Algebra Universalis, 9 (1979) 322-328

Simple compact topological lattices

DENNIS J. CLINKENBEARD

Introduction

The purpose of this paper is two-fold. First, we will construct a collection \mathscr{G} of infinite, compact, zero dimensional topological lattices which are simple in the category \mathscr{CTL} of compact topological lattices. Second, we will construct a collection T of infinite, compact, zero dimensional topological lattices which are simple in \mathscr{L} , the category of all lattices.

We are able to construct a \mathscr{CTL} -simple lattice which is modular. This is noteworthy because Numakura proved in [3] that a compact, distributive, zero dimensional topological lattice has enough \mathscr{CTL} -morphisms onto the two point discrete space $2 = \{0, 1\}$ to separate points, thereby providing a representation for such lattices. However, since our example has only the two trivial images in \mathscr{CTL} , we see that Numakura's result cannot be substantially improved.

Without the assumption of zero dimensionality, a similar result was obtained by J. D. Lawson in [4], where he gave an example of a distributive connected topological lattice which admits only trivial homomorphisms into the unit interval.

Preliminaries

If a lattice (L, \wedge, \vee) is endowed with a Hausdorff topology such that the meet is a continuous function from $L \times L$ into L, then we say L is a topological \wedge -semilattice. If the join is also continuous, then L is a topological lattice. Moreover, if the topology on L is compact, then L is said to be a compact topological (\wedge -semi) lattice. If the topological (\wedge -semi) lattice L is such that every point of L has a neighborhood base system of open-closed sets, then L is a zero dimensional topological (\wedge -semi) lattice.

Let L and M be objects in \mathscr{CTL} ; a \mathscr{CTL} -morphism $\varphi: L \to M$ is a continuous map which preserves arbitrary joins and arbitrary meets (cf., [2]).

Presented by G. Grätzer. Received February 28, 1977. Accepted for publication in final form April 27, 1978.

Note that for finite topologically descrete lattices, \mathscr{CTL} -simple and \mathscr{L} -simple are equivalent so we denote such lattices simple.⁽¹⁾

We should first note that there are numerous examples of \mathcal{L} -simple infinite lattices in the literature. In particular, we have the following two examples:

However, it is not difficult to show that the lattice L_1 of Figure 1 cannot be made into a topological lattice, and although the lattice L_2 of Figure 2 is a topological lattice, it is not compact. Moreover, the obvious one point compactification of L_2 is of no help since what we end up with is not a topological lattice.

We begin by constructing a collection of \mathscr{L} -simple lattices. Let $\{(S_i, \bigvee_i, \bigwedge_i): i = 1, 2, ...\}$ be a sequence of discrete finite simple lattices such that the cardinality of each S_i is greater than two. Let \leq_i denote the partial ordering on S_i , and 1_i , 0_i denote the largest and smallest elements of S_i respectively. Let s_i be some fixed element of S_i - $\{0_i, 1_i\}$. Let ω be the infinite discrete lattice of all nonnegative integers with the natural order, which we denote by \leq_0 . We now create a new lattice L. As a set, $L = \omega \cup \{S_i: i = 1, 2, ...\}$ with the following identifications: $0 = 0_1$, $1 = 0_2 = s_1$, $2 = 0_3 = s_2 = 1_1$, and in general, $n = 0_{n+1} = s_n = 1_{n-1}$ whenever $n \geq 3$. Therefore, every element of L may be considered as an element of at least one S_i .

The partial ordering on L will be the one obtained by "patching" together the partial orderings \leq_i with \leq_0 . That is, if $G_i = \{(x, y) \in S_i \times S_i \mid x \leq_i y\}$ and $G_0 = \{(x, y) \in \omega \times \omega \mid x \leq_0 y\}$ are the graphs of their respective partial orders then by the

¹ For further background or other concepts subsequently used, the reader may refer to S. Willard, *General Topology*, Addison-Wesley Publishing Co., Reading, Mass. (1970), and G. Birkoff, *Lattice Theory*, American Mathematical Society Colloquium Publications, Providence, R.I. (1967).

identifications above, the graph of the partial ordering \leq on L is the transitive closure of $(\bigcup_{i=1}^{\infty} G_i) \cup G_0$, which is by definition $\{(x, y) \in L \times L \mid \text{there exists a collection}\}$

$$(x_0, x_1), (x_1, x_2), \ldots, (x_n, x_{n+1}) \in \left(\bigcup_{i=1}^{\infty} G_i\right) \cup G_0,$$

n a positive integer, and $x = x_0$, $y = x_{n+1}$.

In order to clarify the above construction, we exhibit a specific example by letting every S_i be the five-point simple modular lattice M_5 with s_i being one of the three unrelated points. Thus L may be represented in the plane as follows:

Fig. 3

Returning to the general case, note that when the partial order on L is restricted to ω it is exactly \leq_0 , and if restricted to any S_i it is exactly \leq_i . Moreover, it is tedious but not difficult to show L is a well defined lattice.

To simplify what follows, for any lattice M we define $(\uparrow x) = \{y \in M \mid y \ge x\}$ and $[u, w] = \{y \in M \mid u \le y \le w\}$.

For our purposes, the following two lemmas contain the most relevant information about L.

(1) LEMMA. For any $l \in L$ there exist only finitely many elements unrelated to l.

Proof. For $l \in L$ let U(l) be the set of elements of L unrelated to l. Suppose l can be considered as an element of S_i . Then for any $x \in (\uparrow 1_i), x \ge l$. Thus $U(l) \subset L - (\uparrow 1_i)$. However, $\bigcup_{j=i+2}^{\infty} S_j \subset (\uparrow 1_i)$ which implies that $U(l) \subset \bigcup_{j=1}^{i+1} S_j$. But, $\bigcup_{i=1}^{i+1} S_j$ is finite. Hence so is U(l).

Vol. 9, 1979

(2) LEMMA. L is \mathcal{L} -simple.

Proof. Let φ be any lattice homomorphism of L other than the identity map. Then there exist $a, b \in L$ such that $a \neq b$, $\varphi(a) = \varphi(b)$. If a and b can be considered as elements of the same S_i then $\varphi(a) = \varphi(b)$ implies that $\varphi(S_i) = \varphi(a)$ since S_i is simple. But 0_{i+1} and s_{i+1} are identified with s_i and 1_i respectively. Therefore $\varphi(0_{i+1}) = \varphi(a) = \varphi(s_{i+1})$ implies that $\varphi(S_{i+1}) = \varphi(a)$ since S_{i+1} is also simple. Similarly, if $i \ge 2$ then s_{i-1} and 1_{i-1} are identified with 0_i and s_i respectively. Thus $\varphi(S_{i-1}) = \varphi(a)$ since S_{i-1} is simple. By the same reasoning, $\varphi(S_{i+1}) = \varphi(a)$ implies that $\varphi(S_{i+2}) = \varphi(a)$. Now continuing in this manner, we obtain $\varphi(S_i) = \varphi(a)$ for all $i = 1, 2, \ldots$ That is, $\varphi(L) = \varphi(a)$.

If a and b cannot be considered as elements of the same S_i , then suppose $a \in S_i$ and $b \in S_n$ such that j < n. Let k be the largest integer such that $a \in S_k$. Note that k < n since otherwise $a, b \in S_n$. Also note that $a < 1_k$. Now if $b \in S_{k+1}$ (clearly $b \neq 1_k$ and $b \neq s_k$) then by definition of the order relation $a < 1_k < a \lor b$ if $a \leq s_k$, and, since $a \notin S_{k+1}$ we have $a < s_k < a \lor b$ if $a \leq s_k$. But $\varphi(a) = \varphi(a \lor b)$ so again we identify two points from the same S_i – either a and s_k , or, a and 1_k . Therefore, by the first case above, $\varphi(L) = \varphi(a)$. If $b \notin S_{k+1}$ but can be considered as a member of S_n , n > k + 1, then a similar reasoning applies since $a < 1_k = 0_{k+1} < b$. Thus any homomorphism besides the identity map identifies all elements of L.

To complete our construction, let \hat{L} be the ideal completion of the lattice L obtained above. We now show that the set of all such lattices \hat{L} is the collection \mathscr{S} referred to in the introduction.

Let \mathscr{C} be the embedding map from L into \hat{L} such that $\mathscr{C}(l) = \{x \in L \mid x \leq l\}$. Now from (1), each collection of unrelated elements in L is finite. With this fact it is not difficult to show that $\hat{L} - \mathscr{C}(L)$ consists of merely one element; namely, the ideal L. This ideal, being the largest element of \hat{L} , shall be denoted by Π . Also note that any collection of unrelated elements in \hat{L} is finite.

Now \hat{L} is an algebraic lattice (cf., [1]). Thus, as Hofman, Mislove, and Stralka have shown in [2], \hat{L} can be given a topology which makes it a compact zero dimensional topological \cap -semilattice. This topology, when applied to \hat{L} , is generated by declaring ($\uparrow \mathscr{C}(l)$) to be open and closed for every $l \in L$. But there are only finitely many elements $x \in \hat{L}$ such that $[\mathscr{C}(l), x] = \{\mathscr{C}(l), x\}$ for each $\mathscr{C}(l)$ in L, which implies that each $\mathscr{C}(l)$ is open and closed. Finally, note that Π is a limit point of $\hat{L} - \{\Pi\}$, with a neighborhood base of Π consisting of all sets of the form ($\uparrow \mathscr{C}(l)$), $l \in L$.

(3) THEOREM: L is a CTL-simple compact zero dimensional topological lattice.

Proof. Since we have already noted that \hat{L} is a compact zero dimensional

topological \bigcap -semilattice, we need only show that \hat{L} is a topological lattice and \mathscr{CTL} -simple.

To show that \hat{L} is a topological lattice it suffices to show that the join is continuous with one coordinate constant; that is, if $\{z_i: i = 1, 2, ...\}$ is a sequence in \hat{L} converging to $z \in \hat{L}$ then for any $x \in \hat{L}$ the sequence $\{z_i \lor x: i = 1, 2, ...\}$ converges to $z \lor x$. Moreover, since this condition is trivial for sequences that are eventually constant, we may assume $\{z_i: i = 1, 2, ...\}$ is eventually nonconstant. From above, every element of $\hat{L} - \{\Pi\}$ is open. Thus the only convergent sequences that are eventually nonconstant must converge to Π . Let $\{z_i: i = 1, 2, ...\}$ be such a sequence and $x \in \hat{L}$. Now $z_i \leq z_i \lor x$, so $\{z_i \lor x: i = 1, 2, ...\}$ converges to Π which is exactly what is desired. Thus L is a topological lattice.

To show that \hat{L} is \mathscr{CTL} -simple note that $\mathscr{C}(L) = \hat{L} - \{\Pi\}$ is a sublattice of \hat{L} and is also lattice-isomorphic to L. Therefore using (2), a \mathscr{CTL} -morphism φ on \hat{L} that identifies any two distinct elements of $\mathscr{C}(L)$ must identify all of $\mathscr{C}(L)$. Moreover, with Π being a limit point of $\mathscr{C}(L)$, it follows from φ being continuous and $\varphi(\hat{L})$ being Hausdorff that $\varphi(\hat{L})$ is a single point. However, excluding the identity map, there seems to be another alternative to the morphisms described above; that is, a morphism ψ could identify Π with some element of $\mathscr{C}(L)$. But such a map would certainly identify at least two elements of $\mathscr{C}(L)$ since $\mathscr{C}(L)$ has no maximal elements. Thus $\psi(\hat{L})$ would also be a single point.

In particular, if we again consider L as in Figure 3 then it is quite easy to see that the ideal completion \hat{L} of L is also modular. In fact, this lattice may also be constructed in the plane with the usual plane topology as follows:

Fig. 4

Furthermore, note that the width of the lattice of Figure 4 is 4 and the breadth is 2.

Putting our construction in proper perspective, we remark that in order to obtain an infinite \mathscr{CTL} -simple compact topological lattice it is not enough to merely construct the lattice of ideals of any infinite \mathscr{L} -simple lattice. Such a lattice of ideals will be a compact topological \bigcap -semilattice by [2], but in general, the join will not be continuous.

For instance, consider \hat{L}_2 , the ideal completion of L_2 in Figure 2. Besides the natural copy of L_2 embedded in \hat{L}_2 , there are two other elements: the ideal consisting of L_2 (denoted II), and the ideal consisting of only the x_i 's (denoted I). If we endow \hat{L}_2 with the same sort of topology as we did \hat{L} above (that is, declaring ($\uparrow \mathscr{C}(l)$) open and closed for all $l \in L_2$ where $\mathscr{C}: L_2 \to \hat{L}_2$ is the embedding map), then by definition of the topology, all finite intersections of the set $\{(\uparrow \mathscr{C}(x_i)): i = 1, 2, \ldots\} \cup \{[\hat{L}_2 - (\uparrow \mathscr{C}(y_i))]: j = 1, 2, \ldots\} \cup \{[\hat{L}_2 - (\uparrow \mathscr{C}(z_k))]: k = 1, 2, \ldots\}$ forms a basic neighborhood system for I. Using this neighborhood system, it is easy to show that the sequences $\{\mathscr{C}(x_i): i = 1, 2, \ldots\}$ and $\{\mathscr{C}(y_i): i = 1, 2, \ldots\}$ both converge to I. Thus, if the join were continuous the sequence $\{\mathscr{C}(x_i) \lor \mathscr{C}(y_i): i = 1, 2, \ldots\}$ would also converge to I. However this is not the case. The join of the two ideals $\mathscr{C}(x_i)$ and $\mathscr{C}(y_i)$ produces $\mathscr{C}(z_i)$ for all $i = 1, 2, \ldots$, and this sequence, $\{\mathscr{C}(z_i): i = 1, 2, \ldots\}$, converges to II.

Finally, we note that none of the elements of \mathscr{S} are \mathscr{L} -simple. When all lattice homomorphisms are considered, \hat{L} has three distinct homomorphisms: the two obvious maps and another, η , such that $\eta(\hat{L}) = \{0, 1\}$ with $\eta(\hat{L} - \{\Pi\}) = 0$, $\eta(\Pi) = 1$.

However, using any $\hat{L} \in \mathscr{S}$ we can construct an infinite compact zero dimensional topological lattice that is \mathscr{L} -simple. For $\hat{L} \in \mathscr{S}$ we can represent \hat{L} by the following diagram:

Fig. 5

With the diagram of Figure 5, it is easy to construct a collection T of \mathcal{L} -simple

infinite compact zero dimensional topological lattices by attaching five other open and closed points to \hat{L} . An example of such a lattice is represented in Figure 6. (It is quite easy to show that this representation is what we claim.)

REFERENCES

- G. BIRKHOFF, Lattice Theory, American Mathematical Society Colloquium Publications, Providence, R.I., (1967), pg. 189.
- [2] K. H. HOFMANN, M. MISLOVE and A. STRALKA, The Pontryagin Duality of Compact 0-Dimensional Semilattices and Its Applications, Lecture Notes in Mathematics, 396, Springer-Verlag, Heidelberg, (1974), pg. 41.
- [3] K. NUMAKURA, Theorems on Compact Totally Disconnected Semigroups and Lattices, Proceedings of the American Mathematical Society, 8, (1957), pp. 623-626.
- [4] J. D. LAWSON, Lattices with No Interval Homomorphisms, Pacific Journal of Mathematics, 32, (1970), pp. 459-465.

University of California Riverside, California U.S.A.

328