
LR(t; 0,/2(0)) = 

1 
{2~s2/(n-- m)} (,-~)n exp ( 

1 (x,_c)2) 
2(02+/22 ) 

I t  follows t h a t  

( n - m ) )  
2 

02>s2/(n-m) 

o*__<s2/(n-m). 
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The behavior of LR(t; 8,/~(0)) is close to that  in the previous example. 
It is constant up to s2/(n-m) and decreases strictly from that  point. 
The difference between the two pertains to the upper or the lower side 
of a plateau part. The formal application of the maximum likelihood 
criterion to LR(t; 8,/~(0)) implies that  82~_s~/(n-m). The interval esti- 
mator seems to be intuitively reasonable, since the observed variance 
is expected to be stochastically larger than 82. The behavior of LR(t; 
8,/~(0)) leads the inequality 8~8o.  In this case both the estimators 
can be explicitly expressed as 8~=s,/m and 8~=Min(sl/~n, (s~+s2)/n). 
The conditional m.l.e., 8~, is an unbiased estimator of 82. Note that  s~ 
and s~ are sufficient to 0 and /~, and also that  the family of distribu- 
tions of (5.3) is complete; these imply that  the conditional m.l.e, is 
the uniformly minimum variance unbiased estimator. 

However, the behavior of LR(t; 8,/~(0)) suggests that  the uncondi- 
tional m.l.e, may still be superior to the conditional m.l.e. In fact, 
consider a sequence of the two estimators under a situation that  ~n== 
m for any s and n= tends to infinity. The limit of the estimators are 
8~=s~/m and 8~=Min(s~/m, 01-}-~I). The inequality 18~-t~I>[8~-011 
holds for each sample, where the strict inequality holds with positive 
probability for any 80 and Z0. This means that  the residual likelihood 
has certainly a little but positive information. When both m= and 
n=-m= tend to infinity, the probability Pr(8~==~L) tends to unity. 
There is no need to distinguish between the two estimators. The re- 
sidual likelihood is asymptotically plain. 

Finally, we compare the two estimators in a finite sample case. 
Consider a simple combination of re=n-m=2 and ~0=0. Recall that  
the chi-square distribution with 2 degrees of freedom is the exponen- 
tial distribution with mean 2. 
expressed by 

The density functions of 61 and 8~ are 

and 

g~(0) =~-~ exp -- 0100 ~ 

1 exp --20/0~+ 2--~-~ exp --28/81. 
g~(O)= 281 a0 

The loss given in (4.3) in Example 4.1 is wri t ten as --log(8~/01)§ 
-- log {(~2 + t~2)/(01 + ill)} + (82 + t~2)/(01 + t~l)-- 2. Therefore, the difference of 

the risk of (~,, t~) to that  of (6~ 7~ reduces to f {-log (0101)+ 0101} (g,(0) 
w 

- -  gc(O))dO = (1/2) {2 log 2 -  r  r + 3/2}-- ( -  r + 1) = log 2 -  3/4 < 0. 
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6. Comparison with notions of ancillarity 

The notion of M-ancillarity was introduced by Barndorff-Nielsen [3], 
and is defined as; there exists /~(t; 0) for any fixed a such that  pr(t; 
8,/~(t; O))>pr(t'; 8,/2(t; 0)) for any t'. Since the notions of B- and S- 
ancillarity and weak ancillarity are very strong, this notion is of more 
practical interest. 

It  is known (Barndorff-Nielsen [3]) that  the statistic t in Examples 
4.1, 4.3 and 4.4 is M-ancillary with respect to 8. It is easy to show 
that  the statistic t in Example 4.2 and the sample mean from the 
gamma distribution with shape parameter 0 under the restriction nO> 
1, are M-ancillary with respect to 0. The statistic t--x(1) from the ex- 
ponential distribution with scale parameter  O and unknown support is 
also M-ancillary with respect to 8. On the other hand, the statistic t 
in Example 5.1 is not M-ancillary with respect to 8. We find that  both 
the notions of obstructiveness and M-ancillarity are incidentally quite 
close to each other in practical examples. The question arises of which 
notion is more reasonable. We agree that  the definition of M-ancillar- 
ity is intuitively appealing. The definition, however, is inconvenient 
for analytical calculations. In fact, there seems to be no analytical 
result for the conditional m.l.e, such as Propositions 3 and 4, even 
when a statistic t is M-ancillary. A serious defect of M-ancillarity is 
that  neither B- nor S-ancillarity necessarily implies M-ancillarity. This 
seems to come from the lack of invariance property of M-ancillarity 
corresponding to Proposition 1. These results lead us to prefer the no- 
tion of obstructiveness compared with that  of M-ancillarity. 

Another notion to be compared with ours is one of the definitions 
of ancillarity under the presence of a nuisance parameter by Godambe 
[8] and [9]. Under certain regularity conditions a statistic is ancillary in 
this sense, if the factorization (2.1) holds and the class of distributions 
of t to /2 is complete for each fixed 8. This notion of ancillarity seems 
considerably different from other notions (Kuboki [13]). Godambe [9] 
showed that  the statistic t in Examples 4.3 and 4.4 and the sample 
mean from the gamma distribution are ancillary in this sense with re- 
spect to O. It is easy to check that  the statistic t in Examples 4.1 and 
4.2 and t=xr from the exponential distribution with scale parameter 
0 and unknown support are ancillary in this sense with respect to O. 
In addition, we can show the statistic t in Example 5.1 is ancillary in 
this sense with respect to 8. We find tha t  both the notions of obstruc- 
tiveness and ancillarity in this sense are fairly close to each other in 
practical examples. 

An advantage of this notion is tha t  it possesses an optimum prop- 
er ty  of the conditional m.l.e.; LC'(x, O) attains the inverse of the lower 
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bound for the variance of an unbiased estimating function. However, 
the restriction on an unbiased estimating function is too strong for our 
purpose. In fact, any unconditional likelihood function for 0 in (2.3) 
appeared in the above examples is not an unbiased estimating function. 
Consequently, the ancillarity of a statistic in this sense does not neces- 
sarily suggest that  the conditional m.l.e, is superior to the uncondi- 
tional m.l.e. It  appears that  the theory of ancillarity presumes the 
presence of a nuisance parameter in a strict sense, though a so-called 
"nuisance"  parameter  is not necessarily nuisance in practice. 
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