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Summary

This paper discusses, with measure-theoretical rigor, some basic
aspects of the theory of separate inference. To analyze densities of
marginal and conditional submodels, certain operators are introduced.
First a general concept of decomposition of a model is proposed, and
the corresponding factorization of densities of the model is established.
Next it is shown that the property of smoothness of a family of den-
sities is retained in the operation of conditioning, and therefore it yields
the differentiability of the conditional expectation of a real-valued sta-
tistic in a certain sense. On the basis of this result, two measures of
the effectiveness of a submodel in separate inference are investigated.

1. Introduction

Separate inference is inference on parameters of interest from a
part of the original model and data (Barndorff-Nielsen [1]). There are
two key procedures for this. One is to decompose the model into sev-
eral submodels with certain statistical structures. The other is to ex-
amine such submodels through a measure of the effectiveness of a sub-
model in the inference on parameters of interest. The main purpose
of this paper is to discuss, with measure-theoretical rigor, the follow-
ing basic aspects of the procedures: factorization of densities of a model;
smoothness of a family of conditional densities; differentiability of the
conditional expectation of a statistic.

To this end, we shall use certain operators for averaging, which
were introduced by Pitman [11] and were developed by Kuboki [8]. The
definitions and some further properties of them are described in Sec-
tion 2. In particular, our interest is the case where they operate on
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probability density functions. In Section 3, we shall investigate prop-
erties of the operators in this case, and give two propositions which
are important to our discussions below.

First we shall deal with factorization of densities of a model. Let
Poe={P,: 6 € O} be a model for data X, i.e. a family of distributions of
X, and let r:®—I and w:0—2 be two surjective parameter func-
tions. We denote by &P, the partition of &P, induced by r, ie. P,
={P,:rel}, P,={P,:0€8,r0)=y}; and denote by P, the partition
of &P, induced by w, ie. P={P,: we}, P.={P,;: €6, wl)=w}.
Consider any two statistics U and T such that U is a function of T.
Then we shall introduce the following concept.

DErFINITION 1.1. We shall say that (U, T|U) induces (Pr, Py) if
U and T satisfy the following two conditions.
(i) The marginal distributions of U depend on ¢ only through ».
(ii) For each event A of T and for each 6 €6, there exists a deter-
mination of the conditional probability of A given U that depends on
6 only through w.

The condition (i) implies that the mapping P,— P/, 4 € 0, induces
the same partition of P, as does r, where PY denote marginal distri-
butions of U. Similarly, the condition (ii) implies that the mapping
P,—Pr7, ge@, induces the same partition of P, as does w, where
P77 denote the conditional distributions of T given U if they exist.
The above concept includes various concepts of ancillarity and sufficiency
found in the literature (Fraser [3], Sandved [13], Basu [2], Barndorff-
Nielsen [1]). For example, take T=X. Then, U is ancillary for ¢ 6
if » is a constant function, and U is sufficient for ¢ @ if w is a con-
stant function.

In this paper, let us suppose that P, is dominated by a o-finite
measure m; and let us denote by p, a density of each P,¢ Ps. Then
it will be useful to review Definition 1.1 in terms of the corresponding
factorization of densities of 7. Further, it will be useful to establish
a factorization criterion of the densities for the concept in Definition
1.1. In Section 4, we shall consider these problems by using the oper-
ators introduced in Section 2.

Next we shall discuss Pitman’s concept of smoothness of a family
of densities. For ease of reference, we shall here describe the defini-
tion of the concept with some modification; see Pitman ([11], Chapter
3). Suppose that @=8,X .- X8,, O, being an open interval of R'. We
shall write 8=46,,---, 8,), where ‘M denotes the transpose of a matrix
M. Further suppose that p, is differentiable a.e. m with respect to 4,
i.e. there exists p,=%p,- -, Pls) such that for every fixed I='(l;,-- -, 1,)
¢ R~,
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lim (pyy—Ps) /e ="1D} a.e.m at every 0€6.
&—0

Define p,(z, 4), the distance between P, and P,, z,0¢€0, by
i, 0)=\ (VB —Vp, Ydm..

Denote lim inf 2p,(0+¢l, 0)/|e|, which always exists, by s, ([l); it is a
t—0

measure of the sensitivity of the family of densities p, to small changes
in # in the direction . We shall call s}(8|l) the semsitivity of the p,
family (at ¢ in the direction ). Putting p,=p)/vp, or =0, according
as € S(p)={x: p(x)>0} or x¢ S(p;), we can write the information
matrix I(0) of the p, family in the form

I(0)= [S f’otf’ﬂdm:} .
Evidently, for every 6 €@ and every [ ¢ R", s3(0|l)="lL,(4)l.

DeFINITION 1.2. If for every fixed I ¢ R", lim 4p%(8+¢l, 6)/¢* exists,
=0

is finite, and is equal to II(6)l at every 6 ¢ @, then we shall say that
the p, family is smooth in 6.

When the p, family is smooth in 8, the value of 4I,(4) is the sen-
sitivity of the family in the direction ! at 8, so that then I(f) is called
the sensitivity matrix of the family.

1t is proved by Pitman [11] that if the p, family is smooth in 8,
then so are the family of marginal densities of T and U. Further as
pointed out by him, the property of smoothness is closely connected
with the differentiability of the expectation of a real-valued statistic,
and therefore with a certain property of the efficacy matrix of the
statistic, a measure of the effectiveness of the statistic in investigating
the value of 4. In Section 5, first we shall discuss the validity of the
following two properties: smoothness of the family of conditional den-
sities of T given U; and differentiability of the conditional expectation
of a real-valued statistic given U in a certain sense. Next, on the
basis of them, we shall introduce a measure of effectiveness of a sta-
tistic in investigating the value of 4 conditionally on U. Here we re-
mark that the conclusions are independent of the particular choice of
that version of p, family which is smooth in 6.

The last section discusses measures of the effectiveness of a sub-
model in inference on parameters of interest. In particular, let us
consider the case where only 6, is the parameter of interest. Up to
now, two measures are proposed to evaluate the effectiveness of a sub-
model in investigating only the value of 4,. One is Liang’s [9] meas-
ure of information about 4, and the other is Godambe’s [5] measure of
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information about 4,. We shall show that the former is related to sen-
sitivity and the latter is related to efficacy. Furthermore, we shall
discuss the relationship between the two measures when the conditional
densities of T given U depend on ¢ only through 6,. In connection
with this, Godambe’s [4] two concepts of ancillarity will also be dis-
cussed.

2. Notations and preliminaries

Let (¥, &F) be a measure space: a set X and a oc-algebra &F of
subsets of X. T is a mapping from ¥ into a space &, and I7 is a
mapping from < into a space U. Let J be a s-algebra of subsets of
g, and B a c-algebra of subsets of U/. We shall assume that T and
IT are measurable. Define a measurable mapping U from X into U
by U=IT - T.

Let m be a given o¢-finite measure over (¥, &F). Then choose s-finite
measures g over (<, ) and v over (U, B) such that m"«p and £"<v,
where m7”,=mT "', denotes the induced measure over (I, A) and px7,=
pIIt, denotes the induced measure over (U, B). The o-finiteness of
m guarantees the existence of such measures g and ». It should be
noted that m” and x” are sometimes not o-finite even though m and
p are o-finite. Evidently mY<v, where m?,=mU™, is the induced
measure over (U, B).

Let us denote by &(¥, &, m) the class of all extended real-valued
F-measurable functions whose m-integral exists, i.e.

E(X, F, 'm)={¢: é( €)F, S¢+dm<oo or S¢‘dm<oo} ,

where the notation ¢(€)F expresses the F-measurability of ¢. Of
course, ¢ and ¢ in E(F, F, m) are regarded as identical if ¢=¢ a.e. m.
Likewise, we shall define &I, A, p) and E(U, B, v). For every ¢¢
(X, F, m), let us define T*pe &I, A, p) by the following formula:

2.1) Sf—u sdm = SA (T*¢)du  for all Ae A.

This is justified as follows. For each ¢ ¢ &(X, &F, m), there exists the
indefinite integral @ over (4, A) such that @(A):ST . ¢dm for all Ae
—*4

A. Note that p(A)=0=>m"(4)=0=0(4)=0. Hence #»®, and so by

the extended Radon-Nikodym theorem (Loéve [10}, p. 134) there exists

a function ¢ € &I, A, p), determined up to g-equivalence, such that

(D(A)zg ¢dp for all Ae 4. We shall write ¢=T*¢. This averaging
A

v

operator T* was introduced by Pitman [11]. Similarly, for every ¢¢
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Ed, A, p) we define I*¢ ¢ E(U, B, v) by
2.2) S”_13¢dy:88(ﬂ*¢)dv for all Be B,
and for every ¢ ¢ &(X, F, m) we define U*¢ ¢ £(U, B, v) by
(2.3) SU_IB ¢dm=SB (U*¢)dy  for all Be 3.

LEMMA 2.1. We have U¥=1I* o T*.

Here we shall list some properties of the operator [7*. Lemmas
2.2 and 2.3 below are easy consequences of the defining relation (2.2).
For Lemma 2.4 and other properties, see Pitman ([11], p. 101) and
Kuboki [8]. We can also see that the operators T'* and U* satisfy
properties similar to them. From now on, denote the indicator funec-
tion of a set E by yz, and for a function ¢ denote the set {-: ¢(-)=0}
by S(¢).

LEMMA 2.2. (i) Suppose that ¢(€) A. Then
$6=20 a.e. py=>11*¢=20 a.e.v and ST {S(I*$)} a.e. p.
(it) Suppose that ¢, ¢(€) A, and that ¢, =0 a.e. p. Then
S(@)cS(¢) a.e. p= S(IT*¢)C S(IT*¢Y) a.e. v .
LemmA 2.3. Suppose that ¢, ¢ € E(I, A, p), and that Be B. Then
I*(x.9)=I*(xa¢) a.e.v on B for each Ae A
&¢=¢ a.e pon II7'B.
LEMMA 2.4. (i) Suppose that ¢, ¢ €&, A ). If a S gdp+

b S pdp exists for constants a and b, then II*(ap+by)=all*¢+bll*¢ a.e. v.
(ii) If ¢e€&(d, A, p), then |II*¢|<IT*|¢| a.e. v.

(iil) Suppose that ¢, ¢(€)A. If ¢ and ¢ are p-integrable, then
{T*@P)F=(II*¢")(II*¢") a.e. v.

(iv) Suppose that g(€)B. If ¢, (9o M € ET, A, ), then II*{(g o )¢}
=gll*¢ a.e.v.

3. The operators on probability density functions

Let us consider the subeclass P(X, F, m) consisting of all prob-
ability density functions in &(2, &F, m). Put for each pe P(X¥, F, m)

3.1) P(F):SF pdm  for all FeF.
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As before, we shall denote by P7 the induced measure PT™', and by
PY the induced measure PU~'. Then it follows from (2.1) and (2.3)
that

(3.2) PT(A)=SA(T*p)d,u for all Ae,

3.3) P”(B):SB (U*pydy  for all Be B.

Combining (3.1)-(3.3) with Lemma 2.2. (i), we see that if a random vari-
able X over (¥, &) is distributed with the density p relative to m,
then T*p is the density of the marginal distribution P? of T(X) rela-
tive to g, and U*p is the density of the marginal distribution P? of
U(X) relative to v.

Now for each pe P(XF, F, m), let us denote by p™'¥ any one of a
whole family of nonnegative real-valued _J/-measurable functions which
agree with T*p/{(U*p) - I} a.e. p on II'{S(U*p)}, that is

(3.9 p""=T*p{(U*p) - I}  a.e.p on I7{S{U*p)} .

To stress this, we shall call p7'Y a version of the conditional density
of T given U. Note that any two versions are equal a.e.p on II!
{S(U*p)}. The following propositions show that p7'¥ has actually some
properties of the conditional density. Here we shall denote by E.(-{U)
the conditional expectations taken with respect to the probability meas-
ure P given by (3.1) for each pe P(X, F, m).

PRrROPOSITION 3.1. For each pe P(X,F,m), T*p factorizes as fol-
lows.

T*p={(U*p) o H}D™Y  a.e.p.

Proor. From (3.4), it is obvious that the factorization holds on /7
{S(U*p)}. Let us show that it also true on I~ '{U—S(U*p)}. Since
T*p=0 a.e. p, it follows from Lemmas 2.1 and 2.2. (i) that < —S(T*p)
DI YU—-S(U*p)} a.e.p, and therefore T*p=0 a.e.p on I '{U-—-
S(U*p)}. On the other hand, {(U*p) - H}p™¥=0 on I{U—-S(U*p)}.
Thus the proof is completed.

PROPOSITION 3.2. For each pe P(X,F, m), let ¢ be a real-valued
A-measurable function whose expectation exists. Then

Ep(3|U)y=1I*¢*p"'")—[I*(¢p""Y)  a.e.v on S(U*p).
In particular, if ¢p”'7 € &I, A, p), then
Ep(s|U)=1T*¢p™")  a.e.v on S(U*p).
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Proor. Let us show that
E (¢t |U)=IT*(¢*p"'Y) a.e.v on S(U*p).

This sufficies to prove the above assertions. First note that from Prop-
osition 3.1, Lemma 2.4. (iv) and (3.2), it follows that for every Be B

oy #7aP7 =\ 607 (U)o Mdu={ (T*@*p" "N (U*p)> .
n-1a i ¥:} B
Next note that it follows from (3.3) that for every Be &

S ¢rdPT= S (B¢ [ DHU*p)dy

Combining them, we have the desired result.

Now let us denote by PV the restriction of E,(-|U) to the family
{xa: Ae A}, and call it the conditional: probability function of T given
U; in other words, P is a function on ./ whose values are $B-meas-
urable functions P7'Y(A) defined by PT'Y(A)=FE:(34|U) a.e.». From
Proposition 3.2, it follows that for each A e 1,

(3.5) PT(A)=IT*(.p"%)  a.e.v on S(U*D).

Thus we can regard p?'Y as the density of PT'Y,

4. Factorization of densities of a model

In this section we shall use the same notations as in Definition 1.1.
Let Po={P,: 6 € 8} be a family of distributions of a random variables
X over (¥, ), with densities p, relative to a os-finite measure m. 7T
is a statistic from (2, &) into (J, A4), and U is a statistic from (X, F)
into (U, $) such that U=l o T. As before, let us denote by PI=
{PF:0 €0} the family of marginal distributions of T, by Pi={P7: 8¢
@} the family of marginal distributions of U, and by P ={PIW:0¢
@} the family of conditional probability functions of T given U. As
shown in the previous section, ¢! has densities f,=T*p, relative to a
o-finite measure p, PJ has densities g,=U*p, relative to a o-finite meas-
ure v, and PI'Y has densities h,=pI'Y.

First we shall establish the following theorem.

THEOREM 4.1. Suppose that Pe<m. Then (U, T|U) induces (Pr,
Py if and only if there exist monmegative real-valued B-measurable

Sfunctions §,., and nonnegative real-valued _A-measurable functions Ry
such that for every 6¢6

(4~1) fvz(grw) ° H)i&w(,,) a.e. u,
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(4'2) Grr=9s a.e.y,
4.3) ﬁw(ﬁ)":hﬂ a.e. u on I{S(g,)} .

Proor. It is obvious that the condition (i) of Definition 1.1 im-
plies that g, depends on # only through r. Hence g, is expressible as
(4.2). Let us denote by QL) the conditional probability functions of
T given U satisfying the condition (ii) of Definition 1.1. Since P.«m
for every fixed w e £, it follows from Halmos and Savage ([7], Lemma
7) that there exists a probability measure over (3¢, F)

(4.4) 4=3cP,, ¢>0and P e@,,

which is equivalent to P, in the sense that for any Fe&F
A(F)=0& P(F)=0 for every P,e P, .

Putting 2,=d4,/dm, we obtain dAI/dp=T*2, and dAY/dv=U*2A,, where
AT=A,T-' and AY=4,U-'. Now we define A,y by
- T*lw(ﬂ)/{(U*lww)) o I} on ]I_I{S(U*Xw(o))} ’
(4-5) hw(a)'—'—' .
. 0 otherwise .

We shall show that this function satisfies (4.3). Note that an argu-

ment similar to the proof of Proposition 3.1 yields T*i,={(U*4,) » I} h,
a.e. p. From this, we can easily see that for each A¢. 4 and each
Be 3B,

SH’IB radds = SB {IT*(g sk )} (U*2)dy

On the other hand, it follows from (4.4) that for each A €4 and each
Be 3,

=|, @r@dr=| @rwywrids .
From these two equalities, we have
QLE(A) =IT*(ghuw)  2.e.v o0 S(U*Auir)
for each A ¢ f; on the other hand, from (3.5) we have

QLZ(A)=IT*(x s 1) a.e.v on S(g,)
for each A ¢ 4. Thus noting that S(U*1,4)>S(g,) a.e. » because P¥«
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A&y, we get
(g ahue)=T*( k) a.e.v on S(g,)

for each Ac . From Lemma 2.3, it follows that &, satisfies (4.3).
The factorization (4.1) follows at once from (4.2), (4.3) and Proposition
3.1. Now it remains to establish the converse. However, it is trivi-
ally true.

Let us now suppose that the densities f, of PZ factorize as follows.

(4.6) J6=(Brn» © Ny a.e. pu,

where a,, are nonnegative .A-measurable functions and B,, are non-
negative B-measurable functions. Then the question arises whether
(U, T|U) induces (£, P,) or not. Note that the Fisher-Neyman fac-
torization criterion for sufficiency corresponds to the case where w is
a constant function. Here we shall discuss' this problem. Denote by
Pr.o the partition of P, induced by r and w, i.e. Pro={P,NP.:
rel, we 2}.

THEOREM 4.2. Suppose that the densities f, of PL factorize as (4.6).
Then (U, T|U) induces (Pryoy Po). If w is a function of r, then (U,
TIU) induces (P, Py).

Proor. It follows from Lemmas 2.1 and 2.4. (iv) that
(4'7) gt?:.Br(r})H*aw(p) a.e.y.

Thus the densities g, of PY depend on # only through = and w; and
therefore, they depend on ¢ only through = if w is a function of r.
Next putting D(e,)={t: 0=Za,(t) <IN u: 0<IT*a,(u)< o}, we define
ﬁw(a) by

~ ‘ aw(a)/{(ﬂ*aw(ﬂ)) ° H} on D(aw(ﬁ)) y

we) —

otherwise .

Since 0= f,<o a.e.p and 0<g,<co a.e.v, it follows from (4.6) and
(4.7) that

O{S(g)}c O {u: 0<Bn(u) <o} {t: 0Sa,m(t) <o}  a.e. g,
IYS(g N T {u: 0< T ¥, p(u) < oo} a.e. g .
Hence II'{S(g,)}cD(e,w) a.e. p. Thus we have
how=Fl(gs o 1) a.e.p on I {S(g,)} .

This implies that for each 6 € @, h,,, is a version of the density of P7'Y.
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Thus the theorem is proved.

5. Smoothness of a family of conditional densities, differentiability
of conditional expectation, and conditional efficacy

Let us further suppose that ®=8,x ---x8@,, O, being an open in-
terval of R!. Before discussing our problems, we shall introduce some
notations.

Consider any two statistics U and T such that U=0I o T. As be-
fore, we write f, for T*p,, and g, for U*p,. For every r, 0 € @ define
os(z, 8), the distance between P” and P/, and p,(z, §), the distance be-
tween P7 and PY, by

oie, )=\ (VF—VTydp, o, 0=\ (Vo —Vayds .

To fix ideas we assume that the densities h, of P%'W are defined by

G.0) , ( fol(goo L) on II7{S(gn)},
. e =
1 0 otherwise,

unless otherwise stated. Put for every r,0¢8
o, O)=IT*(Vh, — vk, )* .

Let us show that p¥(r, 6) is the distance between Pf'W and P7YW. It
will suffice to discuss only the triangular inequality. First note that
a nonnegative $B-measurable function ¢ exists such that S(¢)D>S(g,)

a.e.v for every #¢@ and S¢dv=1; see Remark 5.1 below. Thus

S(q&o H)h,dpgggédv:l, and so S(¢o M (WF. — VT ydu<2, for every r,

e ®. Next using the Schwarz inequality with respect to /7* (Lemma
2.4. (iii)), we have

VIT¥{(p o I)(VR, — ¥ h, '} SVIT¥(¢ o T)(¥ b, —V ke )}
+VII*{(g o M)(Vh; —v'hy )}

a.e.v for every 4,7,£¢6. Hence from Lemma 2.4. (iv) and (5.1)
0¥ (z, O) S ¥z, &)+0x(&, 9) a.e.v for every 0,7,6¢€80.

Now define the mean difference p.(z, 8; 6) between PT¥ and PTYW un-
der PY by

6i(e, 03 0)={ gwt'cc 0= @ o HWE—~VEydp
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for every 7,0¢@. If S(f)=S(f)) a.e. ¢, then we can easily see that
oi(r, O=EVT VI =1}, 0¥z, )=EfvVg./¥Vg, —1? and pi(c,0;0)=
E(~h.[vVh, —1), because S(g.)=S(g,) a.e.v; see Lemma 2.2. (ii).

Suppose for a moment that f, and g, are loosely differentiable with
respect to 4, i.e. there exist functions f/=:(f%,---, fH) and g;=%(g} -,
g4s) such that for every fixed I=%;,---,1) e R*

(5.2) (fo+=z—fa)/5'_1"tlf; and (go+nl—‘gﬂ)/5"l"tl95 as e—0,

at every #<@®. Here we shall say that a sequence {¢,} of real-valued
functions converges loosely to ¢, and write ¢,——¢, if every subsequence
of {¢,} contains a subsequence which converges almost everywhere to
¢; see Pitman ([11], p. 98). Now define h,='(h{, -, hi) by

(fisgo o LI —Fogis o ID[(gs o II}*  on II7{S(gy)},
(5.3) hiy=
otherwise .
Then it follows from (3.4) and (5.2) that for every fixed [ ¢ R"
(hosa—ho)e——=4Th,  on II"Y{S(g,)} as e —0,
at every #€6. Note that hj=0 a.e. z on I YS(g)}—S(f,). Put
{ filvfe  on S(£),

otherwise ;

§=

(99 on S(g,),

gy: \
0 otherwise ;
{ hifvh,  on S(f)NI{S(gn},
" 0 otherwise .

Then the information matrices of the f,, g, and h, families are respec-
tively given by

Lo=[{fsae],  Lo=[{29].

10=|{ @« Mk .

Note that k%, h, and L(9) are independent of the particular densities A,

given by (5.1); they are determined by f, and g, only. Denoting, as

before, lim inf 2o (9+¢l, 0)/l<] by s,(011), liminf 2p,(6+ &L, 6)/|e] by s,(8]1),
=0 &—0

and lim inf 2p,(6+¢l, 6; 6)/|c| by s.(0]l), we shall briefly call s(4|l) the
a—q
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sensitivity of the f, family, si({l) the sensitivity of the g, family, and
s3(0]1) the sensitivity of the h, family.

First we shall refer to Pitman’s [11] results. If the p, family is
smooth in @ (Definition 1.2), then the family is differentiable in mean
at every 8¢@, i.e. for every fixed [ ¢ R*,

lim | 1(prva—p0fs—pildm=0,

at every #€6. From this, it follows that for every fixed I ¢ R?,

lim { [(frru—fle—UT*pildp=0 ,
(5.4)
lim S (Gosi—go) e —WU*pidv=0 ,

at every 6 ¢ 6. These imply that f, and g, are loosely differentiable
with respect to 6, and that f/=T*p, and ¢,=U*p,. Therefore when
the p, family is smooth in @, I(9), I,(6) and I,(d) are obtained from
the substitution f;/=T%*p;, g,=U*p,. Further, then the following holds:
for every fixed l ¢ R,

lim | |4/Frr = VT, et = (¥l du=0
(5.5)
lim | 14(/50a V8~ (10 ldv=0 ,

at every 6 €@. Thus noting that pi(c, 8)=p%(z, 8)=p}(z, 6), we have the
following theorem.

THEOREM 5.1 (Pitman [11], Theorem, pp. 19-20). If the p, family
18 smooth in @, so are the f, family and the g, family, i.e. for every
fixed l € R,

113.')1 4p*(0+¢l, 0)[E="1I(O) , 11_‘1'{)1 dp2(8+¢l, 6)]*="11,(0) ,
at every 0 € B ; and the sensitivity matrices I(0), I(0) and I(6) satisfy
QLN UL(O) =L (O)
for every 0 €6 and every le R

Let ¢ be a real-valued _f-measurable statistic with a second mo-
ment for every 6 ¢ @. The differntiability of the expectation E,(¢) with
respect to @ is given by the following theorem.

THEOREM 5.2 (Pitman [11], Theorem I, p.31). Suppose that the p,
family is smooth in 6. If ¢ has a second moment which is bounded
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m some meighbourhood of every fixed 8 ¢ @, then for every fixed | € R,
lim (Bu. ()~ EoWe=1{ ofidn  at every 0€6.

Let us turn to our problems. When the p, family is smooth in @,
noting that g,=II*f, and g;=II*f/, and that f/=0 a.e. g on II"'{S(g,)}
—S8(f,), we have

(5.6) L(&)=1.(6)—1,0) for every 6¢8.

Then we shall prove the following theorem.

THEOREM 5.3. Suppose that the h, family satisfies (5.1). If the p,
Jamily is smooth in O, then for every fixed | < R",

(5.7) lim S (Gs © ID)|(hosu—ha)e—hj|du=0,
(5.8) lim S (95 © N4 Ry = ho Pl — (TR |dp=0 ,

at every 6 € @; and therefore for every fixed l ¢ R*,
lim 4p3(6+¢l, 6; 8)/*="1L, () at every €6 .
s—0

Proor. The above assertions follow at once from the argument
given in the proof of Theorem 3.3 in Kuboki [8], though the h, family
does not sometimes satisfy the assumption of the theorem, if we have
only to show that

lim S
s—0 S0 Slggy

l(ga+=z~—ga)/eldv=g gsldv ,
S(go)
tim | AW Gra—Vayeds=|  (lgyds .
s—0 S(UB)nS(gH-zl) S§(gy

We shall prove the former; the latter is proved similarly from (5.5).
Note that

|@oru=feldv—{ _ |igilds

8

SS(qg)ﬂ S€p4 0

ég [(@ora—90)/ e —"lgsldv+ i S XS(g,)nS(g“sl)ltlggldV—“S Xsw,)ltlg“d” .

The first term on the right —0 as ¢—0 by (5.4). Next note that for
every fixed I, ysepnse,,,p—— s, 35 ¢—0 because gp.,——g, as e—0.
Thus it follows from the dominated convergence theorem with respect
to loose convergence (Pitman [11], Theorem, p. 99) that the second
term —0 as ¢—0, as was to be proved.
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Remark 5.1. We shall show that for each ¢ € &, there exist a com-
mon $B-measurable set S and a version h, of the density of P7Y such

that
S>S(gs) a.e.v,
(5.9)
h,=0 a.e. g on I"™{U—-S} and II*h,=1 a.e.v on S.

This h, family satisfies the assumption of Theorem 3.3 in Kuboki [8],
and therefore it satisfies (5.7) and (5.8). To see the above assertion,
note that there exists a probability measure 4 over (¥, F) such that
for any Fe&

A(F)=0&> Py(F)=0 for every 0¢6.

Putting i=d4/dm, we get dAT/dp=T*1 and dA/dv=U*A. Define S=
S(U*2). Since P/« A<y, we can easily see that SOS(g,) a.e.v. Fur-
ther define

Sol(gs o IT) on II7{S(g,)},
ho=< T*A{(U*2) - I}  on II7{S—S(gn)},
0 otherwise,

which satisfies (5.9).

Remark 5.2. Suppose that the p, family is smooth in &. Then it
follows from (5.4) that

(5.10) S fidup=0 and gg§du=0, at every 6¢0.

Here we shall show that the following is also true:
(5.11) IT*{(g, o INk}=0  a.e.v at every 6¢€6.

Let h, satisfy (5.9). Since (g, ° I)h,,, and ‘l(g, o )k} is p-integrable
for every le R" it follows from (5.9) and Lemma 2.4 that for every
le R

| @0 o D)l (hera—a)fe— Wiz | 11T7{(00 > DhiYd

Letting e—0, we see that (5.11) follows from (5.7).

Next let us discuss the differentiability of conditional expectations.
From now on, we shall always assign 0 to the value of E(-|U) on a
P7P-null set U—S(g,), i.e.

(5.12) E(-1U)=0 on U—S8(g,) for every €b.
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Combining this with (5.1), we get from Proposition 3.2
(6.18)  E,(p|U)=1T*(¢"hy) — T *(p™hy) a.e. v for every 6¢@,

where ¢ is a real-valued f-measurable function whose expectations
exist.

Consider a real-valued _{-measurable statistic ¢ such that E,{E.(¢?
U)}< o for every = in some neighbourhood of every fixed ¢ ¢ @. Then
from (5.13)

E{EWD)= (@« D¢hdyp
Hence (g, o II)¢h. is p-integrable, and therefore from (5.13)
| 2*{(g > M=\ ol h)—Tg 1o = 0 E 9| UM .

THEOREM 5.4. Suppose that the p, family is smooth in 0, and that
¢ is a real-valued _A-measurable statistic with a finite second moment
Sor every 0 € ©. Under the assumptions (5.1) and (5.12), if E{E.(¢*U)}
18 bounded in some meighbourhood of every fixed 0 ¢ O, then for every
fized 1 e R”

lim | 10, Bsr(¢ 1) Bl g | UY=L *{(gs » Dphi}ldv=0 ,

at every 6 € ©; and therefore for every le¢ R
(B p|U)~E(S|UW e —=1ITH{(g, o Mghilg,  on S(g,) ,
at every 6 ¢ 6.
ProoOF, For every fixed 4 ¢ @, let U(4) be a neighbourhood of 4,

and suppose that S(g, o IN¢*hy dp <K, provided 6+eleU(f). Note
that (g, o IT)¢lh; is p-integrable for every !¢ R® because

(5.14) (90 ° )| Wyl =(| ¢ WTo) ¥ 95 o T |'Uh,]}
SO+ (g o (TR ae.v.

Thus from Lemma 2.4, it follows that for every d-+el € U(9)
S |96 l{ B il |U) = Ef @ |U)}Y el —LT*{(g, o IT)phi}|dv

<{ (@ o MigCura—n)ie—gMijdp

v

<{ @ DIglhura—h)fe—phildy

¢l sc
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+{ @ DIgua=heldut| (o Mlphids
From (5.7), it follows that the first term on the right —0 as ¢—0.
Denoting the second term by a(e, ¢), and using the Schwarz inequality,
we have

(e, 9=[]  10IWVEGTT (s + VR WG TV T~ VT eldy |

161>

=2 ¢e > Mrathddu | (00 W Tora =B Vet

1#1

<4K, S1¢|> (gs o II)(V By —*/—h*a)z/lszd# »

which — K, Sm (goo I )(‘lh,)zdp as ¢—0 because of (5.8). Hence lim lim
>e

c-+00 g0

o(e, ¢)=0. Further it follows from (5.14) that the last term on the
right —0 as ¢—oco. Thus the theorem is proved.

Finally, in connection with Theorems 5.3 and 5.4, we shall propose
a measure of the effectiveness of a statistic in investigating the value
of 6 conditionally on U, and discuss its property. Before starting this,
let us refer to Pitman’s ([11], p. 30) definition of the efficacy (matrix)
of a statistic.

Let ¢ be a real-valued _J-measurable statistic which has a finite
second moment for every 8¢ 6. Suppose that E,(¢) is differentiable
with respect to 6, i.e. there exists #(6; ¢)="(n8; @), -+, 7.(0; ¢)) such
that for every fixed l ¢ R, {E,,.(¢)—Ey(P)}e—1n(0; ¢) as e—0 at every
8 € 6. Define

J(6; $)=n(6; ¢)0(8; $)V$)

with the convention that 0/0=0, where V denotes variance. We shall
call it the efficacy matriz of ¢ at #. It is a measure of the effective-
ness of ¢ in estimating 6 or in testing a hypothesis about §. The value
{ln(6; ¢)} is an indication of the sensitivity of the distribution of ¢ to
small changes in # in the direction I. We want this to be large. The
denominator V,(¢) indicates the liability of ¢ to vary from observation to
observation. We want this to be small. Thus high efficacy is a desir-
able characteristic of a statistic used in investigating the value of 4.
Pitman said that ¢ is regular at € @ if E,(¢) has a derivative given

by 7(0; ¢)=S ofidp at 4. If the p, family is smooth in @ and if ¢ is

regular at every 8¢ 8, then

w05 )=\ 9 —Edg)) fidp
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because of (5.10). Applying the Schwarz inequality to this, we get
(5.15)  HJ(8; HUZLIAO) for every 6 €6 and every le R".

In particular, if ¢=¢ o II, ¢ being B-measurable, then

(6.16)  J(0; PUSUIL(O) for every 6 €6 and every le R",

because %(4; ¢)=S <,bf,’d,u=S ¢gidv. Theorem 5.2 gives a regularity con-
dition on ¢.

Taking account of the above discussion, let us turn to our problem.
Suppose that E,(¢|U) is loosely differentiable with respect to ¢ on S(g,),
i.e. there exists 2*(8; ¢)="(F(; ¢),---, 75(0; ¢)) such that for every
fixed [ € R",

{Eora(@|U)—E(p]UNe—"19*(0;¢)  on S(g.),

as e—0 at every 0¢O. Put *@; ¢)=0 on U—S(g,).- Then we shall
define the conditional efficacy matrix J*(0; ¢) of ¢ given U at § ¢ by

J*O; @)=n*(0; $)2*(0; $)VPIU)

with the convention that 0/0=0, where V(-|U) denotes conditional vari-
ance given U. We shall say that ¢ is conditionally regular at 8¢ @ if
E{(¢|U) has a loose derivative given by »*(8; ¢)=II*{(g, o I)¢h}}/gs on
S(g,) at 6. If the p, family is smooth in @, and if ¢ is conditionally
regular at every 8¢ @, then

7¥(0; ¢)=IT*[(g,  I){¢—Efp|U) o II}h7}/g,  2.e.v on S(g,) .

To see this, note that as proved in (5.14), (g, o I)¢h; is p-integrable,
and therefore so is (g, o ) {E(¢|U) o I}k, because {E(¢|U)P=SE(¢*U)
a.e. PY. Then the above equality follows at once from Lemma 2.4 and
(5.11). Here using the Schwarz inequality with respect to /I* (Lemma
2.4. (iil)), we have

{Lp(0; P Vi@ UDI*{(The)}  2.e.» on S(g)

for every 6 € 0 and every l ¢ R*, where Vy(¢|U)=II*[{¢ — E,(¢|U) o II¥h,]
a.e.v; recall (5.1) and (5.12). This inequality is also true on U —S(g,).
Thus for every 8¢ @ and every l¢ R,

(5.17)  UT*0; QI<ITH(Ih) ae.v,  AE[THE; oN=ULO) .

If ¢ satisfies the condition in Theorem 5.4, then it is conditionally reg-
ular at every ¢ 6.
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6. Discussion : sensitivity, efficacy, and other measures of information

Throughout this section, we use the same notations as in the pre-
vious section. Further we define the family of conditional densities by
(56.1), and define conditional expectations by (5.12). Let us now suppose
that the inference problem at hand relates only to 4V=*4,---, 8.),
k<n.

6.1. Partial sensitivity and Liang’s measure of information

To simplify notation, we shall here represent p,, f;, ¢, and h, by
a common symbol ¢,, and their derivatives or loose derivatives with
respect to # by a common symbol q;; see (5.2) and (5.3) for loose de-
rivatives. Further we shall denote by s(¢|l) the sensitivity of the g,
family, and by I(4) the information matrix of the g, family. In our
problem, we may ignore that part of s(¢|l) which depends on small
changes in 6% =%04.y, -, 0.), i.e. which depends on the direction [¥=
‘(lysrs- - » L), because information gained on 6 is of no direct relevance
to the problem. From this consideration we shall define the partial
sensitivity s¥@; 6|c) of the g, family with respect to 4’ (at €@ in
the direction ¢ € K¥) by

si(d; 6 |e)=1inf sX(8|D) ,
leL,

where L.={l € RB*:I®=¢} for every ce¢ R*; I¥=(,---,1;). In general,
by using Fatou’s lemma with respect to loose convergence (Pitman [11],
Lemma, p. 98), it follows that

8305 0 )z inf U(O)]

for every 0 <O and every cec R*. Note that the term on the right is
a generalization of Liang’s [9] measure of information about 8, in the
g, family.

Suppose that all elements of I(f) are finite for every § €. Parti-
tion I,(6) as

_[Tug(0)  Ie()
L= [Im(ﬁ) Izz,,(a)] ’

where I,,,(f) is of order kxk, and put
I(0; 09)y=11,(0)— Liog(0) { Ineo( D)} L1 ()

where M* denotes the Moore-Penrose inverse of a matrix M. Then
we have

(6.1) inf UL (0)="cI(0; 6)c
lel,



ANALYSIS OF MARGINAL AND CONDITIONAL DENSITY FUNCTIONS 19

for every 6 € @ and every c¢ R*; this is a direct consequence of a well
known result on the extreme values of quadratic forms (Rao [12], p.
61). Further we can show that I(0;6%)=0 for every 6¢6 if and
only if

(6.2) Yl ) =A0)(Qhrror- -, Ghw)  a.e. at every €0,

where A(8) is a matrix of order kx(n—k) depending on only 4.

Combining the above discussion with Theorems 5.1 and 5.3, we see
that if the p, family is smooth in ®, then for every ¢ 6 and every
ce RF

si(0; 0P e)="cl(6; 6V)c .

For this reason, when the p, family is smooth in 6, we shall call I(4;
) the partial sensitivity matrix of the ¢, family with respect to 6
at 6¢@.

6.2. Efficacy and Godambe’s measure of imformation

Here we shall discuss the case where 6% =46,. Let T be sufficient
for e @. Consider a real-valued function ¢=g¢,(t) on 6, X such that
¢o (€ ) A for every fixed 6,€6,. An estimate of 6, is obtained by solv-
ing the equation ¢, (t)=0 for 6,. From this, ¢ is called an estimating
function. If E,(¢,)=0 for every 6¢6, then ¢ is called unbiased
(Godambe [4]). We shall say that ¢ is conditionally unbiased if E,(¢,,|U)
=0 a.e. P’ for every §¢0.

Throughout this subsection, let us suppose that the p, family is
smooth in #, and that the supports S(p,) are independent of 6 ¢ 6.
Therefore from Lemma 2.2.(ii), an .{-measurable set A exists such
that for each 6¢ @, A=S(f,) a.e. pz; and a P-measurable set B exists
such that for each ¢ 8, B=S(g,) a.e.v. To fix the idea, for each f¢
#, we take f, and g, so that they satisfy A=S(f,) and B=S(g,), respec-
tively. For estimating functions ¢ under consideration, we assume that
E(¢3)<oco for every = in some neighbourhood of every fixed 4¢6. We
shall say that an estimating function ¢ is regular or conditionally reg-
ular if for every fixed 6 €@, the statistic ¢, is regular or condition-
ally regular at 6, respectively. For a regular estimating function ¢,
we shall define the efficacy matriz Ju(p) of ¢ at 6 €@ by J(6; ¢,), the
efficacy matrix of the statistic ¢, at @; similarly, for a conditionally
regular estimating function ¢, we shall define the conditional efficacy
matriz J}(0) of ¢ at 6O by J*8; ¢,). Naturally, one would prefer
an estimating function with high efficacy in a certain sense.

Now let us denote by C the class of all regular and unbiased esti-
mating functions; by C* that subeclass of C each member of which is
conditionally regular and conditionally unbiased ; and by C° the subclass
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consisting of all ¢ €C such that ¢, =¢, o II, ¢, being B-measurable.
Further, let us denote by J/(f;6,) the (1,1) entry of J,(6), and by
JX(0;6,) the (1,1) entry of J¥(6). Note that if ¢ €, then all ele-
ments of J,(0) vanish except Jy(0; 6,), because E,..(¢s)—Ey(¢,)=0 for
every I of the form 1=%(0,1,---,1,). Similarly, if ¢ € C*, then all ele-
ments of JF(d) vanish except JF(4;6,). Define

JA0; 0)=sup J,(0; 6, , 9,05 0,)= sup J4;6,),
¢geC ¢gel®
(6.3)
Iu(l; 0,)= sup E[J0; 6))} .
PeC*

Then combining (5.15)-(5.17) with (6.1), and taking account of the above
observations, we obtain

IAO0;0)SIf0;0),  IN(0;6)SI(0;86),
Jn(ﬂ; 01)§In(0; 6, .

The quantities J,(4; 8,), J,(8;0,) and 9,(0;0,) are essentially the
same as Godambe’s [5] measures of information about 6, in the respec-
tive families, although his regularity conditions on estimating functions
and on families of densities (Godambe [4]) are different from ours. For
example, Godambe ([4], Theorem 2.2) has shown that the estimating
function for which J,(4; §,) attains its supremum in C can be often ob-
tained from the efficient score. The following is a corresponding result

of ours. Let us define f,, §, and %, by

Shlfs on A,
fo=d (ghoo IDj(@ooI) on I'B—A,

(6.4)

0 otherwise ;
_ { gfe/ga on B,
0:
0 otherwise ;

9=

- { h(a/ha on ANI'B,
0 otherwise .

These are essentially equal to 9log f,/06,, 0 log g,/98, and 819g h,[00,,
respectively, provided they exist. It follows from (5.3) that f,=g,o /7

+ﬁ, a.e. u. Now put
(6.5) $=0,(t)=a(8) Fi(t)+bi(t) ,

where a(d) is a real-valued function on @, and b,(t) is a real-valued
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function on @X such that Ey(b,g,)=0 for every ¢ € C and for every
€. It is easy to prove that if ¢, then J,(4;0,)=9,0;86,). In
fact, examining the proof of Theorem 2.2 in Godambe [4], we see that
the assertion follows at once from the obvious relation:

E(¢og)=a(0) S bo fredpr=0a(0)7(6; ¢s,) for every ¢ €C.
Further suppose that the conditional densities 4, depend on 4 only
through 6, say h,=h,, and suppose that the family P} defined by
(6.6) Py={P7:0€{0}X0,X---%x86,}

is complete for every fixed 6, € @,. Then, it can also be shown that J,(4; 6,)
attains its supremum in C for ¢=7L=i—bgl(t), provided & e C. This result

corresponds to Theorem 3.2 in Godambe [4]. Note that % is obtained
from (6.5) by putting a(d)=1 and —b,=g, II.

From now on, let us consider the case where the conditional den-
sities h, depend on ¢ only through 6,. To emphasize this, as before,

we shall write h,, hJ, fo,,l and E,,l for h,, ki, h, and h,, respectively. It
follows from (5.11) that Ep(ﬁ,l)zo for every 6 € @, and therefore 7L=7L,1(t)
is unbiased. Here we shall assume that % is regular, i.e. k€. More-
over, we shall assume that 2 € C*. Then for every 6 €8,

(6.7) EAJF(0; 00Y=1(0; 6.)=Jx(0; 6,) .
The left-hand equality follows from the easily proved,
750 he)=IT¥{(hy P} = V(R |U)  ae.v.

Next, noting that 2{=0 a.e. g on II"'B—A, we obtain from (5.3) and
(5.11),

[ Boftdu— (0,0 Db ydp
={ @ e Mhofude=| @ o M@, o Mkidp={ 707G, - Ms)I=0.
The right-hand equality is then obtained from the following observation :
703 k)= @ o Dy dp=Vi(R,) -
Taking account of (6.3) and (6.4), we see that (6.7) implies the relation,

(6.8) I(6; 0)=9.(0; 01)§‘-9f(0§ 51)§If(0; 6)
for every 8¢ 8. Further, it follows from (5.6) and (6.1) that for every
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fed,

(6.9) I(0; 6)=1,0; 6.)+1.(0; 6,) .
Obviously, the property

(6.10) L(6; 0)=1I48; 6, for every ¢ 6

is one good quality in the h, family used in investigating the value
of §,. Naturally, we can regard the property

(6.11) I8 6,)=948; 8y) for every 9@

as another good quality in the h, family. Let us examine the rela-
tionship between (6.10) and (6.11).

Clearly, it follows from (6.8) that (6.10) entails (6.11). Further-
more, we see that (6.10) yields J,(4; 6,)=0 for every 6 ¢ ® on account
of (6.4) and (6.9). For example, suppose that the densities g, depend
on & only through r, say ¢,=§,s, where r='(ry,---,r,_;) is a continu-
ously differentiable function of 4, and §, is differentiable a.e.» with
respect to r. Partition the Jacobian matrix K,() of r as K.,(8)=[K,.(0)
K,(0)], K,.(8) being of order (n—1)x1 and K,(6) being of order (n—1)
X(n—1). Then, we shall say that the statistic U is ancillary with re-
spect to 6, if rank K, (f)=n—1. Note that Godambe’s ([4], Assump-
tion 3.2) one concept of ancillarity with respect to 4, is a special case
of this. If the rank condition is true, then

g{aztKlr(a){tKh(o)}_“(g;m tt Y g:w) a.e. v

at every § e ®. Thus it follows from (6.2) that I(4;46,)=0 for every
6 € @, which in turn implies (6.10) because of (6.9). Hence the above
concept of ancillarity is justified by both property (6.10) and property
(6.11).

Godambe’s ([4], Assumption 3.4) another concept of ancillarity with
respect to f, is described as follows: the family P defined by (6.6)
is complete for every fixed 6,¢6,. As mentioned above, in this case,
(6.11) is true. However, (6.10) is generally not valid. To illustrate
this, let us take X and Y to be independently normally distributed with
variance 4, and mean 8,; =0, 0;) € (0, o) X R', and let T=%X,Y) and
U=X+7Y. This example was given by Godambe ([4], Example 4.3).
Then we can easily show that J,(0; 6,)=J,(6; 0)=07*2 and I, 0;8,)=0
for every 8. However, I(9; 6,)=0:%2+0, and hence I,(8; 0,)<I(8; 6,).

Recently, Godambe [6] has shown that his two concepts of ancil-
larity ean be unified with an extended concept of Fisher information.
However, his new measure of information is also defined in a relation
to the class C of all regular and unbiased estimating functions, as is
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the information J,(6;4,). On the other hand, the partial sensitivity
or Liang’s measure of information is related only to a given statistical
model, i.e. a given family of distributions.
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