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Simple compact topological lattices 

DENNIS J. CLINKENBEARD 

Introduction 

The purpose of this paper is two-fold. First, we will construct a collection b ~ of 
infinite, compact, zero dimensional topological lattices which are simple in the 
category qg~rSg of compact topological lattices. Second, we will construct a 
collection T of infinite, compact, zero dimensional topological lattices which are 
simple in ~ ,  the category of all lattices. 

We are able to construct a c~ff'~-'simple lattice which is modular.  This is 
iaoteworthy because Numakura proved in [3] that a compact, distributive, zero 
dimensional topological lattice has enough %vO-~-morphisms onto the two point 
discrete space 2 = {0, 1} to separate points, thereby providing a representation for 
such lattices. However,  since our  example has only the two trivial images in ~ 3 ~ ,  
we see that Numakura's result cannot be substantially improved. 

Without the assumption of zero dimensionality, a similar result was obtained 
by J. D. Lawson in [4], where he gave an example of a distributive connected 
topological lattice which admits only trivial homomorphisms into the unit interval. 

Preliminaries 

If a lattice (L, A, V) is endowed with a Hausdorff topology such that the meet 
is a continuous function from L x L  into L, then we say L is a topological 
A-semilattice. If the join is also continuous, then L is a topological lattice. 
Moreover,  if the topology on L is compact, then L is said to be a compact 
topological (A-semi) lattice. If the topological (A-semi) lattice L is such that every 
point of L has a neighborhood base system of open-closed sets, then L is a zero 
dimensional topological (A-semi) lattice. 

Let L and M be objects in ~ ;  a ~ - m o r p h i s m  q~ :L --~ M is a continuous 
map which preserves arbitrary joins and arbitrary meets (cf., [2]). 
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Note  that  for  finite topological ly  descre te  lattices, ~ff~L#-simple and  .LP-simple 
are equiva len t  so we deno te  such lattices simple, m 

We should first note  that  there  are  numerous  examples  of  ~ - s i m p l e  infinite 
lattices in the l i terature.  In par t icular ,  we have  the following two examples :  

] Z 5 ..' 

Z I ~ 2  

0 Î 
(LI) (Lz) 

Fig. 1 Fig. 2 

Howeve r ,  it is not difficult to show that  the lattice L~ of  Figure 1 canno t  be 

m a d e  into a topological  lattice, and a l though the lattice L2 of  F igure  2 is a 
topological  lattice, it is not compac t .  Moreove r ,  the obvious  one  point  compact i f i -  
cat ion of L2 is of  no help since wha t  we end up with is not a topological  latt ice.  

We begin by construct ing a collection of  ~ - s i m p l e  latt ices.  Le t  {(Si, Vi,  A,):  
i = 1, 2 . . . .  } be  a sequence  of  discrete  finite s imple  lattices such that  the cardinal-  
ity of each Si is g rea te r  than two. Let  -----i deno te  the part ial  o rder ing  on  S~, and 
li, 0~ denote  the largest  and smal les t  e lements  of Si respect ively.  Le t  s~ be some 
fixed e l emen t  of  S~-{0~, 1~}. Le t  to be  the infinite discrete latt ice of  all nonnega t ive  
integers with the natural  o rder ,  which  we deno te  by -<o. W e  now c rea t e  a new 
lattice L. As  a set, L = to t3{S~: i = 1, 2 . . . .  } with the fol lowing identif ications:  

0 = 0 1 ,  l = 0 2 = s l ,  2 = 0 3 = s 2 - - - 1 1 ,  and  in general ,  n = 0 , + l = s ~ =  1~_1 wheneve r  
n -> 3. The re fo re ,  every  e l emen t  of  L may  be considered as an e l emen t  of  at  least 
one S~. 

T h e  partial  order ing  on L will be  the one  ob ta ined  by " p a t c h i n g "  t oge the r  the 
partial  order ings  -----~ with <--o. Tha t  is, if G~={(x ,y)~S~•  Ix-<,y} and  Go = 
{(x, y )~  to x to [x-<o Y} are the graphs  of their  respect ive  par t ia l  o rders  then  by the 

t For further background or other concepts subsequently used, the reader may refer to S. Willard, 
General Topology, Addison-Wesley Publishing Co., Reading, Mass. (1970), and G. Birkoff, Lattice 
Theory, American Mathematical Society Colloquium Publications, Providence, R.I. (1967). 
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identifications above, the graph of the partial ordering - on L is the transitive 
closure of ( U ~ l  GI)U Go, which is by definition {(x, y)~  L x L I there exists a 
collection 

(xo, xl) ,(Xl,  X2) . . . . .  (x . , x .+ l ) e  U G~ u G o ,  
i 1 

n a positive integer, and x = xo, y =X,+l}. 
In order  to clarify the above construction, we exhibit a specific example by 

letting every S~ be the five-point simple modular lattice Ms with s~ being one of 
the three unrelated points. Thus L may be represented in the plane as follows: 

Fig. 3 

Returning to the general case, note that when the partial order  on L is 
restricted to ~o it is exactly ---o, and if restricted to any S~ it is exactly < - - i o  

Moreover,  it is tedious but not difficult to show L is a well defined lattice. 
To simplify what follows, for any lattice M we define (]'x) = {y ~ M I Y ----- x} and 

[u, w] ={y  ~ M I u<_y<_w}. 
For our  purposes, the following two lemmas contain the most relevant 

information about L. 

(1) LEMMA.  For any l ~ L there exist only finitely many elements unrelated to 
l. 

Proof. For l ~ L let U(1) be the set of elements of L unrelated to I. Suppose l 
can be considered as an element of Sv Then for any x~( t l~ ) ,  x~_l. Thus 
U(1) c L-(] ' I~) .  However,  U~=~+2 S,- c (tl~) which implies that U(1) c U~+=~ S v 
But, Ui+_-~ Sj is finite. Hence so is U(1). 
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(2) LEMMA. L is &e-simple. 

Proof. Let CO be any lattice homomorphism of L other than the identity map. 
Then there exist a, b e L  such that a ~ b ,  co(a)=q~(b). If a and b can be 
considered as elements of the same S~ then co(a) = co(b) implies that CO(S~) = CO(a) 
since S~ is simple. But 0~§ and s~§ are identified with s~ and 1~ respectively. 

Therefore r247 implies that CO(S~+~)= CO(a) since S~§ is also 
simple. Similarly, if i->2 then s~-i and 1~-1 are identified with 0~ and si respec- 
tively. Thus CO(S~_0 = co(a) since S~_t is simple. By the same reasoning, co(Si+0 = 
co(a) implies that co(S~§ Now continuing in this manner, we obtain 

CO(S~) = co(a) for all i = 1, 2 . . . . .  That  is, CO(L) = c0(a). 
If a and b cannot be considered as elements of the same S~, then suppose 

a ~ S i and b ~ S, such that j < n. Let  k be the largest integer such that a ~ Sk. Note 
that k < n since otherwise a, b ~ S,. Also note that a < lk. NOW if b ~Sk§ (clearly 
b # 1 k and b ~ sk) then by definition of the order relation a < lk < a v b if a :~ sk, and, 

since a~Sk+~ we have a < s k < a v b  if a<--s k. But co(a)=co(avb)  so again we 
identify two points from the same S~ - either a and sk, or, a and lk. Therefore ,  by 
the first case above, CO(L) = co(a). If b~ Sk§ but can be considered as a member  of 
S,, n >  k + 1, then a similar reasoning applies since a < lk = 0k+~ < b. Thus any 
homomorphism besides the identity map identifies all elements of L. 

To complete our construction, let /2 be the ideal completion of the lattice L 
obtained above. We now show that the set of all such lattices/2 is the collection 90 
referred to in the introduction. 

Let  ~ be the embedding map from L into /2 such that ~(1)={x ~ L Ix <--l}. 
Now from (1), each collection of unrelated elements in L is finite. With this fact it 
is not difficult to show that / 2 - ~ ( L )  consists of merely one element;  namely, the 
ideal L. This ideal, being the largest element of L shall be denoted by II. Also 
note that any collection of unrelated elements in L is finite. 

Now L is an algebraic lattice (cf., [1]). Thus, as Hofman, Mislove, and Stralka 
have shown in [2], /2 can be given a topology which makes it a compact zero 
dimensional topological ~-semilatt ice.  This topology, when applied to L is 
generated by declaring (~'~(l)) to be open and closed for every l ~ L. But there are 
only finitely many elements x ~/2 such that [~(l), x] ={~(l) ,  x} for each ~'(l) in L, 
which implies that each ~(l) is open and closed. Finally, note that II is a limit 
point o f / 2 - {H} ,  with a neighborhood base of H consisting of all sets of the form 
(]'~'(/)), I ~ L.  

(3) T H E O R E M :  L is a ~ff~LP-simple compact zero dimensional topological 
lattice. 

Proof. Since we have already noted that /~ is a compact zero dimensional 
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topological ~-semilat t ice,  we need only show that L is a topological lattice and 

cr 
To show that L is a topological lattice it suffices to show that the join is 

continuous with one coordinate constant; that is, if {zi: i = 1, 2 . . . .  } is a sequence 
in L converging to z ~ f, then for any x ~ L the sequence {zi v x: i =  1, 2 . . . .  } 
converges to z x/x. Moreover,  since this condition is trivial for sequences that are 
eventually constant, we may assume {zi: i = 1, 2 . . . .  } is eventually nonconstant.  
From above, every element of L-{I-I} is open. Thus the only convergent  sequ- 
ences that are eventually nonconstant must converge to II. Let  {zi: i = 1, 2 . . . .  } be 
such a sequence and x ~/~,. Now z~ -- z~ v x, so {z~ v x: i = 1, 2 . . . .  } converges to II 
which is exactly what is desired. Thus L is a topological lattice. 

To show that /_~ is cr note that ~ ( L ) = / ~ - { I I }  is a sublattice o f /~  
and is also lattice-isomorphic to L. Therefore  using (2), a ~ffSg-morphism q~ on f_. 
that identifies any two distinct elements of ~(L)  must identify all of ~(L).  
Moreover,  with FI being a limit point of ~(L) ,  it follows from q~ being continuous 
and q~(/~) being Hausdorff that q~(/~,) is a single point. However,  excluding the 
identity map, there seems to be another  alternative to the morphisms described 
above; that is, a morphism ~O could identify II with some element of ~g(L). But 
such a map would certainly identify at least two elements of ~ (L)  since ~ (L)  has 
no maximal elements. Thus ~o(f_.) would also be a single point. 

In particular, if we again consider L as in Figure 3 then it is quite easy to see 
that the ideal completion L of L is also modular. In fact, this lattice may also be 
constructed in the plane with the usual plane topology as follows: 

I! 

Fig. 4 

Furthermore,  note that the width of the lattice of Figure 4 is 4 and the breadth 

is 2. 
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Putting our  construction in proper  perspective, we remark that in order  to 
obtain an infinite ~9-~-simple compact topological lattice it is not enough to 
merely construct the lattice of ideals of any infinite ~-s imple  lattice. Such a lattice 
of ideals will be a compact topological N-semilattice by [2], but in general, the 
join will not be continuous. 

For instance, consider L2, the ideal completion of L2 in Figure 2. Besides the 
natural copy of L2 embedded in L2, there are two other  elements: the ideal 
consisting of L2 (denoted II), and the ideal consisting of only the xi's ( d en o t ed / ) .  
If we endow [,2 with the same sort of topology as we did L above (that is, 
declaring (1'%(1)) open and closed for all I e L2 where ~ :L2 --->/-~2 is the embedding 
map), then by definition of the topology, all finite intersections of the set 

{(l'~(xl)): i = 1, 2 . . . .  } U {[L2 - (l'~g(y,))]: ] = 1, 2 . . . .  } U {[/~2 - (l'~(zk))]: k = 1, 2 . . . .  } 
forms a basic neighborhood system for L Using this neighborhood system, 
it is easy to show that the sequences {~(x0: i = 1, 2 . . . .  } and {~(y~): i = 1, 2 . . . .  } 
both converge to L Thus, if the join were continuous the sequence {~(x~)v 
g(y~): i = 1, 2 . . . .  } would also converge to L However  this is not the case. The join 
of the two ideals ~(x~) and ~(Yi) produces ~(z~) for all i =  1, 2 . . . . .  and this 
sequence, {~(z~): i = 1, 2 . . . .  }, converges to 1-1. 

Finally, we note that none of the elements of 9~ are ~-s imple .  When all lattice 
homomorphisms are considered, L has three distinct homomorphisms: the two 
obvious maps and another, -q, such that ~I(L)= {0, 1} with rl(L-{1-I}) = 0, rl(1-l)= 
1. 

However,  using any [, e 5 r we can construct an infinite compact zero dimen- 
sional topological lattice that is ~-simple.  For L e 9~ we can represent [,  by the 
following diagram: 

II 

s,~/s,/__~.~ I~ s/~,s 
' - '  

~(s,,= ;((Oo:,_ Z",v~ ~s~,~s, 

Fig. 5 

With the diagram of Figure 5, it is easy to construct a collection T of =LP-simple 
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infinite compac t  zero  dimensional  topological  lattices by at taching five o the r  open  

and  closed points  to/~.  A n  example  o f  such a lattice is represen ted  in Figure  6. (It 

is quite easy to show that  this representa t ion  is what  we claim.) 
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