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Summary 

This paper discusses, with measure-theoretical rigor, some basic 
aspects of the theory of separate inference. To analyze densities of 
marginal and conditional submodels, certain operators are introduced. 
First a general concept of decomposition of a model is proposed, and 
the corresponding factorization of densities of the model is established. 
Next  it is shown that  the property of smoothness of a family of den- 
sities is retained in the operation of conditioning, and therefore it yields 
the differentiability of the conditional expectation of a real-valued sta- 
tistic in a certain sense. On the basis of this result, two measures of 
the effectiveness of a submodel in separate inference are investigated. 

1. Introduction 

Separate inference is inference on parameters of interest from a 
part  of the original model and data (Barndorff-Nielsen [1]). There are 
two key procedures for this. One is to decompose the model into sev- 
eral submodels with certain statistical structures. The other is to ex- 
amine such submodels through a measure of the effectiveness of a sub- 
model in the inference on parameters of interest. The main purpose 
of this paper is to discuss, with measure-theoretical rigor, the follow- 
ing basic aspects of the procedures : factorization of densities of a model ; 
smoothness of a family of conditional densities; differentiability of the 
conditional expectation of a statistic. 

To this end, we shall use certain operators for averaging, which 
were introduced by Pitman [11] and were developed by Kuboki [8]. The 
definitions and some further  properties of them are described in Sec- 
tion 2. In particular, our interest is the case where they operate on 
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sities. 
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probabili ty densi ty  functions. In Section 3, we shall investigate prop- 
ert ies of the  operators in this case, and give two propositions which 
are  impor tan t  to our discussions below. 

Fi rs t  we shall deal wi th  factorization of densities of a model. Let  
s {P~: t~ ~ 0} be a model for data  X, i.e. a family of distributions of 
X, and let  r :  0 - o F  and w: 0--./2 be two surject ive paramete r  func- 
tions. We denote by ~ r  the  part i t ion of ~ e  induced by r,  i.e. ~ r  
= {~T: r e F},  ~P~= {P~: t~ ~ O, r(O)=r}; and denote by s the  part i t ion 
of ~Pe induced by w, i.e. s {~P,: oJ e $2}, ~ =  {P~: t~ ~ 0, w(t~)=w}. 
Consider any  two statistics U and T such tha t  U is a function of T. 
Then we shall introduce the  following concept. 

DEFINITION 1.1. We shall say tha t  (U, TIU) induces (t~Pr, ~P,) if 
U and T sat isfy the  following two conditions. 
( i )  The marginal  distributions of U depend on 0 only through r .  
( i i)  For  each event  A of T and for each t~ ~ 0, the re  exists a deter-  
mination of the  conditional probability of A given U tha t  depends on 
t~ only th rough  w. 

The condition (i) implies t ha t  the  mapping P~---~P[, t~ ~ 0, induces 
the  same part i t ion of ~% as does r ,  where  P y  denote marginal  distri- 
butions of U. Similarly, the  condition (ii) implies tha t  the  mapping 
p..._~pr,~, ~ ~ 0, induces the  same part i t ion of ~Pe as does w, where  
p r~, denote the  conditional distributions of T given U if they  exist.  
The above concept includes various concepts of ancillarity and sufficiency 
found in the  l i te ra ture  (Fraser  [3], Sandved [13], Basu [2], Barndorff- 
Nielsen [1]). For  example, take T=X.  Then, U is ancillary for t~ ~ 0 
if r is a constant  function, and U is sufficient for t~ ~ 0 if w is a con- 
s tan t  function. 

In this paper, let us suppose tha t  ~ is dominated by a a-finite 
measure  m ;  and let us denote by p~ a densi ty  of each P~ ~ ~P~. Then 
it will be useful  to review Definition 1.1 in t e rms  of the  corresponding 
factorization of densities of T. Fur the r ,  it will be useful to establish 
a factorizat ion criterion of the  densities for the  concept in Definition 
1.1. In Section 4, we shall consider these problems by using the  oper- 
ators introduced in Section 2. 

Nex t  we shall discuss Pi tman 's  concept of smoothness of a family 
of densities. For  ease of reference,  we shall here  describe the  defini- 
tion of the  concept with some modification; see P i tman ([11], Chapter  
3). Suppose tha t  0 = 0 ~ •  . - .  • 0~ being an open interval  of R ~. We 
shall wr i te  ~ = ' ( t~ , . - . ,  t~), where  'M denotes the  transpose of a ma t r ix  
M. F u r t h e r  suppose tha t  p~ is differentiable a.e. ~n with respect  to 0, 
i.e. the re  exists p~'='(p~%..., p ' )  such tha t  for eve ry  fixed l=~(l, . . . ,  l~) 
E 2~, 
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lim (po+,z-p~)lz='Ip'~ a.e. m at  every  t~ ~ 0 .  

Define p~(v, 0), the  distance be tween P~ and Po, r, 0 e 0, by 

p~(r, 8)= f (~/-~ -vr-~o )2dm . 

Denote lim inf 2pp(t~+d, t~)/]~J, which always exists, by sp(t~ll); it is a 

measure  of the  sensitivity of the  family of densities po to small changes 
in 0 in the  direction I. We shall call s~(t~ ]l) the  sensitivity of the  Pe 
family (at t~ in the direction l). P u t t i n g  fg ,=p '~ /~  or =0 ,  according 
as x e S(p~)-- {x : po(x) > 0} or x ~ S(p~), we can wr i te  the  information 
mat r ix  Ip(O) of the P0 family in the  form 

Evident ly ,  for every  0 ~ 0 and every  l ~ R ~, s~(O I I)>=tlIp(O)l. 

DEFINITION 1.2. If for every  fixed 1 ~ /~ ,  lira 4p~(O+~l, 0)/~ ~ exists, 

is finite, and is equal to tIIp(O)l at  every  0 ~ O, then we shall say tha t  
the  po family  is smooth in O. 

When the  Po family is smooth in O, the  value of ~lIp(O)l is the  sen- 
si t ivity of the  family in the  direction l at  O, so tha t  then I,(O) is called 
the  sensitivity matr ix  of the  family.  

I t  is proved by Pi tman [11] t ha t  if the  p, family is smooth in 0, 
then  so are  the  family of marginal  densities of T and U. F u r t h e r  as 
pointed out  by him, the proper ty  of smoothness is closely connected 
wi th  the  differentiability of the  expectat ion of a real-valued statistic,  
and the re fo re  with a certain proper ty  of the  efficacy matr ix  of the  
statistic,  a measure  of the effectiveness of the  statistic in invest igat ing 
the  value of 0. In Section 5, first we shall discuss the  validity of the  
following two propert ies:  smoothness of the  family of conditional den- 
sities of T given U; and differentiabili ty of the  conditional expectat ion 
of a real-valued statistic given U in a certain sense. Next ,  on the  
basis of them,  we shall introduce a measure  of effectiveness of a sta- 
tistic in invest igat ing the  value of 0 conditionally on U. Here  we re- 
m a r k  tha t  the  conclusions are independent  of the  part icular  choice of 
t h a t  version of p~ family which is smooth in 0. 

The last  section discusses measures  of the  effectiveness of a sub- 
model in inference on parameters  of in teres t .  In particular,  let  us 
consider the  case where  only 0~ is the  pa rame te r  of interest .  Up to 
now, two measures  are proposed to evaluate  the  effectiveness of a sub- 
model in invest igat ing only the  value of 0~. One is Liang's [9] meas- 
ure  of information about t~, and the  o ther  is Godambe's [5] measure  of 
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information about ~1. We shall show tha t  the  former is related to sen- 
sitivity and the  lat ter  is related to efficacy. Fur thermore ,  we shall 
discuss the  relationship between the two measures when the  conditional 
densities of T given U depend on ~ only th rough 6~. In connection 
with this, Godambe's [4] two concepts of ancillarity will also be dis- 
cussed. 

2. Notations and preliminaries 

Let (2~, g )  be a measure space: a set _~" and a a-algebra g of 
subsets of 2~. T is a mapping from ~" into a space g ,  and / /  is a 
mapping from g into a space cU. Let  ~y/ be a a-algebra of subsets of 
~ ,  and .q~ a a-algebra of subsets of c7]. We shall assume tha t  T and 
/7 are measurable.  Define a measurable mapping U from :~C into ~U 
by U-=HoT. 

Let  m be a given a-finite measure over (:~, g ) .  Then choose a-finite 
measures/~ over (g ,  J / )  and ~ over (cu, _q~) such tha t  mr<</2 and t~'<<~, 
where mr,=mT -~, denotes the induced measure over (g ,  ~ )  and ~ , - -  
/~//-1, denotes the induced measure over (cU, ~) .  The a-finiteness of 
m guarantees  the existence of such measures t~ and , .  I t  should be 
noted tha t  m r and /~" are sometimes not  a-finite even though m and 

are a-finite. Evidently m~<<~, where m~,=mU -~, is the  induced 
measure over (cU, ~) .  

Let  us denote by ~(:~C, ~ ,  m) the  class of all extended real-valued 
g-measurab le  functions whose m-integral  exists, i.e. 

f or 
where the  notation r e ) g  expresses the  g-measurabi l i ty  of ~. Of 
course, q~ and r in E(:~, g ,  m) are regarded as identical if r 1 6 2  a . e .m .  
Likewise, we shall define E(~,  ~ ,  g) and L'(cU, _q~, ,). For every r e 
g'(:~, g ,  m), let us define T*r ~ E ( g ,  J ,  t~) by the  following formula:  

(2.1) fr_~r162 for all A~ , .A .  

This is justified as follows. For each r e L'(2C, g ,  m), there  exists the 

indefinite integral  �9 over (g ,  ~ )  such tha t  O(A)= ~ r  for all A E 
J T--1A 

~ .  Note tha t  t~(A)=O~mr(A)-'O~(A)=O. Hence Z>>r and so by 
the extended Radon-Nikodym theorem (Lo~ve [10], p. 134) there  exists 
a function r ~ ~'(g,  ,fl, t~), determined up to t~-equivalence, such tha t  

�9 (A)= f cdt~ for all A ~ ~ .  We shall wri te  r 1 6 2  This averaging 
~A 

operator T* was introduced by Pi tman [11]. Similarly, for every r 



ANALYSIS OF MARGINAL AND CONDITIONAL DENSITY FUNCTIONS 5 

~'(~, JL p) we define //*r e E(cU, .~, 19) by 

t e d ~ = I  (1I*r for all B e  ~ ,  (2.2) 
J II-1B .) B 

and for every r e ~'(_T, if,  m) we define U*r e C(cU, _~, v) by 

(2.3) f Cdm=i (U*r for all B e_~. 
J U-1B J B 

LEMMA 2.1. We have U*=II*  o T*. 

Here we shall list some properties of the operator //*. Lemmas 
2.2 and 2.3 below are easy consequences of the defining relation (2.2). 
For Lemma 2.4 and other properties, see Pitman ([11], p. 101) and 
Kuboki [8]. We can also see that  the operators T* and U* satisfy 
properties similar to them. From now on, denote the indicator func- 
tion of a set E by ZE, and for a function r denote the set {. : r162 
by S(r 

LEMMA 2.2. (i) Suppose that r e )J/. Then 

r  a.e. t~II*r a.e. 19 and S(r162 a.e. t~ �9 

(ii) Suppose that r r e )Jt,  and that r r ~ 0 a.e. [~. Then 

S(r162 a.e. f ~ S ( I I * r 1 6 2  a.e. 19 . 

LEMMA 2.3. Suppose that r r e C(~ ,  ~ ,  ~), and that B e ~ .  Then 

T/*(X~r =//*(Z~r a.e. 19 on B fo r  each A e 

r162162 a.e. t~ on II-~B.  

r r e C(~ ,  ~ , / 0 .  I f  a f ed/~+ L E M M A  2.4. (i) Suppose that 

b t edt~ exists f o r  constants a and b, then //*(aO+br a . e .  19. 

(ii) I f  r e E(~Y, ~fl, t~), then ]//*r162 a.e. 19. 
(iii) Suppose that r r  I f  r and r are g-integrable, then 
{II*(r162162162 a.e. 19. 
(iv) Suppose that g( e )~ .  I f  6), (g o / / )r  e G(~, ~,/~), then/ /*{(g  o//)r 
----g//*r a.e. 19. 

3. The operators on probability density functions 

Let us consider the subclass s ~ ,  m) consisting of all prob- 
ability density functions in E(2C, ~ ,  m). Put for each p e !P(:~, ~ ,  m) 

J i pdm for all F e ~ .  (3.1) P ( F ) =  
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As before, we shall denote by p r  the  induced measure P T  -~, and by 
P~ the  induced measure PU -~. Then it follows from (2.1) and (2.3) 
tha t  

(3.2) Pr(A)=fA (T*p)dt~ for all A ~ ~ ,  

(3.3) P~(B)= Is (U*p)d~ for all B ~ _~. 

Combining (3.1)-(3.3) with Lemma 2.2. (i), we see tha t  if a random vari- 
able X over (2C, ~ )  is distributed with the  density p relative to m, 
then T*p is the  density of the marginal  distribution p r  of T(X) rela- 
t ive to #, and U*p is the density of the marginal  distribution P~ of 
U(X) relative to , .  

Now for each p ~ ~(2~', ~ ,  m), let us denote by pT,~ any one of a 
whole family of nonnegative real-valued ~-measurab le  functions which 
agree with T*p/{(U*p)o II} a.e. g on II-I{S(U*p)}, tha t  is 

(3.4) prl~ = T*p/{(U*p) o II} a.e./~ on II-~ {S(U*p)} . 

To stress this, we shall call prtU a version of the  conditional density 
of T given U. Note tha t  any two versions are equal a.e./~ on //-~ 
{S(U*p)}. The following propositions show tha t  pTl~ has actually some 
properties of the  conditional density. Here we shall denote by Ee(-]U) 
the conditional expectations taken with respect to the  probability meas- 
ure P given by (3.1) for each p ~ ~P(2C, ~ ,  m). 

PROPOSITION 3.1. For each p ~ ~P(2C, ~ ,  m), T*p factorizes as fol- 
lows. 

T ' p =  {(U'p) o II}p r.~ a.e. l~ . 

PROOF. From (3.4), it is obvious tha t  the factorization holds on / / -1  
{S(U*p)}. Let us show that  it also t rue  on II-~{cU-S(U*p)}. Since 
T*p~O a.e./~, it follows from Lemmas 2.1 and 2.2. (i) tha t  ~Y-S(T*p) 
DII-~{cU-S(U*p)} a.e./~, and therefore  T*p=O a.e./~ on H-~[cU- 
S(U*p)}. On the  other hand, ( (U 'p)o / / }pr l~=0 on II-I{cU-S(U*p)}.  
Thus the  proof is completed. 

PROPOSITION 3.2. For each p e ~(2C, i f ,  m), let r be a real-valued 
j-measurable function whose expectation exists. Then 

E~,(r rl~) a.e. ~ on S(U*p). 

In particular, i f  r  e E(~,  J , / ~ ) ,  then 

Ep(C[U)=II*(Cp r'~) a.e. ~ on S(U*p). 
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PROOF. Let us show that  

Ep(r162 rIv) a.e. ~ on S(U*p). 

This sufficies to prove the above assertions. First note that  from Prop- 
osition 3.1, Lemma 2.4. (iv) and (3.2), it follows that  for every B e .~ 

f~_~B r = fn_~B C+pr'u {(U*p) o II}dl~= fB {II*(i~+pr'~)}(U*p)d~ . 

Next  note that  it follows from (3.3) that  for every B e .~ 

Combining them, we have the desired result. 

Now let us denote by pr[v the restriction of Ee(" ]U) to the family 
{Z~ : A e ~X}, and call it the conditional, probability function of T given 
U; in other words, pr,~ is a function on ~/ whose values are _~-meas- 
urable functions Prt~(A) defined by Pr*~(A)=E~(z~[U ) a . e . , .  From 
Proposition 3.2, it follows that  for each A ~ ~d, 

(3.5) Pr~(A)=II*(z~p rl~) a.e. ~ on S(U*p). 

Thus we can regard prlr: a s  the density of prlz.  

4. Factorization of densities of a model 

In this section we shall use the same notations as in Definition 1.1. 
Let ~ e =  {Po: t~ e 0} be a family of distributions of a random variables 
X over (2C, ~) ,  with densities p0 relative to a a-finite measure m. T 
is a statistic from (3Y, ~ )  into (~, ~d), and U is a statistic from (2C, ~ )  
into (q], _~) such that  U=II o T. As before, let us denote by ~ r =  
{Gr:0 e 0} the family of marginal distributions of T, by ~ = { P [ :  0 
0} the family of marginal distributions of U, and by s t~ e 
0} the family of conditional probability functions of T given U. As 
shown in the previous section, ~$  has densities f0= T*po relative to a 
a-finite measure g, ~ has densities g~= U*po relative to a a-finite meas- 
ure ,, and ~e  rl~ has densities h~=p rt~. 

First we shall establish the following theorem. 

THEOREM 4.1. Suppose that ~2Pe<<m. Then (U, TIU) induces (~r ,  
~P~) i f  and only i f  there exist nonnegative real-valued ~-measurable 

funct ions  gr(8) and nonnegative real-valued J-measurable functions f~(~) 
such that for  every 0 ~ 0 

(4.1) f0=(~,(,, o II)h,(,) a.e. l ~ , 
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(4.2) g~co)=go a.e. ~ , 

(4.3) h,~(o)=he a.e. ,a on II-~{S(go)}.  

PROOF. I t  is obvious tha t  the  condition (i) of Definition 1.1 im- 
plies t ha t  g0 depends on 8 only through r .  Hence g0 is expressible as 
(4.2). Le t  us denote by ~ r ~  the  conditional probability functions of ~w(o)  

T given U sat isfying the  condition (ii) of Definition 1.1. Since s 
for eve ry  fixed ~ ~ $2, it follows f rom Halmos and Savage ([7], Lemma 
7) t ha t  the re  exists a probability measure  over ( ~ ,  ~ )  

(4.4) A . = ~ .  c~Po~, c ,>0  and Po, e ~P~, 
~=1 

which is equivalent  to ~i~, in the  sense tha t  for any  F e 

A,~(F) = 0 < > Po(F) = 0 for every  P, e ~ , .  

Pu t t ing  ,~,=dA,,/dm, we obtain dAr~/d,u=T*,~ and d A [ / d v = U * , L ,  where  

Ar~=A~T -~ and A [ = A ~ U  -~. Now we define h~(o) by 

T*,~w(o)/{(U*,~(o,) o II} on II-'{S(U*,~(o))} , 
(4.5) h~(0, = 

0 o the rwise .  

We shall show tha t  this function satisfies (4.3). Note t ha t  an argu- 

ment  similar to the  proof of Proposition 3.1 yields T*2~= {(U*2~) o / /}~ ,  
a.e./~. From this, we can easily see tha t  for each A e  J and each 
B~_~,  

f u - ~  zAdAr = Is {H*(xaho)} (U* ,t~)dv . 

R--IB ~=1 JII--1B ~ t = l  B 

From these two equalities, we have 

TIU . Qw(o)(A)=II (zAhwco,) a.e. ~ on S(U*,~r 

for each A e ~A; on the  o ther  hand, f rom (3.5) we have 

T I V  - -  * Q~(o)(A)-II  (;~.~ho) a . e . ,  on S(go) 

for each A ~ j .  Thus noting tha t  S(U*,I~r a . e . ,  because P/<< 

On the  o ther  hand, it follows f rom (4.4) t ha t  for each A e ~ and each 
B e . ~ ,  
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~r Aw(0) << v, we  ge t  

II*(z~h,w(e))=II*(z~ho ) a.e. ~ on S(go) 

for  each A ~ ~ .  From Lemma 2.3, it follows tha t  f~(0) satisfies (4.3). 
The factorizat ion (4.1) follows a t  once from (4.2), (4.3) and Proposit ion 
3.1. Now it  remains to establish the  converse. However ,  it is trivi- 
ally t rue .  

Le t  us now suppose tha t  the  densities f0 of s r factorize as follows. 

(4.6) fo= (fl~(o) o II)a~(o) a .e . /~ ,  

where  a~(0) are nonnegative J~-measurable functions and fir(0) are non- 
negat ive  _~-measurable functions. Then the question arises whe t he r  
(U, TIU) induces ( ~ r ,  ~ )  or not. Note  tha t  the  F i sher -Neyman fac- 
torization criterion for sufficiency corresponds to the case where  w is 
a cons tant  function. Here  we shall discuss' this problem. Denote by  
~LPr• the  part i t ion of ~Ps induced by  r and w, i.e. ~ r •  
r ~ F ,  o ~ } .  

THEOREM 4.2. Suppose that the densities fo of  ~ r  factorize as (4.6). 
Then (U, TIU) induces (~Pr• s I f  w is a funct ion of  r, then (U, 
T tU  ) induces (~Pr, ~Po). 

PROOF. I t  follows from Lemmas 2.1 and 2.4. (iv) t ha t  

(4.7) go=pr(o)II*a~(o) a.e. v . 

Thus the  densities go of P [  depend on 0 only through r and w;  and 
therefore ,  t hey  depend on 0 only through r if w is a function of r .  
N e x t  pu t t ing  D(a~) = {t : 0 <= a~(t) < c~ } N lI-~{u : 0 < II*a~(u) < oo }, we define 

h~(o,= j a~(o)/{(ll*aw(o)) o II} on D(a,(o)) , 

i 0 o the rwise .  

Since 0 ~ _ f o < ~  a.e./~ and 0~go<oo  a.e. , ,  it  follows from (4.6) and 
(4.7) tha t  

lI-~{S(go)}cll-~{u: O<fl~(o)(u)<~}c{t: 0<a~(0)(t)< co} a .e . /~ ,  

II-~{S(go)}cfl-~{u: O<II*a~(o)(u)<~} a .e . /~ .  

Hence  II-~[S(g~)}c_D(a~(~)) a . e . g .  Thus we have 

hw(o)=A/(go ol/) a.e./~ on II-~{S(go)}. 

This implies tha t  for each 8 ~ 0, h~(,) is a version of the densi ty of p[L~. 



10 HISATAKA KUBOKI 

Thus the  theorem is proved. 

5. Smoothness of a family of conditional densities, difl:erentiability 
of conditional expectation, and conditional efficacy 

Let  us f u r t h e r  suppose tha t  0 = 8 1 x - . .  x0~, O~ being an open in- 
terval  of R I. Before discussing our problems, we shall introduce some 
notations. 

Consider any  two statistics U and T such tha t  U = I I  o T. As be- 
fore, we wr i te  f~ for T*p~, and g~ for U*p~. For every  r, 0 ~ 0 define 
pf(v, 8), the  distance between P$ and p r ,  and pg(v, 0), the  distance be- 
tween  PF and P [ ,  by 

8)=I 8)=f 
To fix ideas we assume tha t  the  densities h~ of ~o$~ are  defined by 

( fd(go o II) on II-~{Z(go)}, 
(5.1) 

h~= [ ~ 0 o the rwise ,  

unless otherwise  stated.  Put  for every  r, 0 e 8 

Let  us show t h a t  p~(r, 8) is the  distance be tween  p[ Iu  and p[ tu .  I t  
will suffice to discuss only the t r iangular  inequality.  Firs t  note tha t  
a nonnegat ive  _~-measurable function ~ exists such tha t  S(r 

for  eve ry  8 c O  and f C d ~ = l ;  see Remark  5.1 below. Thus a.e. 

f ( r  II)hod~<= f r  and so f ( r  for every  r, 

8 e O. Nex t  using the Schwarz inequali ty wi th  respect  to / /*  (Lemma 
2.4. (iii)), we have 

~R*{(r o ] 1 ) ( ~ -  ~ ) ~ }  < ~/~.{(r o ~) ( ~ -  ~ ) 2 }  

+ vs/,{(r o ~ ) ( ~ -  ~ ) ~ }  

a.e. ~ for eve ry  0, r, ~ e 0. Hence f rom Lemma  2.4. (iv) and (5.1) 

p*~(v, 0)~p~*(r, ~)-kp~*(~, 8) a.e. ~ for eve ry  0, r, ~ e 8 .  

Now define the  mean difference p~(v, 8; 8) be tween  p rl~ and pr~v un- 
der  P [  by 

8; 8)= f f (go o 
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for eve ry  r, # e O. If  S(fJ=S(fo)  a.e./~, then  we can easily see t ha t  
p}(r, O)=Eo(v~f~/~/~fo --1) 2, p~(r, O)=Eo(~/-~/~/g--o--1) 2, and p1(r, 0; 0)= 
E o ( v r h - / ~ ] ~ - l ) L  because S(gJ=S(go) a.e. ~; see Lemma 2.2. (ii). 

Suppose for a moment  t ha t  fo and go are loosely differentiable wi th  
respect  to 0, i.e. there  exist functions fJ=~(f[o, '",  f~) and g;=~(g~o,'", 
g~) such t h a t  for every  fixed l=~(l, . . . ,  l~)~ R ~ 

(5.2) (fo+,,-fo)/s ' . ' lfo ~ and (go+,,-g,)/~ '.'lg~ as ~ -~0 ,  

a t  every  0 e 0. Here we shall say tha t  a sequence {r of real-valued 
functions converges loosely to ~, and wr i te  r  ' ,r if every  subsequence 
of {r contains a subsequence which converges almost eve rywhere  to 
r  see P i tman  ([11], p. 98). Now define h'o='(hIo,..., h~) by 

o - - fog,o o H) / (go  I I )  ~ o n  I I - t { S ( g o ) } ,  (f:ogo I I  ' o 
(5.3) h',o---- 

0 o therwise .  

Then it  follows from (3.4) and (5.2) t ha t  for every  fixed l e R" 

(ho+,-ho)/s ' , ' lh'  on II-~{S(go)} as ~--~0, 

at  every  0 e O. Note tha t  h~=O a.e. Z on II-~{S(go)}-S(fo). Put  

/o=I f;/V-f2o o n  S(f,), 
0 otherwise  ; 

' S(go) I gd4~o on , 
Oo= ) 

1 0 otherwise ; 

( on S(fo) s h ' o l ~  

0 otherwise .  

Then the  information matr ices  of the  fo, go and ho families are  respec- 
t ively given by 

IXO)=[i (go 
Note t h a t  hL /~o and I~(0) are  independent  of the  part icular  densities ho 
given by (5.1); they  are  de te rmined  by fo and g8 only. Denoting, as 
before,  lim inf 2pf(O+ d, 8)/I el by sf(#l/), lim inf  2pg(#+ d,  0)/I ~ [ by s~(OlI), 

and lim inf 2p~(0 + d ,  8 ; 0)/I �9 [ by s~(0 [ l), we shall briefly call s}(O I l) the  
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sensitivity of the fo family, s~(Oll) the sensitivity of the g~ family, and 
s~(0 l l) the sensitivity of the h, family. 

First we shall refer to Pitman's [11] results. If the p, family is 
smooth in 0 (Definition 1.2), then the family is differentiable in mean 
at every 0 ~ 0, i.e. for every fixed l ~ R ~, 

at every 8 ~ O. 

(5.4) 

lim....o I I (P,+.,- p.)/, - ' lp ; [dm = O, 

From this, it follows that  for every fixed l e RL 

lim._, I [ (f~+., - fo) /*  - 'l T*p'~ldt2 = 0 ,  

lim,_~ f 1 (g0+.,-- go)/* -- tl U*p;]dv = 0 ,  

at every 8 e O. These imply that  f~ and g, are loosely differentiable 
with respect to 0, and that  f;=T*p'~ and g$=U*pL Therefore when 
the p, family is smooth in O, I~(8), Ig(8) and I~(8) are obtained from 
the substitution f~'= T*pL g$= U*pL Further, then the following holds : 
for every fixed l ~ R', 

(5.5) 
lim._.o 114( - 477f  (*lj ,)2ldl* = O, 

iim._o i 14( - 

at every 8 e O. Thus noting that  p~(r, a)>__p~(r, 8)>=p~(r, 8), we have the 
following theorem. 

THEOREM 5.1 (Pitman [11], Theorem, pp. 19-20). I f  the Po f a m i l y  
is smooth in  O, so are the fo f a m i l y  and the g~ f a m i l y ,  i.e. f o r  every 
fixed I e R ~, 

lim 4p~(8+,l, O)]r , lim 4p~(8+r O)/,~='lI~(O)l , 
�9 ~ 0  s - O  

at every 0 ~ O; and the sensitivity matrices Ip(O), Ii(0 ) and Ig(O) sat is fy  

f o r  every 0 E e and every l E R% 

Let r be a real-valued jZ-measurable statistic with a second mo- 
ment  for every 8 ~ 0. The differntiability of the expectation E~(r with 
respect to 8 is given by the following theorem. 

THEOREM 5.2 (Pitman [11], Theorem I, p.31). Suppose that the p~ 
f a m i l y  is smooth in  0. I f  r has a second moment  which is bounded 
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in  some neighbourhood of every fixed 0 ~ O, then for  every fixed l e 1~, 

lira {E~+.~(r162 f cf/dl~ at every 0 ~ O . 
J 

Let us turn  to our problems. When the p~ family is smooth in O, 
not ing tha t  go=II*f~ and g'~=II*f/, and tha t  f / = O  a.e./~ on ll-~{S(gs)} 
--S(fo), we have 

(5.6) I~(~)=Ij(~)--I~(~) for every t~ ~ 0 .  

Then we shall prove the following theorem. 

THEOREM 5.3. Suppose that the ho f a m i l y  satisfies (5.1). I f  the p~ 
f a m i l y  is smooth in O, then for  every fixed 1 ~ R ~, 

I (g~ ~ II)l(ho+~--ho)/~--tlh~ldt ~=0 , (5.7) lira 
J 

(5.8) lim._0 f (g~~ 14(~/h-~+., -- ~ ) ~ / ~ 2  _ (~lh,)21dz = 0 

at every 6 ~ 0 ; and therefore for  every fixed l e R ~, 

lim 4p~(8 + ~l, ~ ; 8)/~ ~='lI~(~)l at every 8 ~ O . 
~ 0  

PROOF. The above assertions follow at  once from the a rgument  
given in the proof of Theorem 3.3 in Kuboki [8], though the  h~ family 
does not sometimes satisfy the assumption of the  theorem, if we have 
only to show that  

lim f 
~ 0  S(qo)NS(go+~l) 

lira f 
c~O S(go)AS(o0+.  l) 

f ltlg~[d, ](g~+~t-go)/~ld~= s(go) 

4(~/g~+---~- ~/ g--~ )2 / ~2 d ,  = i s(~o, (tlg~)2d" " 

We shall prove the former;  the  lat ter  is proved similarly from (5.5). 
Note tha t  

§ If l �9 
The first t e rm on the r ight  --*0 as ~--.0 by (5.4). Next  note tha t  for 
every fixed l, Xsc~)nscge+,,)~Zs(~ as e-*0 because g0+,z ~.g~ as ~--*0. 
Thus it  follows from the dominated convergence theorem with respect 
to loose convergence (Pitman [11], Theorem, p. 99) tha t  the second 
te rm --*0 as ,--*0, as was to be proved. 
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Remark 5.1. We shall show tha t  for each ~ e 0, there  exist  a com- 
mon _~-measurable set  S and a version h~ of the  densi ty  of P I  ~U such 
t ha t  

SDS(g~) a.e. ~,  
(5.9) 

ho=O a.e. Z on f / - l { q J - S }  and ll*h~=l a . e . ,  on S .  

This h~ family  satisfies the assumption of Theorem 3.3 in Kuboki [8], 
and the re fo re  it satisfies (5.7) and (5.8). To see the  above assertion, 
note  tha t  t he re  exists a probabil i ty measure  A over  (.~, ~ )  such tha t  
for  any F ~ 

A(F)=O.( "~.P,(F)=O for  every  8 ~ 0 .  

Pu t t i ng  ~=dA/dm, we get  dAr/d,u=T*~ and dA~;/d~=U*~. Define S =  
S(U*~). Since P[<<A~<<~, we can easily see tha t  SDS(g~) a.e. , .  Fur-  
the r  define 

fo/(go ~ II) on //-'{S(go)}, 

h , =  o n }  on ll-'{S-S(g,)}, 

0 o the rwise ,  

which satisfies (5.9). 

Remark 5.2. Suppose tha t  the  p~ family is smooth in O. Then it  
follows f rom (5.4) tha t  

(5.10) f f~'d/~=O and f g'~d,J=O, at  eve ry  ~e  0 .  

Here  we shall show tha t  the  following is also t r u e :  

(5.11) H*{(g, o II)h'}=O a.e. ~ a t  eve ry  8 6 0 .  

Le t  h~ sa t i s fy  (5.9). Since (g, o II)h~+,, and tl(g~ o TI)h'~ is p- integrable  
for  every  l 6 R ~, it follows from (5.9) and Lemma 2.4 tha t  for  eve ry  
l e R  ~ 

f (goo II)l(ho+,~-ho)/r l~lII*{(g,o II)h;}[d,~ . 

Let t ing  z--*0, we  see tha t  (5.11) follows f rom (5.7). 

N e x t  let  us discuss the differentiabil i ty of conditional expectat ions.  
F rom now on, we shall always assign 0 to the  value of E~(. I U) on a 
P [ -nu l l  se t  cU-S(go), i.e. 

(5.12) Es(. [ U) = 0 on c u -  S(go) for eve ry  8 ~ 0 .  
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Combining this wi th  (5.1), we ge t  f rom Proposit ion 3.2 

(5.13) E~(r162162 a.e. ~ for every  ~ e O, 

where  r is a real-valued ~ - m e a s u r a b l e  funct ion whose expecta t ions  
exist .  

Consider a real-valued ~ - m e a s u r a b l e  s tat is t ic  r such t h a t  Eo{E:(r 
U)}<co for  every  r in some neighbourhood of every fixed 0 ~ O. Then 
f rom (5.13) 

= i (go o II)r �9 Eo{E=(r U)} 

Hence (go o II)r  is /~-integrable, and the re fo re  f rom (5.13) 

f//*{(go~162 f g~162 f goE~(olU)d, . 

THEOREM 5.4. Suppose that the Po f a m i l y  is smooth i n  O, and  that 
r is a real-valued ~.~-measurable statist ic wi th  a f in i te  second moment  
f o r  every 0 ~ O. Under the assumpt ions  (5.1) and (5.12), i f  Eo{E~(r 
is bounded i n  some neighbourhood o f  every f ixed 0 ~ O, then f o r  every 
f ixed l ~ R ~ 

lim,_o f I go{Eo+.<(r U) - Eo(r U)}/~ - '///*{(go o II)r = 0 ,  

at every ~ ~ 0 ; and therefore f o r  every l ~ R ~ 

Z,<lII*{(go o II)r on S(go), 

at every ~ ~ O. 

PROOF. For  every fixed ~ ~ 0, let U(8) be a ne ighbourhood of 8, 

and suppose t h a t  f (go ~ II)r provided ~+e l  e U(tQ. Note 

t h a t  (go o / / ) r  tlh~ is /~-integrable for every  l e R ~ because 

(5.14) (go<> SS)lr r162162 o SS I~/hol} 
~_r o II)('l]~o)' a.e. , .  

Thus  f rom L e m m a  2.4, it  follows t h a t  for  every  t~+~l e U(0) 

f lgo[{E~+,~(r - E o ( r  1 o//)r I d ,  

--~ f (go o/ / ) I  r -- ho)/~ -- r ~lh;Idt~ 

(go o II)lr162 lhold[~ 
I,bl =~c 
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+f (g,o ll)[r f (goo ZZ)lr . 
[,/,I >c  [ r  

From (5.7), it follows that  the first term on the r ight  --.0 as s--*0. 
Denoting the second term by a(e, c), and using the Schwarz inequality, 
we have 

a2(--, c)= [It~,>c ,~l ge~g~--o-Eo E ( ~  + r )~/-~ o H I(#~-~+. - ~/h--~, )/~,d/zl ~ 

~4K, I (g,o II)( hd-~+.--d-~)~l~d[~ 
I ~ l > e  

which --*K. I (g~ ~ ~ as r because of (5.8). Hence lim lira 
J I~l >e  c - - =  ,--o 

a(~, c)=0. Fur ther  it follows from (5.14) that  the last term on the 
r ight  --*0 as c--.co. Thus the theorem is proved. 

Finally, in connection with Theorems 5.3 and 5.4, we shall propose 
a measure of the effectiveness of a statistic in investigating the value 
of 0 conditionally on U, and discuss its property. Before starting this, 
let us refer  to Pitman's ([11], p. 30) definition of the efficacy (matrix) 
of a statistic. 

Let r be a real-valued ~-measurable  statistic which has a finite 
second moment for every 0 ~ 0. Suppose that  E~(r is differentiable 
with respect to 8, i.e. there exists v(0; r r  w(0; r such 
that  for every fixed l ~ R ~, {E~+,(r162 r as ~-~0 at every 
0 cO. Define 

J(#; r r r162 

with the convention that  0/0=0, where V denotes variance. We shall 
call it the efficacy matrix of r at 0. I t  is a measure of the effective- 
ness of ~ in estimating 0 or in testing a hypothesis about O. The value 
{t/v(0; r is an indication of the sensitivity of the distribution of ~ to 
small changes in 0 in the direction 1. We want this to be large. The 
denominator V~(r indicates the liability of ~ to vary from observation to 
observation. We want this to be small. Thus high efficacy is a desir- 
able characteristic of a statistic used in investigating the value of 8. 
Pitman said that  ~ is regular at # e 0 if E~(r has a derivative given 

by 7(0; r  r at 8. If the p~ family is smooth in O and if ~ is 

regular at every # ~ 0, then 

7(#; r f {~-E~(r 
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because of (5.10). Applying the  Schwarz inequali ty to this, we ge t  

(5.15) 'IJ(8; r for every  8 ~ ~9 and every  l ~ R ~ . 

In part icular ,  if r 1 6 2  o II, r being _~-measurable, then 

(5.16) tlJ(8;r for every  ~ 6 0 and every  1 6 R ~ , 

? 

because v(6; r cfid/~=l Cg;d~. Theorem 5.2 gives a regularity con- 

dition on ~b. 
Taking account of the above discussion, let us turn to our problem. 

Suppose that Eo(r is loosely differentiable with respect to ~ on S(go), 
i.e. there exists ~*(0; r r u*(6; r such that for every 
fixed l 6 R ~, 

{Eo+,~(r162 ~,tlT*(8; r on S(go), 

as ~--~0 a t  every  0 ~ 0. Pu t  7*(8; r  on qf -S(g~) .  Then we shall 
define the  conditional e~cacy ~natrix J*(t~; r of r given U at  t~ 6 0 by  

J*(~; r r r162 

with  the  convention tha t  0 /0=0,  where  V(. I U) denotes conditional vari- 
ance given U. We shall say tha t  r is conditionally regular at  t~ 6 0 if 
E~(r has a loose der ivat ive given by  7*(0;r o II)r on 
S(g~) at  0. I f  the  P0 family is smooth in 0, and if r is conditionally 
regular  at  every  8 e 0, then 

7*(0; r  o II)[r162 o II}h'o]/go a.e. ~ on S(go). 

To see this, note tha t  as proved in (5.14), (go ~ II)r is /~-integrable, 
and the re fo re  so is (go o II){Eo(r II}h'~ because {Eo(r162 
a.e. Py .  Then the above equali ty follows at  once from Lemma 2.4 and 
(5.11). Here  using the Schwarz inequali ty wi th  respect  to / /* (Lemma 
2.4. (iii)), we  have 

[tlT*(8; r162 2} a.e. ; on S(go) 

for every  8 ~ 0 and every l e R ~, where  V~(r162162 o II}~ho] 
a.e. , ; recall (5.1) and (5.12). This inequal i ty is also t rue  on cU-S(go). 
Thus for every  t~ ~ 0 and every  l ~ R ~, 

(5.17) tIJ*(O; r ~} a.e. , ,  tIEo[J*(O; r . 

If  r satisfies the  condition in Theorem 5.4, then it is conditionally reg- 
ular  at  every  t~ ~ tg. 
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6. Discussion : sensitivity, efficacy, and other measures of information 

Throughout  this section, we use the  same notations as in the  pre- 
vious section. F u r t h e r  we define the  family of conditional densities by 
(5.1), and define conditional expectations by (5.12). Let  us now suppose 
tha t  the  inference  problem at  hand relates  only to 0~'=~(0, - - - ,  0D, 
k < n .  

6.1. Partial  sensitivity and Liang's  measure of  in format ion 

To simplify notation, we shall h e r e  represen t  p~, .to, go and ho by 
a common symbol q~, and their  derivat ives or loose derivatives wi th  
respect  to 8 by a common symbol q';  see (5.2) and (5.3) for loose de- 
rivatives. F u r t h e r  we shall denote by s~(t~ I l) the  sensit ivity of the  q~ 
family,  and by Iq(t~) the  information mat r ix  of the  q, family. In our 
problem, we m a y  ignore tha t  par t  of s](~[l) which depends on small 
changes in t~(2)=~(t~+l, . . . ,  ~J, i.e. which depends on the  direction l(~)= 
'(l~§ lJ, because information gained on t~ (~) is of no direct  relevance 
to the  problem. From this consideration we shall define the  partial 
sensitivity s~(~;t~(~)lc) of the  qo family wi th  respect  to t~ (1~ (at ~ ~ 0 in 
the  direction c ~ R ~) by 

s~(0; t~(~l c ) = inf  s~(6]l) , 
~L c 

where  Lo={l E R~: l ~--c} for every  c E R ~ ; l<~--~(l~,- --, l~). In general ,  
by using Fa tou ' s  lemma with respect  to loose convergence (Pitman [11], 
Lemma,  p. 98), it follows tha t  

s~(t~ ; Oc~'Ic)>__ inf tlIq(t~)l 
IEL c 

for every 6~ and every eeR ~. Note that the term on the right is 
a generalization of Liang's [9] measure  of information about 8, in the  
qo family.  

Suppose t h a t  all elements of I~(t~) are  finite for every  t~ ~ O. Part i -  
tion I~(O) as 

L4,~(t~) /22a(t~)J ' 

where  I~,~(t~) is of order /~• and put  

I~(t~; o<") = I,,~( ~ ) -  I,~( ~) { I ~ (  ~)} § 4,~( ~) , 

where  M + denotes the  Moore-Penrose inverse of a ma t r ix  M. Then 
we have 

(6.1) inf ~lI~(O)l='cI~(t~; O(1))e 
l ~ L  c 
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for eve ry  t~ ~ 0 and every  c ~ R~; this is a direct  consequence of a well 
known resul t  on the  ex t reme values of quadrat ic  forms (Rao [12], p. 
61). F u r t h e r  we can show tha t  I~(0; VI~)---0 for every  t~ e 0 if and 
only if 

(6.2) '(q~,..., q~o)=A(8)t(q~+~, . . . ,  q~) a.e. a t  every  t~ e O, 

where  A(t~) is a mat r ix  of order  kx(n- -k )  depending on only t~. 
Combining the  above discussion with Theorems 5.1 and 5.3, we see 

tha t  if the  P0 family is smooth in 0, then  for every  0 ~ e and every  
cER ~ 

0'" I c) ='eI (0 ; 

For this reason, when the  P0 family is smooth in 0, we shall call I~(8; 
0 ~1~) the  partial sensitivity matrix of the  qe family with respect  to 0 ~ 
a t  0 ~ 0 .  

6.2. E.~cacy and Godambe's measure of information 
Here  we shall discuss the  case where  0(1)=01. Let  T be sufficient 

for 0 e 0. Consider a real-valued function r  r on 01 x ~ such tha t  
r e ) J /  for  every  fixed t~l ~ 0~. An es t imate  of t~1 is obtained by solv- 
ing the  equation r for t~. From this, r is called an es t imat ing 
function. If  E~(r for every  t~e0, then  r is called unbiased 
(Godambe [4]). We shall say tha t  r is conditionally unbiased if E~(r ) 
= 0  a.e. P [  for every  0 e 0. 

Throughout  this subsection, let  us suppose tha t  the  p~ family is 
smooth in 0, and tha t  the  supports S(p~) are independent  of t~ e 0. 
Therefore  f rom Lemma 2.2. (ii), an J / -measurab le  set A exists such 
tha t  for each t~ ~ 0, A=S(fo) a.e . /1;  and a _@measurable set B exists 
such t h a t  for each 0 e 0, B=S(go) a.e. , .  To fix the  idea, for each 0 
0, we take  f~ and g~ so tha t  t hey  satisfy A=S(f~)  and B=S(go), respec- 
t ively. For  est imating functions r under  consideration, we assume tha t  
E~(r for every  r in some neighbourhood of every  fixed t~ ~ 0. We 
shall say tha t  an est imating function r is regular or conditionaUy reg- 
ular if for  every  fixed t~ e 0, the  statistic r is regular  or condition- 
ally regular  a t  t~, respectively. For  a regular  es t imat ing function r 
we shall define the  e~cacy matrix J,(o) of r a t  ~ ~ 0 by J(0;  r the  
efficacy mat r ix  of the  statistic r at  t~; similarly, for a conditionally 
regular  es t imat ing function r we shall define the  conditional e~cacy 
matrix J*(O) of r at  t~ ~ 0 by J*(0;  r Natural ly ,  one would prefer  
an es t imat ing  function with high efficacy in a certain sense. 

Now let  us denote by C the  class of all regular  and unbiased esti- 
ma t ing  funct ions;  by C* tha t  subclass of C each member  of which is 
conditionally regular  and conditionally unbiased;  and by C ~ the  subclass 
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consisting of all r E C such that  ~p~1=r o 11, r being ~-measurable.  
Further ,  let us denote by J~(0; 8,) the (1, 1) entry of JJS), and by 
J*(8; 8,) the  (1, 1) entry of J*(8). Note tha t  if @ e C, then all ele- 
ments of J~(8) vanish except J~(8; 8~), because E~+,,(r162 for 
every l of the form l=*(0, 12,-.., 1,). Similarly, if r e C*, then all ele- 
ments of J*(8) vanish except J*(8;8,).  Define 

5i(8 ; 8,)= sup J~(8 ; 8~), 5~(8 ; 8~) = sup J~(8; 8,), 
,~ec r  o 

(6.3) 
d~(8; 8,)= sup Eo{J*(O; 8,)}. 

Then combining (5.15)-(5.17) with (6.1), and taking account of the above 
observations, we obtain 

d (8; 8,), d (8; 8,), 
(6.4) 

J,(8; 8,). 

The quantities 5i(8; 8~), J~(8;8,) and Jh(8;8,) are essentially the 
same as Godambe's [5] measures of information about 8, in the respec- 
tive families, although his regularity conditions on estimating functions 
and on families of densities (Godambe [4]) are different from ours. For 
example, Godambe ([4], Theorem 2.2) has shown tha t  the estimating 
function for which J~(8; 8,) attains its supremum in C can be often ob- 
tained from the efficient score. The following is a corresponding result 

of ours. Let  us define f0, ~ and h0 by 

L= 

f[Jf~ on A ,  

(gr II)/(g~ o 11) on 11-~B--A, 

0 otherwise ; 

#o= l g~o/go on B ,  

0 otherwise ; 

~.~=l h~olhe on ANII - :B ,  

0 otherwise.  

These are essentially equal to a logfJaS:, a log go/aSt and a log ho/aS~, 
respectively, provided they exist. I t  follows from (5.3) that  f~=~ o 17 
-t-ho a.e./~. Now put 

(6.5) = Co(t) = a(8)fo(t) + bo(t), 

where a(8) is a real-valued function on 8, and b0(t) is a real-valued 
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funct ion  on 0 X iT such t h a t  Eo(bor for every  r e C and for every  
0 e O .  I t  is easy to prove t h a t  if C e C ,  t hen  J~(O; O1)=Js(0;Ol). In 
fact ,  examin ing  the  proof of Theorem 2.2 in Godambe [4], we see t h a t  
the  assert ion follows at  once f rom the  obvious re la t ion:  

Eo(r162 f r176176 Cg') for  every  r e C .  

F u r t h e r  suppose t h a t  the  conditional densit ies h~ depend on 8 only 
t h rough  81, say ho=hol, and suppose t h a t  the  family s defined by 

(6.6) ~ = [ W :  0 ~ {01}XO2X ..-  xO~} 

is complete  for  every  fixed 0, e e,. Then,  i t  can also be shown t h a t  Jr 01) 
at ta ins  its s u p r e m u m  in C for r ), provided h ~ C. This resul t  

corresponds to Theorem 3.2 in Godambe [4]. Note  t h a t  h is obtained 
f rom (6.5) by pu t t i ng  a(O)=l and -b~=~lo o H. 

F r o m  now on, let us consider the  case where  the  conditional den- 
sities ho depend on ~ only t h r o u g h  81. To emphasize this,  as before,  

we shall wr i t e  hol, hl,, f~o~ and h~, for h0, h;, /~0 and h0, respectively.  I t  

follows f rom (5.11) t h a t  Eo(h~)=O for every  0 e O, and the re fo re  h=h~(t) 
is unbiased.  Here  we shall assume t h a t  h is regular ,  i.e. h ~ C. More- 

over,  we shall assume t h a t  h e C*. Then for every  8 ~ O, 

(6.7) Eo{J*(O ; 81)}--/~(0 ; 6~)=J~(O ; ~1) �9 

The le f t -hand equali ty follows f rom the  easily proved,  

7*(0; ho~)=II*[(hey}=Vo(he~lU) a . e . v .  

Next ,  no t ing  t h a t  hg=0 a.e. ff on II-1B--A, we obtain f rom (5.3) and 
(5.11), 

: f <.,0 o f o o < , .  = I o = 0 .  

The r igh t -hand  equali ty is t hen  obtained f rom the  following observat ion : 

~,(o; fi,,) = f (g,o/i)(h,,)~d~ = v,(T~,,). 

Taking  account  of (6.3) and (6.4), we see t h a t  (6.7) implies the  relation, 

(6.8) &(~; o,)= 5~(o; r r r 

for  every  8 ~ O. Fu r the r ,  i t  follows f rom (5.6) and (6.1) t h a t  for every  
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6E0 ,  

(6.9) z.,(8; o,)=z,(o; e,). 

Obviously, the property 

(6.10) I~(8; 8~)=Ii(8; 8~) for every 8 e 0 

is one good quality in the h,l family used in investigating the value 
of 61. Naturally, we can regard the property 

(6.11) J~(8; 8~)= Jr(8;  #~) for every 8 e O 

as another good quality in the h~ 1 family. Let us examine the rela- 
tionship between (6.10) and (6.11). 

Clearly, it follows from (6.8) that  (6.10) entails (6.11). Further-  
more, we see that  (6.10) yields J~(8; 81)=0 for every 8 e 8 on account 
of (6.4) and (6.9). For example, suppose that  the densities ga depend 
on 8 only through r, say go=groom, where r = t ( r , . . . ,  r,_~) is a continu- 
ously differentiable function of 8, and #, is differentiable a . e . ,  with 
respect to r.  Partition the Jacobian matrix K,(8) of r as K,(8)=[K~,(8) 
K~(8)], Kt~(8) being of order ( n - 1 ) x  1 and K~,(8) being of order ( n - l )  
• ( n - l ) .  Then, we shall say that  the statistic U is ancillary with re- 
spect to 8~ if rank Kz~(8)=n-1. Note tha t  Godambe's ([4], Assump- 
tion 3.2) one concept of ancillarity with respect to 8~ is a special ease 
of this. If the rank condition is true, then 

g ~ , = ' K t , ( 8 ) { ' K 2 , ( 8 ) } - t ' ( g ~ o , .  . .  , g ~ )  a.e. 

at every 8 ~ 0. Thus it follows from (6.2) that  I~(8; 0~)--0 for every 
8 ~ 0, which in turn implies (6.10) because of (6.9). Hence the above 
concept of ancillarity is justified by both property (6.10) and property 
(6.11). 

Godambe's ([4], Assumption 3.4) another concept of ancillarity with 
respect to 8~ is described as follows: the family ~P~ defined by (6.6) 
is complete for every fixed 81 e 0t. As mentioned above, in this case, 
(6.11) is true. However, (6.10) is generally not valid. To illustrate 
this, let us take X and Y to be independently normally distributed with 
variance 8~ and mean 82; 8=~(8t, 8~)~ (0, oo)• t, and let T=t(X, Y) and 
U=X-t-Y. This example was given by Godambe ([4], Example 4.3). 
Then we can easily show that  J~(8; 8 , )=J j (8 ;  8~)=8T2/2 and Jg(8; 8,)=0 
for every 8. However, I~(8; 8~)=8C2/2r and hence I~(8; 81)<If(8; 8,). 

Recently, Godambe [6] has shown that  his two concepts of ancil- 
larity can be unified with an extended concept of Fisher information. 
However, his new measure of information is also defined in a relation 
to the class C of all regular and unbiased estimating functions, as is 
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the  information Jz(0; 01). On the  other hand, the partial sensitivity 
or Liang's  measure of information is related only to a given statistical 
model, i.e. a given family of distributions. 

Acknowledgement 

The author  would like to acknowledge the  referee for his useful 
comments  and kind suggestions. Also the author  would like to thank 
Professor M. Huzii for his helpful advice. 

THE INSTITUTE OF STATISTICAL MATHE~IATICS" 

R E F E R E N C E S  

[ 1 ] Barndorff-Nielsen, O. (1978). Information and Exponential Families in Statistical Theory, 
John Wiley and Sons, Chichester. 

[2]  Basu, D. (1977). On the elimination of nuisance parameters, jr. Amer. Statist. Ass., 
72, 355-366. 

[3 ]  Fraser, D . A . S .  (1956). Sufficient statistics with nuisance parameters, Ann. Math. 
Statist., 27, 838-842. 

[4]  Godambe, V. P. (1976). Conditional likelihood and unconditional optimum estimating 
equations, Biometrika, 63, 277-284. 

[5]  Godambe, V. P. (1980). On sufficiency and ancillarity in the presence of a nuisance 
parameter,  Biometrika, 67, 155-162. 

[6]  Godambe, V. P. (1984). On ancillarity and Fisher information in the presence of a 
nuisance parameter, Biometrika, 71, 626-629. 

[7 ] Halmos, P. R. and Savage, L. J. (1949). Application of the Radon-Nikodym theorem 
to the theory of sufficient statistics, Ann. Math. Statist., 20, 225-241. 

[ 8 ] Kuboki, H. (1984). A generalization of the relative conditional expectat ion--Further  
properties of Pitman's T* and their applications to statistics, Ann. Inst. Statist. Math., 
36, 181-197. 

[ 9 ] Liang, K. Y. (1983). On information and ancillarity in the presence of a nuisance 
parameter,  Biometrika, 70, 607-612. 

[10] Lo~ve, M. (1977). Probability Theory I (4th ed.), Springer-Verlag, New York. 
[11] Pitman, E . J . G .  (1979). Some Basic Theory for Statistical Inference, Chapman and Hall, 

London. 
[12] Rao, C. R. (1973). Linear Statistical Inference and Its Applications (2nd ed.), John 

Wiley and Sons, New York. 
[13] Sandved, E. (1972). Ancillary statistics in models without and with nuisance param- 

eters, Skand. AktuarTidskr., 55, 81-91. 


