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Ecological  and Mathemat ica l  Cons iderat ions  on 
Se l f -Th inn ing  in Even-Aged  Pure  Stands  

I. Mean Plant  Wei~,ht-Density Trajectory  
during  the Course of S e l f - T h i n n i n g  

KAZUO HOZUMI 

Faculty of Agriculture, Nagoya University, ChiIcusalcu, Nagoya, 464 

Ecological and mathematical considerations were made on Shinozaki's, Tadaki's and 
3/2 power law models for the mean plant weight-density trajectory under self-thinning 
in even-aged pure stands, and interrelationships among these models were discussed. 
To overcome the discrepancy between the observed trajectory of the eastern white pine 
population and the one predicted from Tadaki's model, a new model was proposed. To 
construct the model the assumptions were made so as to incorporate the good properties 
of Tadaki's and Shinozaki's models in early stages of growth into those of the 3/2 
power law model observed in later stages. Applicability of the model was tested for the 
pine population, which showed a good fit to the data. The growth analysis on the 
basis of the model revealed the growth curve of the pine followed a ~w-type logistic 
cruve and suggested the existence of a lag time, a hyperbolic relationship between 
biological and physical time and a clear dependence of survivorship curves on initial 
density. 

Self-thinnig, or successive decrease in plant density due to competi t ive interactions 

among individuals in a population, is considered as one of the most  impor tant  plant  

demographic processes. Therefore, increasing attention has been paid to this remark- 

able phenomenon by ecologists (Braun-Blanquet,  1951; K o y a m a  and Kira, 1956; Shino- 

zaki and Kira, 1956; Ogawa and Koyama,  1957; Oshima et al., 1958; Kuroiwa, 1959; 

Harper, 1960, 1961 ; Ando et al., 1962 ; Harper  and McNaughton,  1962 ; Shinozaki, 1962 ; 

Yoda et al., 1963; Tadaki, 1963, 1964; Langer et al., 1964; Ando, 1968; White and 

Harper,  1970; Sarukh~n and Harper,  1973; Ellern, 1974; Kays  and Harper,  1974; Harms  

and Langdon, 1976). The impor tan t  parts  of their works are reviewed by several 

authors (Harper, 1967; Hozumi,  1973; Harper  and White, 1974; White,  1975). 

Although we realize tha t  m a n y  factors, whether they are biotic or abiotic, pertain 

to self-thinning in very complicated ways, we limit our consideration to even-aged pure 

populations without clonal growth. We assume furthermore in the present paper tha t  

the populations develop in the same environmental  conditions and tha t  their initial 

densities are different. 

I f  we pursue the time course of self-thinning of a population, whose initial density 

and mean plant  weight are p; and  w 0, we can draw a curve or t ra jectory for the mean 
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Table 1. Nomenclature of variables, their explanations and units. 

Symbols Explanations Units 

A [m2/g, acre/ft 3] 
B [g-l, ft-3] 

Reciprocal of the asymptote of biomass at each ~ as p-~zo 
Reciprocal of the asymptote of mean plant weight or mean 

stem volume per plant at each v as p-~0 
K Empirical constant [g/m 3, fta/acre 3/2] 
R G R  Relative growth rate of mean plant weight [year -1, day -1] 
W Asymptote of w [g, ft 3] 
Y Constant final yield [g/m 2, ft3/acre] 
a Empirical constant [me/g, acre/ft 8] 
b Empirical constant [m4/g, acre~/ft 8] 
c Empirical constant [m -~, acre -1] 
g Empirical constant [year 1] 
h Empirical constant [dimensionless] 
m Relative mortality rate [year -1, day -1] 
p Empirical constant [m 2, acre] 
t Years or days after planting [year, day] 
w Mean plant weight or mean stem volume per plant [g, ft a] 
w o Initial mean plant weight or mean stem volume per plant [g, ft a] 
y Realized biomass defined by y wp [g/m 2, ft3/acre] 
a Empirical constant [dimensionless] 
fl Empirical constant [dimensionless] 
y Empirical constant [dimensionless] 

Reciprocal of the asynlptote of density at each ~ as pi~:~ [m s, acre] 
x Intrinsic growth rate of the logistic growth curve [year -1, day 1] 
# Empirical constant [year 1, day-l] 
p Realzied density [m -'2, acre -1] 
pi Initial density [m -2, acre -1] 
T Biological time defined by Eq. (7) [dimensionlessJ 

plant  weight-density vs.  time, which corresponds to the Allen curve in animal ecology. 

Therefore, the analysis of the t ra jectory is interesting in view of comparat ive ecology. 

The present paper  is especially concerned with the mean plant  weight-density trajectory,  

whose s tudy  was pioneered by Ando et al. (1962), Shinozaki (1962), Yoda et al. (1963) 

and Tadaki (1963, 1964). 

Basic variables to be considered in the present analysis of self-thinning are initial 

densi ty (Pi), actual ly realized density (p), mean plant  weight (w), biomass (y) and t ime 

(t). Their notat ions and units are given in Table 1 together  with those of other para- 

meters. When we can construct  a mathematical  model for the system composed of the 

following relationships 

w = w (pi ,  t ) ,  

P = P (Pi, t ) ,  

we can get the mean plant weight-density trajectory, 
eliminating t from the equations. 

(1) 

(2) 

or briefly w - p  trajectory, by 
This is the basic idea for the analysis of the trajectory. 

Examination of existing models* 

S h i n o z a k i ' s  m o d e l  ( S - m o d e l ) :  Shinozaki (1962) showed that  quanti tat ive aspects 

* Essential parts of this section were reported by the author (Hozumi, 1973). 
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of self-thinning could be reasonably understood and treated by the logistic theory of 
plant growth (Shinozaki and Kira, 1956). 

Analyzing the data concerning self-thinning experiments in artificial populations 
of Erigeron canadensis carried out by Yoda et al. (1963), Shinozaki proposed the 

following equations 

1/p - -  1/pi + 8( t ) ,  (3) 

8(0 - -  p (e~'--l). (4) 

Eq. (3), which was found originally by Shinozaki and Kira (1956), shows that if 
time is constant, and thus #(t) is constant, there is an asymptotic density (1/~(t)) as pi 
tends to infinity and also that there is a hyperbolic relationship between the realized 
densities and the initial ones. On the other hand, Eq. (4) shows ~(t) increases nearly 
exponentially with time. Parameters p and /~, whose dimensions are reciprocals of 
density and time, should be determined for each experiment. 

Assmning that the mean plant weight follows a logistic growth curve of the A-type, 
Shinozaki (unpublished) proposed the following equations to describe the time course 
of self-thinning. 

1 l - e  -T e -T 

u, - -  Y P + - -  (5)  
W o 

1 1 
~p = P, +p(e~- - l ) .  (6) 

Here Y is the asymptote of biomass which is constant irrespective of initial densities, 
is the biological time defined by 

t 

= t ~(t) dt (7) T 

0 

and in turn A(t) is related to the differential form of the logistic growth curve, 

where W is the asymptote of w. 
From Eq. (6) we have 

e ' - - l + - -  - . (9) 
p P Pi 

Putting e �9 into Eq. (5), we can get finally 

w -  (1 /p - -1 /p i+  p) / (1 /  Y + p/U'o--p/ Ym)  . (10) 

Eq. (10) is referred to as Shinozaki's model of the w-p trajectory (Hozumi, 1973). 
Using the definition 

y ~ w p ,  (11) 
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we have 

y = (I + p p - p / p , ) / ( t / Y +  p /wo-p /Yp~) ,  (12) 

which is equivalent mathematically to Eq. (10) and represents y-p trajectories as a 

function of p, pr Y and w 0. 

Tadaki's model (T-model): Tadaki (1963) proposed the following formula for the 

w-p trajectory in Pinus strobus (Spurr et al., 1957) and Pinus densiflora (Ando et al., 
1962) populations, 

1/p = aw + c, (13) 

where a and c are constants for each population; w tentati t ively stands for mean stem 

volume per tree. Considering Eq. (11), we have the formula for the y-p trjajectory of 

the T-model as follows: 

Y P 
-i/a + 1 / c  = 1. (14) 

Though this model is simple, it fits the data well at least in the early stages of growth, 
as shown in Fig. 1. 
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Fig. 1. The y-~ trajectory of the eastern white pine population (Spurr et at., 1957) under self- 

thinning. The dotted line denotes the y-g trajectory calculated by the T-model (Eq. (14)), 
showing good fit in the younger stages of growth. Discrepancy between observed and 
calculated trajectories becomes noticeable with time. The solid line denotes the 
trajectory after the present model. Its fit is good throughout the growth stages concerned. 

The next problem to be considered is to clarify the relationship between the S- 

and the T-models. Setting 

1 / Y +  p/Wo = a 1 

1/Ypi = b 

1/pi--p = c J 

(15) 
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in Eq. (10), we have 

If we can assume 

1/p--c 
w = ( 1 / p - c ) / ( a - b p )  - a(1--bp/a) 

we have the approximation formula 

w ~ (1/p--c)/a,  

b 
1 > - -  p ,  (16) 

a 

( 1  ~ o ) W  ( ~ )  or 1 / p ~ - - a w + c =  ~ - +  + - - p  . (17) 

This procedure suggests that the T-model can be obtained from S-model under the 
assumption of Eq. (16) and that  these two models are closely related to each other. 
And Eq. (17) gives biological meanings to the coefficients in the T-model. 

Let us examine the biological meaning of Eq. (18) 

b p w 0 
- -  p . . . .  . ( 1 8 )  

a Pi Wo+ YP 

Considering that in a self-thinning population 

1 > p/p~ 

and that  since wo, Y and p are all positive quantities, 

we can always conclude 

But at present it is difficult to show 

1 > w0/(wo + Y p ) ,  

b 
l > - - p .  

a 

b 
l > ~ - - p ,  

a 

since the biological meaning of p is not clear enough. 
Interrelationships among the S-model, the T-model and the 3/2 power law: The two 

models mentioned above have a common characteristic; if the density tends to zero 
with time, the biomass of the populations, or y ~ w p ,  tends to a definite value irrespective 
of the initial densities. 
For the S-model, 

while for the T-model, 

y]p~o = 1/(1/Y+ p/Wo) , 

yJp-*0 = 1/a. 
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This property common to the two is quite contrary to the conclusion derived from 
the 3/2 power law of self-thinning (Yoda et al., 1963) given by Eq. (19) 

W p  3 / 2  = K ,  (19) 

where K is a constant for each species. 
In this case, if we can assume that  the law is valid for all t, then we have 

w(t) p(t)~/~ = K ,  

or y(t) = Kp(t)  -1/2 , (20) 

which generates another model for the w-p trajectory. In Eq. (20), for very small 
values of p(t), which are reached inevitably by self-thinning after a long lapse of time, 
it is concluded that  

y]p_.a - ,  oo. (21) 

This is an important property intrinsic to the 3/2 power law. 
As was suggested by several authors (Tadaki, 1963; Yoda et al., 1963; Yoda, 1971; 

Hozumi, 1973), the general features of the w-p trajectory fit the S- or T-model well in 
the early stages of growth, but in the later stages the 3/2 power law becomes a good 
model to describe the trajectory. Fig. 1 depicts the situation. The observed 
trajectory of the eastern white pine (Spurr et al., 1957) shows good agreement with the 
trajectory predicted by the T-model (Eq. (14)) until 36 years after planting. But 
afterwards the discrepancy between the two trajectories becomes increasingly noticeable 
with the progress of time. 

N e w  m o d e l  for w - p  t ra jec tory  

The next problem to be considered, therefore, is to overcome the discrepancy in 
Fig. 1, or to harmonize the 3/2 power law with the S-model or T-model. Since the 
former is established with the assumptions quite different from either of the latter, the 
harmonization is difficult in view of our present knowledge concerning self-thinning. A 
possible means to gain this end is to incorporate the good properties of the S- or T-model 
into those of the 3/2 power law. 

Basic assumptions:  To unify the S-model with the 3/2 power model and thus to 
construct a new model for a w-p trajectory, we made the following assumptions. 

1 1 
+p(e~*- l ) ,  (22) 

P Pi 

0 < a < 1, (23) 

1 e -~ 
A p +  B =- A p +  - - - - ,  (24) 

W W o 

~(~) p ( ~ ) ~ ] ~  = K .  (25) 

Eq. (22) is a modified form of Eq. (6), and p is an empirical constant. Also a is a 
constant to be determined for each experiment and acts as a factor to retard the 



Considera t ions  on Sel f -Thinning 171 

progress of the biological time defined by Eq. (7). I f  a > l ,  it acts as a promoting 
factor. The necessity of this factor is suggested by the fact that  in Erigeron populations 
(Yoda et al., 1963), the ratios of mean final weights to the initial weight range from 104 
to 103, while the ratios of 1/p-1/pi during the early stages of growth to those at the 
final stage go from 10 a to 102. Since the value of 1/p-1/pi should be always positive 
under self-thinning, a must be positive as shown in Eq. (23). 

Eq. (24) is not only supported by the experimental data, but also a necessary 
condition to obtain the original form of Eq. (22), or Eq. (3). Furthermore, it means 
that there is a linear relationship between 1/w and p at every r, where the gradient, A, 
and the intercept of the 1/w-axis, B, are both functions of ~-. 

Eq. (25), a slightly modified from of the 3/2 power law, is introduced in view of its 
validity shown in the later stages of growth or at larger ranges of r. The value of fl 
is expected to vary within a limited range around 3/2 depending on the plant species. 

Derivation of the new model: If  we have the explicit form of A as a function r, we 
can get the mathenlatical formulation of the present model. 

Eq. (25) implies that the gradient of the w-p trajectory on log-log coordinates 
approaches -fl as ~ tends to infinity 

d log w 7 (26) 
d log p J 

On the otherhand, we can have Eq. (27) concerning the gradient 

d log w (dw/u,) (dw/wd'r) (dw/wdt) RGR 
- -  - -  , (27) 

d log p (dp/p) - (dp/pdr) - -  ( d p / p d t )  m 

where dw/wdr and dw/wdt (RGR) stand for the relative growth rates with respect to the 
biological time r and physical time t; ~lp/pdr and -dp/pdt (m) denote relative mortality 
rates with respect to r and t. Calculating the denominator and numerator of Eq. (27) 
from Eq. (22) and (24) and considering Eqs. (23) and (26), we have the following 
differential equation concerning A(r), 

dA (-r ) 
d ~  + ~ (~ -1 )  A(.) + p ( @ - 1 )  ~(o-,~ = o .  

w o 

The solution is 

A ( r ) =  p e~(1-e)" {1-e(~-l) '} . (28) 
~'0 

Considering Eq. (21) and A(r)>=0, we can conclude 

A(.)] .+= = o,  

1 

a <  fl 
o r  a f t < l ,  

K = Wo/p~. 

(29) 

(30) 

(31) 
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Fig. 2. Diagramatic representation of the w-p relationship (Eq. (24) and (28)) and w-p 
trajectory (Eq. (32)) on log-log coordinates as assumed by the present model. Dotted 
lines show the w-p relationship at specific values of T, while solid lines show w-p trajectories 
corresponding to different levels of Pi. Parameters of the model are determined to simulate 
the w-p trajectory of the eastern white pine p.~pulation mentioned before. Open circles 
denote calculated values of the w-p relationship and w-p trajectory, solid circles and open 
circles including cross marks represent the observed and estimated values of w and p shown 
in Table 2. 

E l imina t ing  e ~ f rom Eqs.  (22), (24) and  (28), we get  f inal ly  Eq. (32) showing the w-p 

t ra jec tor ies  of the  model  

1 Q-1/~ 1 pp Q:_~ [ I_Q~_:/~]  + 
W 'W o W o 

1(] 1) 
Q = I + - -  . 

p p pi 

(32) 

The app l icab i l i ty  of Eq. (32) is t es ted  for the  w-p t r a j ec to ry  of the  eas tern  white  

pine  popu la t ion  shown in Fig.  2. Though i t  is difficult to de te rmine  sui table  values  

of pa rame te r s  in Eq. (32), we have  ob ta ined  the  followings af ter  several  trials.  
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Pi -= 4840/acre (=l1930/ha) ,  w 0 = 5.4• 10-*ft s (=15.29 cm 8) 

a ~ 0.38, fl = 3/2, p = 1.86• 10-~ acre (--7.546X10-~ ha).  

Here p is estimated from the linear relationship between y and p, y-p trajectory of T- 

model in Fig. 1, pi and w 0 are estimated initial density and mean plant weight (stem 
volume) in 1904. The fit of the model to the observed w-p trajectory or y-p trajectory 
is good as shown in Figs. 1, 2 and Table 2. The dotted line in Fig. 2 represents the w-p 

relationship denoted by Eqs. (24) and (28) at some specified values of 7, while the solid 

line shows w-p trajectories including the trajectory given by the 3/2 power law. The 

shape of the trajectories, as shown in Fig. 2, is greatly affected by initial density or 
by the condition 

1 1 1 
(a): p i < - -  ; (b): p , - - - - ;  (c): p , > - - - .  

P P P 

The trajectory under condition (b) follows the 3/2 power law from the initial stage of 
growth, namely 

w(~') p(7)~ = K .  (33) 

As r increases, the trajectories under condition (a) and (c) gradually approach the 

curve denoted by Eq. (33) from the lower and upper sides of it. 

The relationship between p and 7, or the survivorship curve of the present model 

(Eq. (22)) is shown in Fig. 3 for several levels of pi. In the diagram we see the 
convergence of density, exponential decrease in density after a sufficient lapse of time 

and clear dependence of the survivorship curves on initial density. Under condition 
(b), density is expected to decrease exponentially with ~. 

10 

i 
1~ 10 20 

Fig. 3. Survivorship curves as related to initial density 
on the basis of the present model (Eq. (22)). 
Parameters are determined to simulate the observed 
curve of the eastern white pine, which is represented 
by open circles. 
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Table 2. 
ones from the model, and the time trend of mean intrinsic growth rate. 

Years after Observed density, mean stem volume per plant 
planting and stem volume biomass 

Year 

t p w y 
yr 1/acre 2~ ft 3 31 

Comparison of the observed values of density, mean stem volume per plant 

fta/acre 41 

1904 0 48405 ) 5.4 • 10-4 5 ) 2. 614 5 ) 
1908 4 4800 2.97 • 10-35 ) 14. 27 5 ) 
1916 12 4265 O. 18295) 780 
1920 16 3682 0. 436451 1607 
1925 21 2786 0. 98355 ) 2740 
1930 26 2052 1. 75195 ) 3595 
1935 31 1630 2. 695151 4393 
1940 36 1353 3. 57135 ) 4832 
1945 41 1144 4. 8505 ~ ) 5549 
1950 46 925 6. 398951 5919 
1955 51 815 8. 55955 ) 6976 

1~ Calculated density is omitted, since it. is identical to the observed density. .2~ 1 acre=. 
by the author. 

Growth analysis: On the basis  of the  growth  analys is  es tabl ished by  Shinozaki  

and  Ki ra  (1956), we can go far into the  character is t ics  of this  pine popula t ion  growth.  

The A-~ d iag ram given by  Eq. (28) shows t h a t  the  pine popula t ion  follows a 

logistic growth  curve of the  ~w-type. A reaches the  m a x i m u m  value (Amax) a t  the  

specific value  of ~ (~*). 

{ ) -  } 
W 0 ] - -  (~ 

1 a( /~-- l )  
* In 

aft--1 1--a 

And A decreases exponent ia l ly  with z af terwards ,  as shown in Fig. 4. 

The A-B d iagram shown in Fig. 5, or the  t r a j e c to ry  of the  A-B re la t ionship with r, 

also shows t h a t  the  growth  curve of the  pine follows the  ~ W- type  of logistic growth,  and  

resembles  to some ex ten t  t ha t  of the  soybean  popula t ions  obta ined  by  Shinozaki  and  

Ki ra  (1956). The d iagram equated  b y  

A = P -  {(woBYO-1)  - (woB) ~ ~ 
W 0 

shows t ha t  A reaches Amax at  the  specific value of B(B*), 

B *  = 
1 [ . a ( f l - - 1 ) l l / ( l - a f l ) ,  

1 - - a  W o 

and  t h a t  i t  decreases  a f te rwards  wi th  the  decrease in B or wi th  the  progress  of growth.  

But  i t  should be not iced tha t  the  A-B re la t ionship  in the  ear ly  s tages of growth  or a t  

re la t ive ly  larger  values  of B can be a p p r o x i m a t e d  by  a l inear  relat ionship,  which 
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and stem volume biomass of the eastern white pine (Spurr et al . ,  1957) to the calculated 
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Calculated mean mean stem Biological time Mean intrinsic 
volume per plant and stem growth rate 

volume biomass' ) AT 

w y ~- A~" At At  
ft a ft3/acre yr  1/yr 

5.4 • 10 -4 2.614 0 
2.97 • 10 3 14.27 1.7244 1.7244 4 0.4311 
0.2094 893 7.2923 5.5679 8 0.6960 
0.4488 1652 9.42,56 2.1333 4 0.5333 
0.9404 2620 11.6252 2.1996 5 0.4399 
1.7396 3570 13.2194 1.5942 5 0.3188 
2.6374 4299 14.1908 0.9714 5 0.1943 
3.6346 4918 14.8960 0.7051 5 0.1410 
4.8124 5505 15.4889 0.5929 5 0.1186 
6. 8111 6300 16. 1978 0.7089 5 0.1418 
8.3497 6805 16. 6031 0.4052 5 0.0810 

4046.8 m 2. 3~ 1 ft3=28317 cm 3. 4) 1 ft3/acre--6.98 cm3/m ~. 5) Calculted or estimated 

A (v: 

ac ro  

1'o 

A( r )  " 

12 

tt3 

8 

4 

1'5 20 0 400 800 B ( r )  tt -3 1600 20(30 

Fig. 5 Fig. 4 
Fig. 4. A (r)-r relation ( (Eq. (28)) for the eastern white pine population after the present model, 

showing the growth curve follows the xw-type of logistic curve. 
Fig. 5. A(~-)-B(~-) diagram of the pine population. The relationship can be approximated by 

linear relationship at larger ranges of B(T), showing that the pine follows a ~.-type 
of logistic growth curve. 

shows the  g r o w t h  of  t h e  p ine  fol lows a ;~-type of  logis t ic  g rowth .  

W e  can  ca lcu la te  r as r e l a t ed  to  t by  the  fo l lowing procedures .  F r o m  Eq .  (22) i t  

fol lows t h a t  

= I n  + 1 . ( 3 4 )  
a L p p p; 

Since the  va lues  of  a, p and  p, a re  a l r e ady  d e t e r m i n e d  a n d  t h e  va lue  of  p is g iven  as a 

func t ion  of  t i m e  in t h e  r e p o r t  of  Spur r  et  al .  (1957), we h a v e  a r - t  r e la t ionsh ip  w i t h  

o the r  g r o w t h  cha rac te r i s t i c s  o f  t he  p ine  as s u m m a r i z e d  in T a b l e  2. As  a whole,  t h e  

r e l a t ionsh ip  is a p p r o x i m a t e d  b y  a s l ight ly  s igmoida l  curve .  I f  we i n t r o d u c e  t h e  lag  
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2" 

4 , , I /  

Oi 1 0 20 30 40 50 yrs. t years after planting 
Fig. 6. The ~--t relation in the pine population. The observed relationship shows a slightly 

sigmoidal curve, but it can be approximated by a hyperbolic curve with lag time of 2.5 years 
(Eq. (35)). 

time of 2.5 years presumably due to planting injury, the relationship is reasonably 
formulated by Eq. (35), as shown in Fig. 6. 

1 g 
- -  - -  + h .  (35) 

~" t--2.5 

Here g--8.267X10 -] years and h={.2637x10 -~. Differentiating both sides of Eq. 
(35) with respect to t, we have 

d~ g 
~(t)  =_ dt  [ g + h ( t - 2 . 5 ) ]  2 (36) 

Considering Eqs. (35) and (36), we conclude that  the reciprocal of g denotes the 
intrinsic growth rate at the initial stage, or at 2.5 years after planting and the reciprocal 
of h denotes the ceiling value of ~ as t tends to infinity. On the basis of the standard 
method proposed by Shinozaki and Kira (1956), the mean intrinsic growth rate during 
a given time interval is calculated by 

A~ 

At ' 

as shown in Table 2. The result of the comparison between ~-values obtained by the 
two procedures is given in Fig. 7, showing good coincidence. 

D i s c u s s i o n  

Shinozaki (1962) proposed Eq. (37), assuming the growth curve follows the ~w- 
type logistic growth curve and the law of constant final yield is applicable to self- 
thinning populations, 

1 _ e -T ( pe T e -T 

w Jo Y ~ -  dr + --Wo (37) 
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Fig. 7. The ~.-t relationship in the pine 
population. The dotted line de- 
notes the observed relationship 
(Table 2). The solid line shows 
the relationship calculated by Eq. 
(36) having lag t ime of 2.5 years, 
where ~ is assumed to be zero as 
shown by a thick solid bar. 

Here Y(r) represents the final yield as being independent of p. The equation 
resembles Eq. (24) to some extent, but the difference between these equations deserves 
our notice. If  we assume these two are identical, then we have 

pe" ~ ApeT 
o Y(r)  dr 

Differentiating both sides of this equation with respect to r, we get 

l dA 1 dp 
y - - A + - ~ ,  + A - - . - - .  

p dr 

Since Y and A must be independent of p and populations are assumed to be self-thin- 
ning, we conclude 

1 dp 
p dr -- const. = -V  (~ > 0), 

or p decreases exponentially with r. This conclusion is not exactly in harmony with 
Eq. (22). But it is not overlooked that  Eq. (22) has the property 

1 dp 
p d7 

as r tends to infinity, which is shown in Fig. 3. Therefore, if we want to estimate Y 
values, which are not defined in the present model, we may calculate them approximately 
by Eq. (38) at relatively larger values of r, 

1 dA 
-~ ( l - a ) A  + -tit (38) 

From the viewpoint of the logistic theory of plant growth, Eq. (37) should be considered 
as the most fundamental formula to show the w-p relationship of self-thinning 
populations�9 We should, therefore, conclude that  Eq. (24) is an empirical formula, 
though it is useful to describe quantitative aspects of self-thinning as stated before. 
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The w-p trajectory given by the present model can be considered to show a kind of 

trajectory stability of the system converging to a particular state from a variety of 

starting positions (Orians, 1975). Furthermore, the assumptions made in Eqs. (22) 

and (25) are premised on a trajectory stability concerning both p-v and w-p relation- 

ships. I t  should be noted that  Fig. 2 is quite similar to the w-p diagram in the buck- 

wheat experiment (Fig. 21, Yoda et al., 1963). This fact suggests the present model 

may have wider applicability to the growth analysis of self-thinning annual plant 

populations. 

I t  is true that  sometimes in overcrowded artificial populations composed of plants 

of relatively uniform size, catastrophic damages are observed after a heavy rain, wind, 

or snow, preventing the normal progress of self-thinning. Thus, self-thinning plays an 

important  role as a self-regulatory mechanism for plant populations to assure sufficient 

seeds for the next generation (Yoda et al., 1963). Further studies should be made on 

the collapse mentioned above in relation to the stability of even-aged pure populations 

and to frequency distribution patterns of plant size (Koyama and Kira, 1956; Hozumi 

et al., 1968). 

We consider fundamentally only four variables, among which initial density and 

time are independent and mean plant weight and realized density are dependent, to 

construct the model. But as stated before, many  factors pertain to self-thinning. We 

should accordingly study the effect of these factors, especially of soil fertility, on the w-p 

trajectory and the survivorship curve, and construct the model to predict dead 

plant amounts due to self-thinning. 

The author is grateful to Prof. Tatuo Kira, Osaka City University, and to Dr. 

Kichiro Shinozaki, Municipal Institute of Science Education, Sakai City, for their 

encouragement during the course of the study. 
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