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A B S T R A C T :  A two-dimensional linear spring model is established to study the 
microbuckling of a plane monomolecular layer adhering to a substrate. The model 
is for the layer subjected to a compressive load having an arbitrary angle with the 
chemical bond of the layer. The effects of the load angle, the strength of adhesion 
and the bending stiffness and shearing stiffness (the capability of resisting transverse 
bending and in-plane shearing) of the layer on the minimal buckling force and the 
critical buckling mode axe discussed. It is found that the minimal buckling force 
increases with increasing load angle and, for a given bending stiffness, increases with 
increasing strength of adhesion and decreasing shearing stiffness. Furthermore, a 
critical condition under which the buckling of the layer can just occur is obtained, 
which is helpful to avoid buckling in an engineering application. 

K E Y  W O R D S :  nanotechnology, microbuckling, monomolecular layer, spring model 

1 I N T R O D U C T I O N  

A thin layer can be formed when one mater ia l  is coated on the surface of another  

mater ia l  for a special purpose,  such as, some meta l  mater ia l  coated on bo th  sides of silicone 

film as electrodes of an electrical ac tua tor  [1], or amorphous  d iamond- l ike-carbon as wear- 

protect ive coatings of head-disk interface[2]. I f  the  layer fails, it m a y  cease to  function and 

the  system may  fail too. The  performance and  reliability of th in  films are often closely 

associated with their mechanical  behavior. Therefore,  the mechanical  behaviors,  such as 

debonding,  buckling, sliding, fracture and so on, of  thin layers are widely investigated by 

b o t h  theoret ical  and experimental  methods[l~12]. 

W i t h  the development of  science and technology, the size of  micros t ruc ture  tends to  

a molecular scale and a new research subject  of  so called nanotechnology emerges. In- 

vest igation on mechanical  behavior  of molecularly thin layers is one impor tan t  branch of  
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nanotechnology. In this branch, owing to the discrete nature of molecular layers, continuum 
mechanics can not be used [13] and some novel methods and new approaches are needed. 

One of the most common problem encountered in molecular layers is instability, such 
as buckling of a carbon nanotube [13] or rippling of a collapsing bubble[ 14]. Although a 

free element method was developed to deal with the instability problem of micromachined 
beams[15], as pointed out by Chisks and Parnes [16], the more corrugated buckling mode of 

an element which is not free but interacts with others is considerably different from that  of 
the free element. Therefore, Chisks and Parnes[ 16] presented a linear spring model, in which 
inextensible chain segments interact with each other by means of spiral springs and with 
the substrate by means of usual springs, to simulate the buckling of monomolecular layers 
adhering to a substrate. However, this model is limited to a one-dimensional simulation, 
that  is, it can only consider the effects of the resistance of the layer to transverse bending 
but  not to in-plane shearing. In fact, the in-plane shearing has a quite significant effect 
on the buckling behavior, as can be seen in the following sections. Furthermore, the one- 
dimensional model can only deal with the case of the layer subjected to the compressive 
load along the chemical bonds. Recently, Chang et al.[17] extended the one-dimensional 
model to a special two-dimensional case when the compressive load has an angle of 7r/4 with 
the chemical bonds. Still, this two-dimensional model cannot handle the more general case 
under a compressive load having an arbitrary angle. 

In this paper, a linear spring model is developed to demonstrate the buckling behavior 
of a monomolecular layer subjected to a compressive load having an arbitrary angle with 
the chemical bonds. The layer is modeled as a lattice network in which each node represents 
a molecule or an atom. The resistance of the layer to out-of-plane transverse bending and 
to in-plane shearing is simulated by spiral springs and the adhesion stiffness is simulated 
by usual springs. The effects of bending stiffness and shearing stiffness of the layer on the 
critical buckling force and the buckling mode are analyzed in detail. 

2 T H E  L I N E A R  S P R I N G  M O D E L  

We consider a monomolecular layer of molecules or atoms spaced a distance a apart 
glued to a substrate, as shown in Fig.1. The layer is modeled as a lattice network. Each 
node of the network corresponds to a molecule (or an atom) and the distance between two 
nodes keeps unchanged. The layer, assumed to be connected to the substrate by means 
of linear springs, is subjected to a compressive load, F ,  with a line density of f .  The 
interactions between two molecular bonds are modeled by means o f  spiral springs. Such 
springs represent the angular forces resulting from the adjustment of the electron clouds 

f f 

Fig.1 Spring model of the problem. The linear spring K is used to model the adhesion 
between the layer and the substrate, while the spiral springs are used to model the 
angular forces of the adjustment of the electron clouds surrounding the molecules 
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surrounding the molecules. It can be expected that  there need two spiral springs to simulate 
the angular forces, one for transverse bending and the other for in-plane shearing, because 
the density of the electron clouds is different in the transverse section and in the plane of 

the layer. 
The potential energy U of a spiral spring with an angular displacement of ~ can be 

shown as 
C 2 

u = (1) 

and the potential energy V of a linear spring with an extention q is 

K 2  
v = (2) 

wherein C and K are the elastic rigidities of the two springs, respectively. 
The work of the applied load, F, on a displacement 5, is calculated as 

W = F~ (3) 

Then, the free energy of the system can be written as 

r t = V + V - W  (4) 

With the conditions of the extremum of the principle of the minimal energy, we can 
obtain the relationship between the buckling force and the buckling mode. 

3 B A S I C  E Q U A T I O N S  

When the applied compressive load F (o r  f )  has an angel 13 with the chemical bond 
(as shown in Fig.2(a)), we can assume that  F ( o r  f )  is along the line through nodes i j  and 
(i + m ) ( j  - n). That  is, load angle/3 can be determined by 

n 
t a n / 3  = - -  ( 5 )  

m 

where m, n are relative prime numbers. 

C1 C2 

l' 
(a) (b) 

Fig.2 Transverse buckling (a) and in-plane shear deformation (b) of the layer. 
The rigidities of the spiral springs modeling the angular forces of the 
adjustment of the electron clouds surrounding the molecules are C1 and 
C~, and the elastic energies are C1~o2'/2 and C2r 2, respectively 
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In the transverse direction, spiral spring Ci (with elastic rigidities of Ci)  is used to 
simulate the angular forces resulting from the adjustment of the electron clouds surrounding 
node i j ,  and the angular deformations (Fig.3(a)) in two directions (i and j )  are 

~ i j ~  = ~ ( ~ + i ) s  - 2 ~  + ~(~-i)~ (6) 

~ij2 = ~i(j+l) -- 2~ij + ~i(j-1) (7) 

where, ~ii is the displacement of node i j  in transverse direction normalized by a. 
Similarly, the in-plane interaction between two chemical bonds can be simulated by 

spiral spring C2 (with elastic stiffness of C2) and the angular deformation is (see Fig.3(b)) 

~t ~t 
r  (s) 

m n 

where 
8 ' -  t~fa2m2n2 (9) 

2C2(m + n) 2 

where 

nfa (i + m)j  nfa 
. . . . . . .~ . ,~i( j  + ,,) , ,~.  - 

/ k 

nfa ( i _ m )  ' ' ' ' f '~u  ~/ ''j "'~'--~Sa 

(a) (b) 
Fig.3 Applied compressive force has an angel of/3 with the chemical bond of 

the layer (a); in-plane shear deformation near node ij  (b) 

Then the energy U, V and the work W can be writ ten as 

2 2 1 C u~  = c 1 ( ~ 1  + ~ j2 )  + c ~ %  = ~ 1 ( q ~ + l ,  - 2(~ + q ~ _ l , )  ~ + 

1 C m2 + n2 C2~ '2 
I (ffi(j+l) -- 2r "b r 2 + m2n-------- T -  

Vii = -~qij  = Ka2~gj 

Wij  = afaUhij 

(lo) 

(11) 

(12) 

1 
- (13) 

v/-~-7 + n2 

5q = ~ /p2  + Q2 _ 2 P Q  sin r (14) 
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in which 

k=1 

For relatively small ~ij 

P = - ,  - ~ ( r  - r  

k=l 
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k=l 

1~2-~{ - ~(i-k)j)2} 
Q = n - ~ (Q(j-k+l) 

k=l 
m 

k=l 

( n - ( 1  + m)  6') k=1 ~ { (~i(J-k+1) --~(i-k)J)2} -- 2(m +n)6'] I/2 

The free energy of node ij can then be expressed as 

//~j = u~j + v~- - wi~ 

Conditions of extremum of the free energy of the system yield 

OH 0 
- or ~ {u~j + y~ w ~ }  = o O~ij 

that is 

in which the operators are defined as 

D~j - O~ijO6iJ _ 6ijl [(m2 - (m +n)6')D (2)F..i ~*s + ( n2 -- (m + n)5') D~2)~ij] 

1 [(m 2 - (m + n)5') D (2)r.- + n2 i ",,~ + ( n2 --(m + n)6') D~2)r 

D~4) (u) 2D(2)ri. + D~2)Qi_i)/ = Di Q i+ l ) j -  i ~3 

D~ 4 ) :  D~ 2)~i(j4-I) - 2D~ "2)~ij ~- D~ 2) ~i(j-1) 

where 

D(2)r.. 

D~2)~ij = ~i(j+l) - 2(ij + ~i(j-1) 

The following buckling mode is sought for the problem 

[( n . ) ~ ]  
r  i - m 2  N = 1 , 2 , 3 , . - .  

2002 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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where N is the numbers of molecules in a half-period of buckling shapes. Note that  the 
buckling modes corresponding to N = 1 and N = 2 are saw-like shapes which are so called 
nanobuckting where the neighboring molecules are shifted in the antiphase. 

Using buckling mode Eq.(26), the operators can be written as 

D~id - 4  [(m s - ( m  + n)6') " 2 7r �9 2 nTr ] -- ~ S l n  ~ - ~  Jr- (~2 _ ( m  -}- n)(~') s in 2---m-NJ ~ij (27) 

2 7r 
D(2)Yi ~3 . . . .  4sin ~-~r (28) 

DI4) 4 71" = !6sin ~ r  (29) 

D~2)(ij . 2  n~r (30) = - 4 s i n  2---~r 

D~.4) 4 /7,71" 
= 16sin 2--G~r (31) 

Substituting the above expressions of the operators into Eq.(20) leads to 

t~fa 2 - 4  [(m 2 - ( m  q- n)6') s ln"  2 2 - N  jr_ ( n 2  _ ( m - I -  
7T 

4 71" �9 4 nTl" \ c1 (16sin ~r + 16sm 2G-S~) + Ka%~ =0 

The characteristic equation can then be obtained, for nontrival solution (ij # 0, as 

~,)~,) . 2  " ~  7 
sm 2--m~] ~+ 

~3f2a4 

Let 

(32) 

2 C 2 ( m + n )  sins 7r �9 2 n~r "~ 2 .  2 nTr ~-~ + sm ~ - ~ )  - 4~2fa  2 m2sin 2 + n sm 2--m---N) + 

4 ~r 16sin4 nvr ~ q_Ka 2 - -0  (33) C1 (16sin ~-~ + 2 t o N I  

t~3m2n2S (sin 2 7r + . 2 n~r "~ 
A1 - 2(m + n) ~ sm 2--~--~, } 

_- 5 + o sin  

(34) 

(35) 

(36) 

where 
S = C1/C2 R -- Ka2/C1 (37) 

Using the above parameters A1, A2 and A3, the characteristic equation can be simpli- 
fied as 

A1 + A2 + A3 = 0 (38) 

and hence the buckling force fb, normalized by (C1/a 2) is given by 

fb _ - d 2  - v /d~  - 4 A i d 3  (39) 
C1/a 2 2At 
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4 D I S C U S S I O N S  O N  T H E  M I N I M A L  B U C K L I N G  F O R C E  A N D  T H E  

C R I T I C A L  B U C K L I N G  M O D E  

2002 

It can be seen from Eq.(39) that  the buckling force fb depends on the buckling mode 

N, and is affected by the force angle /3 (i.e. m and n) and two parameters S and R. 

In an engineering application, the most important is the minimal buckling force (critical 

buckling force). To find the critical buckling mode Nr to which the minimal buckling force 

corresponds, the effects of the parameters m and n, S and R should be discussed firstly. 

4.1 Effec ts  o f  m a n d  n 

Figure 4 shows the variation of the normalized buckling force fb/(C1 �9 a -2) versus N 

for difference n : m when R = 8 and S = 0.01. The figure shows that  the minimal buckling 

force fb increases with the increase of/3 (or n : m). It is also seen that  the critical N~ to 

which the minimal buckling force corresponds shows a tendency of getting smaller. So the 

following relation can be obtained reasonably 

No(0:  1; R; S) <_ N~(n : m; R; S) <_ N~(1 : 1; R; S) (40) 

where Nc(n : m; R; S) represents Arc as a function of n : m (or fl), R and S. It should be 

noticed that  N~ is an integer number in real problems, so the actual minimal buckling force 

is not the lowest point of the curves shown in Fig.4 but the value corresponding to Arc. 

12 

10 a'-" 
I 

<5 
8 

,4 

. . . .  / / / /  
S=O.O1 
R=8 

- -o-  1:2 

---~..~'~.-,~_ ~ ~ 1.'1.0 
~ 1:100 

1 2 3 
N 

Fig.4 Effect of n : m(~) on nondimensional fb-N 
behavior for S = 0.01 and R = 8 

4 . 2  E f f e c t s  o f  R 

Figure 5 shows the buckling force fb as a function of N for a series of R values when 

n : m = 1 : 3 and S = 0.1. It can be seen that the minimal buckling force increases with the 

increase of R, while Arc shows a tendency towards a smaller one. That  is 

No(n: m; R1; S) > Nc(n : m; R2; S) if R1 < R2 (41) 
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20 

5 R = I  

0 I i I , I , 

2 3 4 5 
N 

Fig.5 Effect of R on nondimensional fb -N behavior 
for S = O . l  and n : m =  l :3 

4 . 3  E f f e c t s  o f  S 

The effect of S on the buckling force fb is shown in Fig.6, where R = 8 and n : rn = 
1 : 3. The figure shows that  the minimal buckling force increases with increasing S. One is 

surprised to see, however, that  S only shows little influence on Nr To check if it is only a 

special case shown in Fig.6, Fig.7 with R = 1 and n : m = 1 : 3 is added to re-confirm the 
conclusion. Again, S has little effect on Arc. This is a very important  conclusion because 

the procedure of determining the approximate value of Arc for arbi t rary S can be simplified 

with the assumption of S = 0. The specific procedure will be shown in Section 6. 

15 �9 , . , . 3.2 
R - 8  ' / /  
n:m=l:3 

S=0.3 
--z--- S=0.5 

' ' 2.0 
2 3 4 

N 

,--- 12 
I 

r 
9 

~" 2.8 

~Y 

2.4 

n:m=l:3 / 

�9 S=0.3 
--c-- S=0.5 

L , f 

3 4 
N 

Fig.6 Effect of S on nondimensional 
f b -N  behavior for R = 8 and 
n : m = l : 3  

Fig.7 Effect of S on nondimensional 
fb -N behavior for R = 1 and 
n : m = l : 3  

5 T Y P I C A L  C A S E S  F O R  S = 0 

S = 0 (i.e. C2 >> C1) stands for a very high ability of the monolayer to resist shear 
deformation (or there is even no in-plane shear deformation). 

5.1 n : m = 0 : l  (o r  fl = 0) 

When n : m = 0 : 1, tha t  is, the compressive load is applied along the chemical bond 
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direction,  the  expression of the  buckling force can be simplified as 

fb R ~" 
C1/a 2 - 4# + 4---fi # = sin2 2 N  

2002 

(42) 

This  result  is the  same  as the  one given by Chisks and  Parnes  [16] in one-dimensional  

model .  This  shows tha t  the  present  two-dimensional  model  degenerates  to the  one-dimensional  

model  when /3  = 0. T h e  min ima l  buckling m o d e  can be de te rmined  by the  following proce-  
dure  in this case. 

1) I f  R >  16, N c = 1 ;  

2) W h e n  R < 16, let N ,  = ~r/2 
arcs in(R1/4/2) ,  then,  

7 r  2 7 r  
I f  R > 16sin2 --=---:- sin Nc = N , ;  

2IN,]  2 [ N ,  + 1]' 
7 r  7 ~  

I f  R < 16sin2 --=--=sin 2 Nr = N ,  + 1, 
2 tN,  j 2[N~ + 1]' 

where [N,] represents  the  m a x i m u m  integer less t han  N , .  

I t  is easy to ob ta in  f rom the above equat ions t h a t  the  buckling m o d e  will have a 
saw shape  ( g  = 1) for R > 8 and a saw shape  ( N  = 2) for 2 < R < 8 (see Fig.8). 

Bo th  p h e n o m e n a  in which the  neighboring molecules along the  i direct ion are shifted in the  
an t iphase  are called nanobuckl ing  [16]. 

cu 

I 

16 

12 

~ i  0 �9 i �9 i �9 i , ! �9 i �9 i �9 

N = 3  N=2  

i i i i i i i 

0 4 8 12 16 20 24 28 32 
R 

Fig.8 Minimal buckling forces as function of R showing correspond- 
ing buckling modes for different (/3) n : m when S = 0 

5 . 2  n : m  = 1 : 1  ( o r / 3  = ~ / 4 )  

n : m = 1 : 1 means  the  compressive force is appl ied along the  bisector  of  the angle 
be tween the  chemical  bonds  perpendicu la r  to each other.  T h e  buckling force is given by  

Jb R # = sin 2 ~ (43) 
C1/a  2 - 8# + 4---~ 2 N  

T h e  expression of the  buckl ing force is s imilar  to the case o f /3  = 0, so the  procedure  to  

de te rmine  Nc is similar too: 

1) I f  R > 32, Arc = 1; 
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2) W h e n  R _< 32, let N ,  = 7r/2 arcsin(R/32)l/4 , then,  

If  R > 32 sin 2 sin2 2[N, + 1]' Nc = N, ;  

If  R < 32 sin 2 r~-~.l sin2 ~r [N,+II,N~ =g*+l, 
where [AT,] represents  the  m a x i m u m  integer less t h a n  N , .  

In  this case, nanobuckl ing  occurs when  R > 4, 4 < R < 16 for N = 2 and R > 16 for 

N = 1 (Fig.8). 

5 .3 A r b i t r a r y  n : m 

For an a rb i t r a ry  ra t io  of  n : m, the  buckling force can be wr i t t en  as 

fb (m 2 § n 2) [16 (#2 § A2) + R] ~r nTr (44) 
"C1/a 2 - 4 (mUtt + n2A) # = sin2 2 N  A = sin 2 2raN 

I t  is known from Eq.(40) in Section 4 t ha t  

No(0 :  1; R; 0) _< No(n: m; R; 0) _< No(1 : 1; R; 0) (45) 

To de termine  the  critical min imal  buckling mode  N~, one need check all of the integers 

be tween  N~(0 : 1; R; 0) and  Nr : 1; R; 0) to find to which N the min ima l  buckling force 
corresponds.  

Together  wi th  the  discussion in Sections 3.1 and 3.2, we know t h a t  

Nc(n : rn; R; 0) = 1, if R > 16 

N~(n : m; R; O) = l or 2, if S < R < 16 

N~(n : m; R; 0) = 2, if 4 < R < 8 

N~(n : m;  R; 0) = 2 or 3, if 2 < R < 4 

A typical  case of n : m = 1 : 2 is also shown in Fig.8. I t  can be seen t ha t  the curve 

wi th  n : m = 1 : 2 falls be tween  the  curves wi th  n : m = i : 1 and n : m - -  0 : 1. 

Figure  8 also indicates t h a t  when  S = 0, the critical buckling force feb is a piece-wise 
linear incrementa l  funct ion of R. 

6 G E N E R A L  C A S E S  

W h e n  S ~ 0 and /3  ~ 0, the  min ima l  buckling force feb and Nc can not  be  de te rmined  
directly. I t  is known, however,  f rom the Section 4.3 t h a t  S has lit t le influence on No, so 
one can choose Nr : m; R; 0) as an approx ima te  value of Nc(n : m; R; S) (for S ~ 0) 

under  the  same condit ions at  first. T h e n  compar ing  the  buckling force fb corresponding to  

N~(n : m;  R; 0) and  N~(n : m; R; 0) + 1, the  min imal  one should be  the  critical buckling 
force fcb and Nc is de te rmined  at  the  same t ime.  T h e  procedure  of de te rmin ing  N~ is as 
follows: 

1) Calcula te  N~(n:m; R; 0); 

2) If fb[Nc(n:m;R;O) < fb[Nc(n:m;R;O)+l, Nc = Nc(n : m ;  R; 0); If fb[Nc(n:m;R;O) ~- 
fblNc(,~:m;R;O)+t, Nc = Nc(n : m; R; O) + 1. 

Anothe r  way to de te rmine  Arc is to  solve the  equat ion  fblN = fb[Nq-1 abou t  R for given 
n : m and S f rom N = 1 to a relat ively large N .  We denote  the solut ion as RN. T h e n  
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c o m p a r e  R w i t h  a l l  o f  t h e  RN. I f  t h e  v a l u e  o f  R fa l ls  b e t w e e n  RN a n d  RN+I, Nc s h o u l d  b e  

e q u a l  t o  t h i s  N .  T h a t  is 

I f  RN ~ R < R N + I ,  Arc = N 

T h e  t y p i c a l  r e s u l t s  for  n : m --  1 : 2 is s h o w n  in  T a b l e  1. I t  is  s h o w n  t h a t  t h e  m a x i m u m  

e r r o r  b e t w e e n  Rc for  d i f f e r e n t  S is less  t h a n  7 .5% w h e n  n : m -= 1 : 2. I t  is a l so  f o u n d  t h a t  

t h i s  e r r o r  d e c r e a s e s  w i t h  i n c r e a s i n g  Nc.  

T a b l e  1 T h e  c r i t i c a l  Re f o r  d i f f e r e n t  S w h e n  n : m = 1 : 2 

N~ 7* 6 5 4 3 2 1 
S = 0 0.03208 0.05649 0.10902 0.23868 0.62683 2.16176 9.93594 -..** 
S = 0.01 0.032 08 0.056 49 0.109 02 0.238 69 0.626 85 2.162 05 9.95812 --. 
S = 0.1 0.03208 0.05649 0.10903 0.23871 0.62703 2.16495 10.2046 . . -  
S ~- 0.2 0.03208 0.05649 0.10903 0.23874 0.62724 2.16868 10.680 1 .-- 
S ---- 0.5 0.03208 0.05650 0.10905 0.23882 0.62799 2.18621 . .-  

* means 0.032 08 < Rc < 0.056 49 for S = 0, Arc = 7, the  rest may be deduced by analogy, 
** means Rc > 9.93594 for S ----= 0, Arc = 1 

F i g u r e  9 s h o w s  t h e  m i n i m a l  b u c k l i n g  force  fcb as a f u n c t i o n  o f  R for  d i f f e r en t  S w h e n  

n : m = 1 : 2. T h e  f igure  g ives  a m o r e  c r e d i b l e  p r o o f  t h a t  S h a s  l i t t l e  e f fec t  o n  No. 

24 

20 

~ .  16 
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.~ 12 

~ s 

4 

0 
0 

s = o . 5  ~ ~ ~  \ - 

~ ~ ~ - - 1  S = 0  

N - 3  N = 2  
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Fig.9 M i n i m a l  buck l ing  forces as f u n c t i o n  of  R showing  co r r e spond-  

ing buck l ing  m o d e s  for different  S w h e n  n : rn  = 1 : 2 

7 C R I T E R I O N  O F  N O - B U C K L I N G - O C C U R R E N C E  

W e  c a n  see  f r o m  F ig .9  t h a t  t h e  b u c k l i n g  fo rce  m a y  n o t  e x i s t  u n d e r  c e r t a i n  S ( for  

e x a m p l e  S = 0 .5) .  T h i s  i n d i c a t e s  t h a t  t h e  b u c k l i n g  c a n  b e  a v o i d e d  i n  a m o n o m o l e c u l a r  

l a y e r  b y  s e l e c t i n g  m a t e r i a l s  w i t h  s u i t a b l e  p a r a m e t e r s  S a n d  R.  T h e  c r i t e r i o n  of  n o - b u c k l i n g -  

o c c u r r i n g  wi l l  b e  d i s c u s s e d  in  t h i s  s e c t i o n .  

F r o m  E q . ( 3 9 ) ,  i t  c a n  b e  s h o w n  t h a t  t h e  c o n d i t i o n  for  n o - b u c k l i n g - o c c u r r i n g  is 

t h a t  is 

A22 - 4A1A3 < 0 (46)  

s > (47) 
m2n2v/--~ + n 2 ( #  + A) ( 1 6 #  2 + 16A 2 + R )  
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where 
# = sin2 7r A = sin 2 nTr 

2Nmin 2mNmin 

in which Nmin is the smallest value of Arc. 
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(48) 

8 C O N C L U D I N G  R E M A R K S  

A two-dimensional linear spring model is established to analyze the buckling of the 

monomolecular layer adhering to a substrate.  The conclusions of this paper  are: 

(1) The present two-dimensional model can consider bo th  effects of the bending stiffness and 

shear stiffness of the monomolecular layer. When the load is along the chemical bond 

direction of the layer, this two-dimensional model degenerates to the one-dimensional 

model given by Chisks and Parnes. 

(2) The minimal buckling force of the monomolecular layer increases with increasing load 

angle and, for a given bending stiffness, increases with increasing strength of adhesion 
and decreasing shearing stiffness. 

(3) The critical buckling mode parameter  Arc increases with increasing force angle and, for 
a given bending stiffness, increases with decreasing strength of adhesion. The shearing 

stiffness, however, has little effect on Arc. 

(4) A critical condition under which the buckling of the layer can just  occur is obtained, 

which is helpful to avoid the buckling in an engineering design. 
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