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Summary 

A hybrid life test procedure is discussed from the Bayesian view- 
point. A total of n items is placed on test, failed items are either 
not replaced or are replaced, and the test is terminated either when 
a pre-chosen number, K, of items have failed, or when a pre-determined 
time on test  has been reached. Posterior and predictive distributions 
are obtained under the assumption of an exponential failure distribu- 
tion, and point and interval estimates are given for the mean life and 
the life of an untested item. The results are applied to a numerical 
example. 

1. Introduction 

A series of papers by Epstein [3], [4], [5], considered life testing 
situations where the life X follows the exponential distribution 

(I.i) f(x[O)=6-~exp(--x/6), for x>0, O>0. 

It is required to estimate the parameter 0 from test data. (If the data 
are not thought initially to be exponential, transformation is possible; 
see Draper and Guttman [2].) A variety of possibilities is available for 
the testing procedure. For example, one can discontinue testing 

I. after a pre-selected time has elapsed. (This is often called Type 
I censoring.) 

2. af ter  (a pre-selected number) K items have failed. (This is of- 
ten called Type II censoring.) 

3. af ter  a fixed total life has been attained during which k items 
have failed. 
In all three cases it is possible to replace items that  fail or not replace 
them, although case (1) is usually done without replacement. 

Key words and phrases: Hybrid life test plans, posterior distribution of mean life-times, 
predictive distribution of future lifetimes, single exponential distribution. 
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A Bayesian study of both Type I and Type II censoring was made 
by Bhat tacharya  [1], who was concerned with reliability estimation. 

A hybrid tes t  procedure (due to Epstein [3]) is also possible. Speci- 
fically, we can combine the ideas of (1) and (2) and terminate  the  test  
as soon as {(1) or (3)} or (2) occurs. Epstein [5] provided a lower 100. 
( l - a ) %  confidence interval for t~ and conjectured what  two sided in- 
tervals migh t  be, a conjecture later invest igated via Monte Carlo gen- 
erations by Har ter  [7]. Fairbanks et  al. [6] provided a rule for a two- 
sided interval "near ly  identical with tha t  proposed by Epstein ". This 
is as follows. 

Without  replacement case 

Assume tha t  failed items are not replaced during the  test  and tha t  
k (<:K necessarily) have failed at min (t*, r=), where  t* is a pre-selected 
terminat ion time, and r~ is the  failure t ime associated with the  K-th 
failure. Then the  two sided interval is 

[(2nt*lz~,~n), ~ ] ,  if k=  0,  

(1.2) [(2nt*lz]~+=,,/2), (2nt*lz~,,_on)] , if l S k < K - - 1 ,  

[(2nr~/Z]~,,/~), (2nr~/Z~,l_,/=)] , if k = K ,  

where Z~,T is the  point exceeded by a probability r for the chi-squared 
distribution with m degrees of freedom. 

With  replacement case 

When conducted with replacement,  the  hybrid tes t  is terminated 
at minimum (T*, TK) where T* is a pre-selected total test truncation 
t ime and T~ is the  total test t ime at the  K-th failure. Fairbanks et al. 
[6] offer parallel confidence intervals for this case by replacing nt* and 
nrx  by T* and TK respectively in their  result  above. 

We now discuss a Bayesian analysis of the  hybrid t es t ;  this per- 
mits a simple derivation of the confidence interval and also allows use 
of the  predictive density to obtain predictive intervals for fu ture  ob- 
servations. 

2. Prior information 

We assume that  the exper imenter ' s  feelings about 0 before the  
data are taken can be summarized by use of the  inverted gamma prior 

(2.1) p(~) r -~+1' exp ( - to/~)  , 

with normalizing constant t~/F(r) when r > 0 ,  t0>0. Note tha t  this im- 
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plies a "non- in fo rma t ive"  prior of t~ -~ if we take  r=to--O in (2.1), or 
can represen t  the  results of previously observing r failures under  a 
single exponential  law (1.1) with total life t ime to combined with  a pre- 
viously non-informative prior of 0 -1 . 

I t  can be shown for (2.1) that ,  if r > 2 ,  

(2.2) E(O) = to/(r- 1),  V(O) = t2o/{(r- 1)2(r-  2)} . 

Because (2to/O) is distributed as X]T, prior intervals  of any desired prob- 
ability content  can be constructed.  An exper imenter ' s  prior feelings 
can be in te rpre ted  using such intervals and/or (2.2), to provide values 
for to and r. (In general,  r need not be an integer ,  except  when it 
represents  previous failures, as described above.) 

The predict ive distribution based on (2.1), sometimes known as the 
"no  (current)  data  predictive dis t r ibut ion" is defined by 

(2.3) h(x)= f~ f(xlO)p(O)dO. 

Subst i tu t ing the  specific expressions in (1.1) and (2.1) into (2.3), and 
in tegra t ing ,  provides 

(2.4) h(x) = (r/to) (1+ x/t0) - , - '  , 

which implies tha t  X is distr ibuted as (to/r)F2,~., where  F~,~ is a central  
F-variable wi th  m and n degrees of freedom. Eq. (2.4) thus enables 
predictions on lifetimes to be made based only on prior information.  

A drawback to the hybrid scheme of Section 1 is tha t ,  if t* is 
chosen " too  small ", test ing may  te rmina te  wi th  no failures, providing 
only a l imited inference on th Suppose, if r > 0 ,  we choose t* to define 
a suitably small upper tail area  of (2.4), a say. Then, if F~,~., is the  
percentage  point of F~,. tha t  leaves a in the  upper tail, a choice of 
t*=(to/r)F~,2,,~ implies P ( X > t * ) = a .  This permits  a sensible choice of 
t* based on the  (prior) information available, because it implies that ,  
if the  prior information is correct,  a tes t  i tem will fail before t* with 
probabili ty 1 - 3 ,  and thus the chance of  no fai lures in the interval (0, t*) 
will be small. If  r = 0 ,  a choice of t* in this manner  is not  possible, 
because the  non-informative prior is improper.  

3. Bayesian analysis of hybrid scheme 

3.1. Without replacement case 

We assume tha t  n i tems whose failure t imes follow (1.1) are  placed 
on tes t  and tha t  prior information is given by (2.1). We denote by x~ 
the  observed failure t ime of the  i - th  i tem to fail and assume tha t  fail- 
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ed items are not replaced, so tha t  x~_~x~+l. Our hybrid test  scheme 
will te rminate  at t ime minimum (t*, rr) where t* and K are chosen in 
advance;  t ime t* may or may not  be chosen as in Section 2, and the 
integer  K is such tha t  K~_n, and it  would often be selected close to 
n/2. Let  k~_K be the number  of failures seen at the  t ime the  tes t  is 
te rminated so tha t  xt~_t* if 1-<k~_K-1, and x~<t* if k=K, while if 
k--O, t*<x ,  The likelihood is 

(3.1) l(t~ldata ) cct~ -t exp [-A~/~],  O K k ~ K ,  

where AK, the  total observed lifetime, is 

~(k) Z ~,~+(n-k)t*, O < k ~ K ,  
j = l  

(3.2) At= 
K 

xj+(n--K)xK , k = K  , 
J=l 

and where ~(k)=O if k=O, and 1 otherwise. Combining (2.1) with (3.1) 
provides the  posterior 

(3.3) p(Oldata)oct~ -C*+'+~' exp [-(At+to)/O], O ~ k ~ K .  

Note that  (At+to)~8 is distributed as Z]r a posteriori, so tha t  

(3.4) E(81 data) = (Ak+to)/(k+ r-- 1), 

if k + r > l .  (It is interest ing to see tha t  the  posterior mean formula 
(3.4) coincides with Bhat tacharya 's  (21), obtained by considering Types 
I and II censoring individually. A variance formula similar to Bhatta- 
charya 's  (22) would also be obtained from the hybrid case.) A 100(1-  
a)% posterior interval for ~ is given by 

(3.5) ( 2( Ak + to)lz]c~+r).~/~, 2( A~ + to)/Z](~+,),,-./2) , 

if k + r > 0 ,  where  Z~,,, denotes the  point of the central Z ~ distribution 
with m degrees of freedom tha t  leaves an area a in the upper tail. 

The maximum likelihood est imator for t~ obtained by maximizing 
(3.1) is ~=Adk which may be compared with (3.4). 

3.2 With replacement case 
We again assume that  n items whose failure times follow (1.1) are 

placed on test,  and tha t  prior information is given by (2.1). The hybrid 
tes t  scheme will now terminate at  t ime minimum (T*, T~) where T* is 
a pre-selected total test  t runcation time, and TK is the total life of all 
i tems subjected to test  up to and including the  t ime of the  K-th failure, 
where  K is pre-chosen. T* may or may not  be chosen as nt* where 
t* is chosen as in Section 2, and K~_n and would often be selected close 
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to n/2. Let k ~ K  be the number of failures seen at the time the test  
is terminated. Equations (3.1), (3.3), (3.4) and (3.5) now apply to this 
case but  with redefinition of A~ as 

A~=I T*, O~k<K,  
(3.6) 

T~: , k= K.  

4. Predictive distribution of X (both cases) 

Suppose we wish to predict the future life X of an item based on 
data from a hybrid test. The predictive density of X, given the data, is 

(4.1) h(xf data)= f[  f(xlo)P(OI data)d0 

(4.2) oc(l +(A~-kto)-lx) -~+T+I~ 

using (1.1) and (3.3); compare with (2.4). This implies that  X is dis- 
tributed as [(A~+to)/(k+r)]F2,s(~+~). Thus, a predictor for a future  life 
time is 

(4.3) E(Z[ data)=(A~ +to)/(k + r--1) 

if k + r > l ,  and a 100(1-a)% predictive interval for X is given by 

(4.4) {[(A~+to)/(k+r)]F~,~+T~,~_~n, [(Ak+to)/(k+r)]Fm~+~,~/2} 

if k+r>O. Note that  the right hand sides of (3.4) and (4.3) are the 
same. 

5. Examples (without replacement case) 

We illustrate use of the formulas in Section 3 with data from a 
without replacement situation. 

Suppose ten test items (n=10) are placed on life test in a situation 
where t* is chosen arbitrarily as 1300, r = 2 ,  and t0=1000, so that  the 
prior mean is 1000. Four failures at times x=836, 974, 1108, and 1236 
were observed. We shall use the same data to illustrate two separate 
cases: (1) K=4,  (2) K=5.  If we had chosen K=4,  we would have 
stopped testing at time x4=1236<t*=1300. Had we chosen K=5,  how- 
ever, the test  would have terminated at t*=1300 because the fifth 
failure has not yet been observed. The relevant estimates are shown 
in Table 1. We notice that  the posterior and predictive means are 
smaller when (k=4, K=4)  compared with the (k=4, K=5)  case. This, 
of course, happens because, in the lat ter  case, more time on test  with 
no additional failures is observed compared with the former case. This 
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Table 1. Estimates obtained from the two cases 

Characteristics examined 
Estimates under case 

K = 4  K = 5  

Posterior mean, (3.4), for ~ 2514 2591 

95~  posterior interval, (3.5), for 8 1077, $709 1110, 5883 

Predictive mean, (4.3), for X 2514 2591 

95~  predictive interval, (4.4), for X 53, 10,676 55, 11,002 

behavior is most  reasonable. 
Note that ,  if we were to choose t* by applying the formula t *=  

(to/r)F2,2~,~ discussed in Section 2, we would obtain the  value 1300 used 
above for 8=0.189. For values of ~=0.25, 0.10, 0.05, 0.01 we obtain 
t*=1000, 2163, 3472, 9000 respectively. 

6. Other distributions 

For the  exponential distribution, 

(6.1) 1 - F ( x  [ ~) = ~f(x [ ~), 

where f is defined in (1.1) and F is the corresponding cdf. This facili- 
ta ted  the development in Section 3. For distributions for which this 
proper ty  does not  hold, such as the gamma, Weibull, and normal, par- 
allel steps to those in Section 3 can still be carried out in principle. 
However, the  various integrals tha t  arise must  then be evaluated by 
numerical integrat ion for particular data sets. (The difficulties are 
especially pronounced for the with replacement case, where the vari- 
ous possible pa t terns  of failures would need careful enumeration.)  
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