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Summary 

In order to increase the dependence between two random variables 
X and Y obeying the type of Farlie-Gumbel-Morgenstern (FGM) dis- 
tribution, Johnson and Kotz (1977, Commun. Statist., 6, 485-496) intro- 
duced the  (k-1)- i terat ion F G M  distribution: 

HI~ = FG Jr ~ a u ( F G ) r J / 2 ] + I ( F G )  [(i+')/21 , 
J = l  

where F and G are the respective marginal distributions of X and Y. 
Recently, Huang and Kotz (1984, Biometrika, 71, 633-636) found the 
natural  parameter  space of H12 for arbi t rary absolutely continuous dis- 
tributions F and G. We extend their  result  to arbi t rary continuous 
distributions F and G and propose another (k--1)-iteration F G M  distri- 
bution : 

H2~= FG + ~, ~2~(FG)rc~+I~J~J(FG) ~ij~+l �9 
J = l  

For some F and G, the correlation coefficient for H2~ is greater  than 
tha t  for H,~. 

Fur ther ,  we find the conditions on F and G under which HI~ and 
H2~ have the  same natural  parameter  space. We also find tha t  for 
arbi t rary symmetric  distributions F and G with finite means, the  co- 
variances between X and Y are the  same whatever  the  joint distribu- 
tion H~k (i--1, 2) they have. A result  of Schucany, Parr  and Boyer 
(1978, Biometrika,  65, 650-653) about the correlation coefficient for F G M  
distribution is extended to arbi t rary distributions F and G. The multi- 
variate case is also discussed. 

* Work finally completed while visiting Department of Statistics, Stanford University. The 
author was partially supported by the Chinese National Science Council. 
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1. Introduction and motivation 

A well-known way to construct a bivariate distribution with the 
given marginal distributions F and G is to consider the Farlie-Gumbel- 
Morgenstern (FGM) distribution: 

( 1 ) H(x, y)=F(x)G(y)[l+aF(x)G(y)} , 

where _P= l - - F ,  G= l - G ,  and a is a real number such that  H is a bi- 
variate distribution. From (1) we also understand that  it is impossible 
to identify the bivariate distribution only by its marginal distributions, 
since there are many admissible numbers a in general. The set of ad- 
missible number a in (1) is called the natural parameter  space of H 
and is denoted by A. The usefulness of the FGM distribution H in (1) 
depends on how many admissible numbers a we have and on what values 
the correlation coefficient p of X and Y may be. 

It  is trivial that  if one of F and G is degenerate, then we have 
A=(--co,  co). For nondegenerate distributions F and G, Cambanis [1] 
showed that  H is a bivariate distribution if and only if a e/l=[a~in, a=~], 
where 

a=,~ = - min {(MFMc) -~, ((i- m~) (I- mo))-~}, 

a=~ = min {(M;(I- ~.))-~, ((i- m~)M~) -~} , 

and mF, MF are the infimum and supremum of the set [ F ( x ) : - c o < x  
<co}--[0 ,  1}, respectively. For absolutely continuous distributions F 
and G, we can see that  amin=--l, am,x=l, and hence 1 = [ - 1 ,  1], a re- 
sult of Johnson and Kotz [3]. As to the correlation coefficient p of X 
and Y, p may assume the maximal value 1 (minimal value - 1 ,  resp.) 
if we let F=G, P r ( X = I ) = P r ( X = - I ) = I / 2  and a=4 e / = [ - 4 ,  4] (a= 
--4, resp.). However, Schucany, Parr  and Boyer [6] showed that  Ipl~ 
1/3 if both F and G are arbitrary absolutely continuous distributions 
with finite nonzero variances. 

In order to increase the dependence between random variables X 
and Y in (1), Johnson and Kotz [4] proposed the (k-1)-i terat ion FGM 
distribution : 

( 2 ) H~k = FG + ~ aI:(FG) E~j~+'(FG) c~ +~)m, 
3=1 

where k is any positive integer, [z] denotes the greatest  integer less 
than or equal to z and we have omitted the variables x and y without 
confusion. 

Recently Huang and Kotz [2] considered the one-iteration FGM 
distribution (k=2) : 
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(3 )  HI2 = FG + a~( FG) ( FG) + a~2( FG)~( FG) . 

For arbi t rary absolutely continuous distributions F and G, they found 
that  the natural parameter space A~2 of H~2 is the set 

( 4 )  {(a, a2): Ia~[<l, --a,--l<=a2<=l[3--al+(9--6a~--3a~)~/~]} 

and fur ther  

(5) The maximal correlation coefficient p corresponding to 
H12 is higher than 1/3 which is the maximal p corre- 
sponding to HIt=H, but the former is less than or equal 
to ( ( 1 6 2 7 / ~ ) - -  3)/40 = 0.5027 ; 

(6) One single iteration can result in nearly tripling the co- 
variance for certain marginals; 

(7) There exist no marginals for which the single iteration 
will bring about higher negative correlation. 

If we exchange the two powers of the third term in (3), namely, 
if we consider the bivariate distribution 

(8) H22 = FG + a2~( FG) ( FG) + a22( FG) ( FG ) 2 , 

then we find that  for some distributions F and G, the correlation co- 
efficient of X and Y in (8) is greater  than that  of X and Y in (3) (see 
Example 2 in Section 5 in detail). This is the motivation to study the 
other (k--1)-iteration F G M  distribution: 

( 9 ) H2k=FG+ ~, a2~(FG)E(J+I)/~(FG):'/2~+I. 

In Section 2 we shall prove that  for i=1 ,  2 and for arbitrary con- 
tinuous distributions F and G, the natural parameter space A,2 of H~2 
is also equal to the set (4). Section 3 will derive the bivariate distri- 
bution H2, as Johnson and Kotz [4] did for Hi,. In Section 4 we shall 
study the condition on F and G under which HI~ and H2~ have the same 
natural parameter space. Section 5 will prove that  for arbitrary sym- 
metric distributions F and G with finite means, the covariances between 
X and Y are the same whatever the joint distribution H~ (i=1,  2) they 
have. Based on the results of Section 5, Section 6 will consider the 
improvements in correlation coefficient of X and Y which obey the 
F G M  distribution or one-iteration F G M  distributions. Finally, the mul- 
tivariate case is discussed in Section 7. 
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2. Natural parameter space: the case k = 2  

In this section we shall prove tha t  for i = 1 ,  2 and for a rb i t r a ry  
continuous distributions F and G, the  natura l  pa rame te r  space A,2 of 
H~2 is the  same as the  set  (4). Le t  us recall t ha t  the  bivariate func- 
tion H~ in (3) is a bivariate distribution if and only if for all x~_x' 
and y~_y', we have d:,J~,H~2(x, y)>__O, where  d~,N(z)--N(z')--N(z). For 
i=1,  2, define H:~ be the  bivariate distribution H~2 wi th  uniform mar-  
ginal distributions on [0, 1] and A,q the  natura l  pa rame te r  space of H ~ .  
Then we have  the  following 

THEOREM 1. For arbitrary continuous distributions F and G, the 
natural parameter space A~=A~, i = 1 ,  2. 

PROOF. For  coefficient (a,, a~), H,~*(u, v) is a bivariate  distribution 
on [0, i] X [0, I] 

(10) < > ~t~,~I,,H~(u, v)~_O Vu~_u', v~_v' and u, u' ,  v, v' E [0, 1] 

(ii) < > ~t~(~,)da(~,)H~(F(x), G(y))~_O 

Vx<=x', y ~ y '  and x, x', y, y'  E R = ( - - o o ,  ~ )  

< '>~l=,d~,H~(x,y)~O y x ~ x ' , y ~ y '  and x , x ' , y , y ' E R  

< > H~2(x, y) is a bivariate distribution on R •  R. 

Hence A ~----A~, i----1, 2. 

Note t h a t  A u~l~ is the  set (4) due to Huang  and Kotz [2], so we have 
improved the i r  resul t  for a rb i t ra ry  continuous distributions F and G. 
The cont inui ty  condition on F and G is necessary in the  direction (11) 

(10) above. F rom the  proof of Theorem 1, we can unders tand  tha t  
for arbitrary distributions F and G, A~cA~2 (see, e.g., Example 1 in 
Section 4 for discrete distributions F and G). 

Next ,  in order  to claim tha t  A22 is the  same as the  set  (4) for 
a rb i t r a ry  continuous distributions F and G, it suffices to prove the  fol- 
lowing 

LEMMA 1. A~ - -A '~  z~12 ~ •  �9 

PROOF. Since F(x)=x  and G(y)=y for x, y E [0, 1], we have 

H12(x, y)=xy+a,1(xy)(1-x)(1-y)+a12(xy)2(1-x)(1-y)  , x, y E [0, 1],  

and hence the  joint density function of X and Y in this case is 

h~2(x, y ) = l  +a~(1-2x) (1-2y)+al~(xy) (2-3x) (2-3y)  , x, y e [0, 1]. 



TWO EXTENSIONS OF FGM DISTRIBUTION 133 

Similarly, the  joint density function of X and Y in the  o ther  case is 

h22(x, y) = 1 + a2~(1- 2x) ( 1 -  2y) + a22(1-- x) (1 - -  3x) ( 1 -  y) ( 1 -  3y) , 

x, y ~ [0, 1]. 

Taking the  t ransformations u = l - - x  and v = l - y  in h~2(x, y), we have 

h*(u, v)-h~2(1-u, l - v )  

= 1 + a~L(1 --  2u) (1 --  2v) + a,2( 1 --  u) (1 --  3u) (1 --  v) (1 --  3v) , 

u, v 6 [0, 1]. 

Therefore ,  for coefficient a=(a , ,  a~), H~2 is a bivariate distribution 

hl2(x, y) ~ 0 , 

h*(u, v) > 0 ,  

h22(z, y) >= 0 ,  

Vx, y 6 [0, 1] 

Vu, v 6 [0, 1] 

Vx, y 6 [0, 1] 

< ~. H~ is a bivariate distribution 

That  is, A~d--A~ ~ 1 2  ~ 2 2  " 

In Section 4 we shall extend Lemma I to a wide class of distribu- 
tions F and G by another  method (Theorem 3). I t  can be seen tha t  
Theorem 1 is still t rue  for the  general  case, namely,  for any fixed i =  
1, 2 and k>__2, the  natural  pa ramete r  spaces A~ of H~ are the  same 
for a rb i t r a ry  continuous distributions F and G. 

3. Derivations of H~ and I-t2~ 

Johnson and Kotz [4] derived H,~ by the  following successive k - 1  
steps, so it  is named af te r  a (k -1 ) - i t e ra t ion  FGM distribution. Sub- 

s t i tu t ing  S(x, y ) = P r  (X>x ,  Y > y )  for the  FG in (1), and using an equiv- 
alent  form of the  FGM distribution, 

(12) 

we obtain 

(13) 

S=FG{I +p~FG} , 

HI~ = FG {1+ ~FG( I + AFG) } . 

Then substituting the FGM distribution H=FG(I+p2FG) for the last 
FG in (13) yields 

(14) H~3 = FG {i + aFG[l + p~(FG(l + p2FG))]} �9 

Continuing this procedure, intersubstituting the forms of (12) and (I), 
k-3 more iterations shall lead to HI~. 
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Similarly, we can obtain H2~ as follows. We first begin with the 
equivalent form (12) of the FGM distribution. Substituting the F G M  

distribution H=FG(I+a~FG) for the FG in (12), we obtain 

(15) S = FG {I + ~FG(I + a~FG)} . 

Then substituting S=FG(I+p2FG), a form of (12), for the last FG in 
(15), yields 

S= FG {1 + p~FG[ I + aIFG(1 + ~2FG) ]} . 

Continuing this procedure, intersubstitut.ing the forms of (1) and (12), 
k - 3  more iterations shall lead to 

(16) S = F G +  ~ av(FG)C(i+~)n~(FG) ~/2~+~ . 
3=1 

Recall S(x, y ) = l - - F ( x ) - G ( y ) + P r ( X ~ _ x ,  YGy) ,  then we know that  (16) 
and (9) are equivalent. 

4. Natural parameter space: the general case 

Denote m~---- [j/2] + 1 and n~ = [ ( ]+  1)/2] for convenience. In fact, the 
results of Sections 4 and 5 remain t rue for any positive integers m s 
and nj. Huang and Kotz [2] proved that  the natural parameter space 
A,~ of H~ is convex if both F and G are absolutely continuous. We 
first assert that  their conclusion is also true for arbi trary distributions 
F and G. 

THEOREM 2. For arbitrary distributions F and G, the natural pa- 
rameter space A~ of H~ is convex, where i = l ,  2. 

PROOF. We only prove that  AI~ is a convex set since the proof of 
A2~ is similar to that  of AI~. Let 0~_p_<_l, a--(al, a2, ' .- ,  a~)e A,~ and ~* 
- (a* ,  a* , . . . ,  a*) ~ A,~. It suffices to prove that  fl--pa+(1--p)a* e A~, 

k 

that  is, to prove that  H [ ~ ) - F G + ~  (paj+(1--p)a*)(FG)~J(FG)~J is a bi- 

variate distribution, or equivalently, to prove that  for all x<=x' and 
y _ y ,  A~.~y,H[2)(x, y)>=O. And the desired result follows from 

~,~ly,H[~(x, y)=pd~,4v,H[;)(x, y)+(1--p)~l~,~1~,H[~'~(x, y)~O , 

where H[~ ~ and H[~ ~ are bivariate distributions H~ with coefficients a 
and a* respectively, and the last inequality is implied by the fact that  

Theorem 2 is useful in that  if we want to find the natural param- 
eter  space, then it suffices by this theorem to find its extreme points. 
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Le t  us define the  new class ~) of distr ibutions as follows: 

_q)---{F: the  closure of the  range of 

distribution F is symmetr ic  about  1/2} 

= { F :  v F ( x ) ,  ~{x*}~=, ~ F ( x ) = l - l i m F ( x * ) }  . 

Notice t ha t  ~ contains all the  continuous distributions and all the  sym- 
metr ic  distributions.  Then we extend Lemma 1 in Section 2 to the  
following 

THEOREM 3. Fo~" a r b i t r a r y  d i s t r ibu t ions  F,  G e ~2, AI~=A2k. 

PROOF. Recall tha t  for x ~ x ' ,  y~_y' ,  

zlxMy,H~k(x, y) = (F(x ' )--  F(x) )  (V(y')--G(y)) 
k 

+ ~ ~ , j [ F ( x ' ) ~ ( 1 - F ( x ' ) ) ~ J - F ( x ) ' b ( 1 -  F(x))~] 
J = l  

�9 [G(y ' )~ j (1 -G(y ' ) ) , j -G(y )~ : (1 -G(y ) )~ : ] ,  

and tha t  for x0= <x ' ,  Yo=Yo,< ' 

(17) ~z/~gH2k(x0, Yo) -- (F(xg) - F(xo)) (G(yg) - G(yo)) 

+ ~ a2:[F(x~)~(1 -- F(x~)) '~:- F(xo)"J(1 -- F(xo))~] 
2 = i  

�9 [G(y ' )~(1-G(yg)) '~j -G(yo) , j (1-G(yo))~:] .  

Suppose a = ( a m - . . ,  a~) 6 AI~, t ha t  is, for all x<=x', y<=y', we have L/~,zly,. 
H~k(x, y ) > 0 .  Then for any fixed xo<=x~, < ' = Yo=yo, and for any n = l ,  2 , . . ,  
t he re  exis t  < ' ~ ' x ,=x~ ,  y~_y,~ such tha t  

1 - lira F(x~) = F(x~) , 1 - Iim F(x',) = F(xo) , 
n ~ o o  n ~ o o  

1--1im G(y,)=G(y'o) , 1-1 i ra  G(y'~)=G(yo) , 

and hence wi th  coefficient a, 

(is) yo)=lj  
This means a ~ A2~. We have proved -/lt~cA~. Similarly, A~cA,~ and 
hence A~ = A2~. 

I f  one of F and G is not a distr ibution in _q), then the result  l ~ =  
i ~  is not  a lways true.  See the  following example.  

E x a m p l e  1. Let  F = G ,  P r ( X = - I ) = 2 / 3  and P r ( X = I ) = I / 3 ,  then 
F ~  ~). I t  can be seen tha t  

~ ( - 1 , - 1 ) - 4  , 4 , 16 
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and tha t  

Solving 

G W O  D O N G  L I N  

H~:(1, - 1 ) = H , 2 ( - 1 ,  1)--2/3,  H~2(1, 1 ) = 1 ,  

i~ 4 ,  4 a , 4 a 

H,2~(1, --1)=H22(-1, 1 )=2 /3 ,  H22(1, 1 ) = 1 .  

H ~ 2 ( -  1, - 1 ) ~ 0  

H~2(1, -1) -H~2(-1,  - 1 ) ~ 0  

H~(-1,  1) -- HL2(--1, --1)~_0 

H,2(1,  i )  - -  H , , ( - -  I ,  i )  - H,2(1,  - -  I )  + H,~( - 1, - -  1) >__ 0 ,  

we obtain 

4 - -  - - 2  

Similarly, 

A22= {(~,, a2): --9<a,~---9, -- 81 
4-- --2 4 

16 4 8 

4 - -9a '<:a~  81 --9a~) l . 
. . . .  

I t  is clear tha t  A~A22 for this example�9 On the other hand, if we 
let P r ( X = - I ) = I / 3  and Pr(X=I)=2/3 ,  then  A~2~A2~. From this ex- 
ample we also understand tha t  it  is possible to find A~ (k>2) as long 
as both F and G are finite discrete distributions. 

5.  C o v a r i a n c e :  the g e n e r a l  case 

Let Xk,~(Yk,~) denote the k-th smallest order statistic of a sample 
of size n from arbitrary distribution F(G). (We don' t  assume the  ab- 
solute continuity here.) Let  F~,~(G~.~) be the  distribution of X~,~(Y~.~). 
Fur thermore ,  assume tha t  E X  and E Y  exist and are finite, hence im- 
plying the  finiteness of E(X~,~)-~,~ and E(Y~,~)-~,n. Then the identi ty 

-- _ ~ - I  

. /mJ+nA-2(F,~j,W+~j_F~,~+I,,~j+, ) H'*=FG+j~:la'J ~ m t ) 

�9 (G~,j,~,+~-G~,j+,,~j+~), 

whose expectation is (see, for example, Royden [5], p. 272) 
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symmetric distributions, we have 

t~,~ = -/~_~+~,~ and 

Thus, for j = l ,  2,-- . ,  k, 

and hence 

~ k , n  = - - ~ n - - k §  �9 

(z~j,~+~-,- Z~+~,~+~) ('~,~+~-,-'~+~,~+~) 
= (~n~,~+~- ~,~+~_,) ('~, ~+~;- ~,~+~ _,), 

cov,~ (X, Y)= cov~ (X, Y), 

for the case E X = E Y = O .  Now, for general case we assume E X = z ,  
E Y : ~ ,  and X * : X - ~ ,  Y * : Y - ~ .  Then applying EX~*,~=Z~,~-I~ and 
EY*~=,~,~--, to (19) and (20) yields the desired result 

cov~ (X, Y)= cov~ (X*, Y*)= cov~ (X*, Y*)= cov~ (X, Y), 

in which the second equality follows from the reason E X * = E Y * = O .  

If one of F and G is not symmetric, then cov~ (X, Y)=cov~ (X, Y) 
is not always true. See the following example. 

Example 2. Let F=G be the triangular distribution F(x)=x ~, x 

{mr -~ E , ~ ( X Y ) = E X E Y +  ~, mj } (/~j,~j+=j--/~j+l,~a+=r 

�9 ( v ~ j , ~ + = ~ - -  v ~ j + 1 , ~ + n r  �9 

Using the triangular identity (n-k)g~.=+kl~k+,.==nzz,=_~, we obtain the 
covariance of X and Y corresponding to H~, 

(19) cov~ (X, Y ) - E ~ k ( X Y ) - E X E Y  

/ m j + n j - l \ - L  
: 2A alA m ) ('a'~:'~+'b-l--'a~J+l'~J+'~J) 

3=~ \ J I 

�9 ( ~ , ~ j + ~ j - 1  ~ ~ + 1 , ~ + ~ )  �9 

Similarly, the covariance of X and Y corresponding to H2~ is 

(20) cov2~ (X, Y) = ~, ~2, (l~j.~3+~ ~-  ~j,~j+~j-~) 
3=1 

�9 (v~j,~3+~j--v,j.,j+~_,) �9 

The following theorem states the relationship between cov,~ and cov2~. 

THEOREM 4. Let F and G be two arbitrary symmetric distributions 
with finite expectations, and let a~=a2~, for  j : l ,  2 , . . . ,  k. Then cov1~ 
(x, Y)= cov~ (X, Y). 

PROOF. We first assume that  E X = E Y = O .  Since F and G are 
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[0, E .  

(21) 
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Then by  the  formula 

we can calculate 

Z,,I=2/3, Z~,~=8/15, /~2,2=4/5, ~,3=16/35, ~,3=24/35, Z m = 6 / 7 .  

Thus for al--a11=o~21 and a2=a~=a2~, 

cov,~ (X, Y) = a~(/~2,3-/~L1) 2 + as(p,.,-/~,.2) 2 = a~(2/15) ~ + a~(2/35) 2 , 

and similarly 

cov~ (X, Y) = a~(#~.2-/~,,)~ + a~(~1,3-/~,~)~ = a,(2/15) 2 + a~(8/105) ~ �9 

I t  is clear t h a t  cov,,(X, Y)<cov~(X,  Y) if a~>0. 

6. Improvements in the correlation coefflcient 

Based on the  results of Section 5, this section will s tudy the  cor- 
relat ion coefficient p of X and Y which obey the  FGM distribution or 
one-i terat ion FGM distributions. As ment ioned in Section 1, Schucany 
et  ah [6] proved tha t  ]p]~1/3 for the  FGM distribution (1) with abso- 
lutely continuous marginal  distributions F and G. Example 3 below 
shows tha t  p really increases if X and Y obey the  one-iteration FGM 
distributions H12 or H~. Fur ther ,  we shall ex tend  in Theorem 5 the  
resul t  of Schucany et al. [6] to arbitrary distributions F and G. 

Example 3. (See, also Huang and Kotz [2]). We assume ~l=a~--  
a2~ and oL2=o/12---~22 in this example. 
(a) Le t  F=G be the  uniform distribution on [0, 1], then  by Theorems 

3 and 4 and the  result  (4), we have 

covr, (X, Y) = cov22 (X, Y) = aJ36 + a2/144, 

p=aJ3+a2/12, and max p=(~-1 ) /6=0 .43426  for both HI~ and H~2. 
(b) Le t  F=G be the s tandard normal distribution, then  similarly, 

p =cov= (X, Y) = (X, Y) = + 

and max p=(413-1)/(2zr)=0.41469 for both H,2 and H2~. 

THEOREM 5. In the FGM distribution, let F and G be arbitrary 
distributions with finite nonzero vaziances, then the correlation coe~cient 
p satisfies 

1 1 
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where am,,, and a,~:: are defined in Section 1. 

PROOF. Recall tha t  Formula (21) is also t rue  for arbi t rary distri- 
bution F if we define the inverse function F-~( t ) - in f{x:  F(x)>=t}, t~ 
(0, 1). Without  loss of generality, we may assume E X = E Y = O  in the  
following discussion. By Cauchy-Schwarz inequality we have 

(/12,2-/~1,~)2= (f10 F-~(t)(2t--1)dt) 2<= flo ( F-l(t))2dt flo ( 2 t - 1 ) 2 d t = l r  , 

tha t  is, 

< 1 

Similarly, for distribution G we have 

-< 4 -  �9 

Therefore,  

p = c o v  (x, = 

1 

COROLLARY. fn the FGM distribution, let F and G be arbitrary 
continuous distributions with finite nonzero variances, then Ip1<=1/3. 

Applying Theorem 1 and following the discussions of Huang and 
Kotz [2], we can understand tha t  the bivariate distributions H12 and 
H2z also possess the properties (5), (6) and (7), provided tha t  F and G 
are two continuous distributions. In the case for H22 we need the fol- 
lowing lemma which can be obtained by replacing X by - X  in the 
lemma of Huang and Kotz [2]. 

LEMMA 2. For arbitrary nondegenerate distribution F with finite 
mean, t~m-- f~l,l ~ ttl,2-- l~,3, or equivalently, l~,~-- th,2~ t~,~-- pl,3. 

7. Multivariate distributions 

For bivariate distributions HI~ and H2~ we have proved in Theorem 
3 tha t  A~=A~ if F, G ~ ~ .  However, for t r ivariate  distributions, 

k 

WI,= F G N +  ~ al;(FGN)~(FGN)~3 , 
3=1 

and 
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k 

W2k = F G N +  ~ a2j(FGN)"~(FGN)"~ , 
J = l  

we have the following different result. 

THEOREM 6. Let F, G and N be three distributions in ~ ,  and let 
A~ denote the natural parameter space of W~ (i= 1, 2). Then 

AI,= --A~,-- {--a: a e A~,} . 

PROOF. Note that  we shall take a~j=-a~j in (17) in order to as- 
sure the formula (18) being true in trivariate case. 

I t  is easy to extend the results of Theorems 3 and 6 for any mul- 
tivariate distributions, that  is, AI~=A2~ or A~=--A2~ depends only on 
the number of variables being even or odd, respectively. 

Another type of multivariate F G M  distributions was discussed by 
Johnson and Kotz [3] and Shaked [7]. The lat ter  provided some appli- 
cations to the theory of Bayesian survey sampling and to the reliability 
theory. 
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