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A N  A S Y M P T O T I C - N U M E R I C A L  A N A L Y S I S  F O R  T H E  
L O W E R  B O U N D  D Y N A M I C  B U C K L I N G  ESTIMATES* 
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ABSTRACT: A finite element asymptotic analysis for determining the lower bound 
dynamic buckling estimates of imperfection-sensitive structures under step load of 
infinite duration is presented. The lower bound dynamic buckling loads and the 
corresponding displacements are sought in the form of asymptotic expansions based 
on the static stability criterion and they can be determined by solving numerically 
(FEM) several linear problems with a single nonsingular sub-stiffness matrix. 
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1 I N T R O D U C T I O N  

The nonlinear dynamic analysis[ 1] is generally used to obtain numerically the exact dy- 
namic buckling load ~d of an imperfection-sensitive (autonomous)structural system under 

step load of infinite duration. In view of numerical difficulties in solving the nonlinear initial- 
value problem associated with the dynamic buckling response of the system [2~s], the lower 

bound dynamic buckling estimate ~d based on the static stability criterion associated with 
the vanishing of the total potential energy on a certain equilibrium point of the unstable 

postbuckling path has been established [2~6]. 'As an attempt to determine the lower dy- 

namic buckling loads and corresponding displacements based on the simple static stability 

criterion [2~6] a perturbation method [T] in forms of the sufficient notation of functional 

analysis, has also been presented and the effect of various possible sources of structural 

imperfections on the dynamic buckling loads of perfect structures has been considered. 
However, the previous paper [7] dealt only with a general formulation and simple examples. 

The objective of this paper is to establish the finite element implementation of the 
previous paper [7]. We will first transfer the approach in Ref.[7] into the more versatile 

framework of the finite element method, and then propose a partitioning procedure so that 

the perturbation expansions can be carried out by solving numerically several linear problems 

with a single nonsingular sub-stiffness matrix. Finally, we take a column on a linear elastic 

foundation subjected to axial step load of infinite duration as an example to illustrate the 
present method. 
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2 T H E O R Y  

The perturbation method [7] is summarized and slightly modified in this section. For 

details, readers are referred to Ref,[7]. Let the potential energy of an imperfect structure 
be given by ~(u,  A, w) where u denotes the additional displacement of the structure from 
the stress free reference configuration, the single scalar variable A determines the magnitude 
of prescribed external loads on the structure, and w denotes the structural imperfection of 
the structure. Furthermore, let U and W denote, respectively, admissible function spaces 
of displacement and structural imperfection of the structure. We can introduce two inner 

products in the two spaces denoted by (ul,u2) for ui e U (i = 1,2) and [Wl,W2] for 
wi E W (i = 1, 2). The potential energy ~ may be rewritten as ~(u, A, effu) where 6 is the 
imperfection amplitude and @ is normalized imperfection pattern, i.e., [ff~, @] = 1. 

According to the static stability criterion [2~6], for each magnitude e of a given normal- 
ized imperfection pattern @, the lower bound dynamic buckling load Ad and the correspond- 
ing displacement can be found by solving the following nonlinear equations simultaneously 
(in unknowns u and A): 

~ ( u ,  A, e@)6u = 0 (1) 

for all admissible variations 6u and 

�9 (=, A, = 0 (2 )  

subject to the condition that the static equilibrium position determined by the solution of 
Eqs.(1) and (2) is unstable. 

We assume that for the perfect structure there exists a trivial major solution u = 
u0(A) = 0 as the load increases from zero. Let A = Ac be the buckling load for the perfect 

structure and it is assumed to be simple with corresponding buckling mode ul  normalized 
b y  ( U l , U l )  -~ 1. We assume also that Is,g] 

a~A --  ~ucuAUl 2 < 0 a~ ~-- ~ C w U l ~  # 0 (3) 

where superscript "c" denote the corresponding derivatives of potential energy function 
calculated at (u, A, w) = (0, Ac, 0). 

The solutions to the system consisting of Eqs.(1) and (2) are sought in the following 
~rms 

U --~ ~U 1 "4- ~2U 2 -~" ~3U 3 "~- " '" I 

: C2~ 2 -~- $3~ 3 -~- �9 . .  

where (Ul ,  Ui)  -= 0 (i = 2, 3 , ' "  "). 

(4) 

Substituting Eqs.(4) into Eqs.(1) and (2), expanding them, respectively, into series of 
~, letting the coefficients vanish separately, the resulting equations are grouped as follows 

c - 1 c 2 ~ u 2  + ~2 ~ w  + AI ~ u l  + ~ ~ u :  )6u = 0 

1 A c 2 1 c 3 (5) ~2~c~ui~+5 i ~ u i  + ~ U l  =0  

(U2,1M1) : 0 
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and 

X r 1~ 2-=C 

1 c 2 1 r a 
~ ~1 ~'~,,,,,;, ~1 + -~ r '~1 ]~u = 0 

1 c 2 g3~cu~Ul' tO'~-2 )~2~uuXul ~-g2(ecwu2~J~-XleCwxu1~i)~-1euuwu12"u))~-z (6) 

1 -c 2 I~ 2~c  . 2 1 c 2 ~l~uCuA~l~2 -{- ~buut~2 "~- ~'~I uu~'~l  + ~ u u u ~ t l  "it2 "Jr 

1 c 1 c 4 -~ ~ , ~ , ~ u ~  3 + ~ ~,~,,,~u~ = 0 

(U3, t51) --~ 0 

and so on. 

Finally, by the discussion of stability on the equilibrium position (4) in Ref.[7], the 
lower bound dynamic buckling loads are determined as 

~d : )tc + ~1~ "Jr- X2~ 2 "~- " " " (7) 

where ~ satisfies X;~ < 0 if ~1 ~ 0 or X2 < 0 if ~1 = 0. 

3 F E M  I M P L E M E N T A T I O N  OF SOLVING T H E  P E R T U R B A T I O N  
EQUATIONS 

In this section, we give an algorithm for FEM implementation of solving the perturba- 
tion equations in Section 2. The principle of the algorithm is to respectively compute X1, 

e2, and u2, by Eqs.(5). Next calculate X2, 63 and u3, by Eqs.(6). 
We refer now to a finite element modelling of the structure at hand. Let u be the 

vector of the nodal displacements which defines the displacement field u through a prefixed 

set of shape functions. Then, the tangent stiffness matrix K c et al. at the bifurcation point 
can be defined, as follows 

~cuu6 u =- uTKC~u 

~uc w tTv~u = b~T6u 

~uCu~Ul~U ~ b~T(su (8) 

~u~UlUi+l  =-- b~Tui+l 

(U,V) = u T M v  

After the discretization, the linear problem and the orthogonality conditions in (5) and (6) 

lead to the mixed problems for i = 1, 2 

K + b: b~ 
1 T-c 0 ulTb~ ~Ul b~ 

bl T 0 0 

Ui-t-1 
8i-t-1 

ei 
= 

0 

(9) 
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where bl T = u l T M .  

1997 

It should be remarked that  the coefficient matr ix in system (9) is the same for i -- 

1, 2 , . - .  and their right-hand vectors depends only on the previously computed vectors u; 

coefficients A and 6. More specifically, although the stiffness matr ix K c at the bifurcation 

point is singular, the coefficient matr ix in systems (9) is non-singular due to condition (3). 

Direct solution of system (9) with Gaussian elimination might require full pivoting strategy 

in order to avoid severe accumulation of roundoff errors. However, full pivoting destroys the 

sparse structure of the coefficient matrix, and such a procedure would be impractical. 

In fact, the system above can be solved by a parti t ion of the coefficient matrix. System 

(9) may be written as 

KCUi+l + ~i+lb~ + Aib~ = ei I 

(10) 

u l T M u i + I  = 0 

Firstly, by premultiplying Eq.(lO.1) by the buckling mode u l ,  one obtains (note that  K e U l  = 

O) 
T c (11) ~iq-lUl be + A i u l T b C  A = u l T  ei  

From Eqs.(10.2) and i l l ) ,  we deduce that  

2fi - u lTe i  
 i+1 - ul:rb  

Then Eq.(10.1) can be rewritten as 

hi = 2 ( - , % i  (12) ulWb~ 

KCui+l = -e i+lb~ c - Aib~ q- ei  -- gl (13) 

The coefficient matrix K c of Eq.(13) is of rank (n - 1), and the n equations are consistent, 

since u l T g i  --- O. The solution to Eq.(13) can be written as 

ui+,  = hi  + CiUl (14) 

The first vector, is a particular solution to Eq.(13), and the second is the buckling mode. In 

order to determine the coefficient ci, one can use Eq.(10.3). The substitution of Eq.(14) in 

Eq.(10.3) gives 

bl hl (15) 
c i -- u l T M U l  

Therefore, the basic requirement for determining Ui+l is to determine a particular solution 

hi to Eq.(13). The difficulty lies in the fact that  the matrix K c is of rank (n - 1) and can 

not be inverted. Let j be the biggest element in the Buckling mode u l .  Analysis shows t h a t  

the sub-stiffness mat r ix / t "  obtained by deleting the j t h  row and the j t h  column from K c 

is non-singular at the bifurcation point. Furthermore, a special solution hi to Eq.(13) with 

the j t h  component equal to 0 can be obtained by solving the following equation 

khi--~i (16) 
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where hi = (hi1, h i2 , ' " ,  hi,j-1, hid+l,  �9 �9 �9 hin) w , and .qi = (gil, g i~ , ' " ,  g i j -1 ,  g i , j+ l , ' " ,  gin) w 
which is ( n -  1)-dimensional vector obtained by removing the j t h  component of gi. Then the 

particular solution to the Eq.(13) is in the form hi = (hi1, h i2 , . . . ,  h i j -1 ,  O, h i , j+ l i " ' ,  hin) T. 
Note that  g is symmetric, bound, sparse, and positive matrix, therefore, one can solve 

Eq.(16) by Cholesky decomposition. Furthermore, all the perturbation expansions can be 

determined by solving numerically several linear problems with the same coefficient matrix. 

A basic point concerning the implementation of the present formulation will be the 

computations of the buckling load Ac, and the corresponding buckling mode u l  of the 

perfect structure. Their  calculation leads to a linear eigenvalue problem [10] 

K(.k)u = 0 (17) 

where K(A) is the tangent stiffness matrix. For the determination of the buckling mode, we 

put  the normalized condition 
u T M u  = 1 (18) 

One can easily calculate the buckling load A~ by means of inverse iterative method and then 

the corresponding buckling mode u l  which satisfies (18) can be easily obtained. 

4 A N  E X A M P L E  

We consider the simply supported column on the linear-elastic foundation [7]. Because 

the imperfection patterns of the stiffness of bending and the stiffness of the foundation have 

no effect up to the order O(~ 3) on the lower bound dynamic buckling loads [z], we investigate 

only other two imperfections: the initial shape imperfection in form of the classical buckling 

mode and the load eccentricity e. The analytic dependence of the lower bound dynamic 

buckling load )~d, the corresponding displacement u and the imperfection amplitude e on 

(the projection of u on the buckling mode u l )  have been established by the writer in Ref.[7]. 

For finite element discretization of the problem, two-mode elements of equal length 

based on cubic Hermite interpolation of the displacement u are used. Integration of the 

element potential energy is done numerically, but  with a sufficient number of Gaussian inte- 

gration points to achieve exact integration. The computations for the buckling load ~c and 

imperfection sensitivity-coefficients ~2 and ga of our finite element model were performed. 

We find that  the convergence of these approximate results to the exact buckling load Ac, 

the imperfection sensitivity-coefficients A2 and ea is encouragingly good. The results for 

n = 10 and n -- 20, respectively, are listed in Table 1. The buckling load ~ is 2.0000134 

and 2.000 000 8 for n -- 10 and n -- 20, respectively. 

Table  1 Convergence  of  finite e lement  solutions for the  lower bound  

d y n a m i c  b u c k l i n g  e s t i m a t e s  of  the  c o l u m n  on  the  elastic f o u n d a t i o n  

Combination of 

imperfections 

Exact solutions Finite element solutions 

n =  10 n = 2 0  

a b A2 e3 

1.0 0.0 -0.238 732 40 0.039 788 74 

-0.37 0.93 -0.23873240 -0.01474346 

0.0 1.0 -0.23873240 -0.0158"7341 

~2 g3 ~2 g3 
-0.23872600 0.03978739 -0.238 73200 0.03978865 

--0.238 726 O0 -0.014 742 80 -0.23873210 -0.014 74343 

--0.238 726 O0 -0.015 872 67 --0.238 73210 -0.015 873 37 
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5 C O N C L U S I O N S  

We have proposed a finite element asymptotic analysis for determining the lower dy- 

namic buckling loads and corresponding displacements of imperfection-sensitive structures 

under step load of infinite duration. The various possible sources of structural imperfections 

have been simultaneously considered and treated. The method can give higher-order approx- 

imation to the lower bound dynamic buckling loads and the corresponding displacements 

without solving the system of differential equation of motion numerically. The FEM im- 

plementation of the method is characterized by a much lower computational cost, since the 
computations of the perturbation expansions can be carried by solving numerically several 

linear problems with a single (positive-definite and symmetric) sub-stiffness matrix. The 

numerical example illustrate the characteristics and effectiveness of the method. 
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