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A B S T R A C T :  The fractional calculus approach in the constitutive relationship 
model of viscoelastic fluid is introduced. The flow near a wall suddenly set in mo- 
tion is studied for a non-Newtonian viscoelastic fluid with the fractional Maxwell 
model. Exact solutions of velocity and stress are obtained by using the discrete in- 
verse Laplace transform of the sequential fractional derivatives. It is found that the 
effect of the fractionM orders in the constitutive relationship on the flow field is signif- 
icant. The results show that for small times there are appreciable viscoelastic effects 
on the shear stress at the plate, for large times the viscoelastic effects become weak. 
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1 I N T R O D U C T I O N  

There are very few cases in which the exact analytic solutions of Navier-Stokes equa- 

tions can be obtained, These are even rare if the constitutive equations for the viscoelastic 

fluid are considered. Although there are many models used to describe viscoelastic behavior 

of the fluid, the fluid of differential type have received special attention[ 1~6]. Recently the 

fractionM calculus has achieved a great success in the description of complex dynamics. In 

particular it has proved to be a valuable tool to handle viscoelastic behavior. The starting 

point of the fractional derivative model of viscoelastic fluid is usually a classical differential 

equation which is modified by replacing the time derivative of an integer order by the so 

called Riemann-Liouville fractional calculus operators. This generalization allows one to 

define precisely non-integer order integrals or derivatives. Li Jian, Song Daoyun and Jian 

Tiqian used the fractional model to analyze the characteristics of sesbania gum and xanthan 

gum in their experiment and obtained satisfactory results [7~'9] . Fractional derivatives have 

been found to be quite flexible in describing viscoelastic behavior[ 1~ . 
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This paper will s tudy the flow near a wall suddenly set in motion for a non-Newtonian 
viscoelastic fluid with the fractional Maxwell model. Firstly, the fractional calculus approach 
in the constitutive relationship model of viscoelastic fluid is introduced. The fractional 
Maxwell model of viscoelastic fluid is developed. Then, by using the discrete inverse Laplace 
transform of the sequential fractional derivatives to the governing equations, we obtain the 
exact solutions of the velocity and stress. It  is found that  the effect of the fractional orders 
in the constitutive relationship on the flow field is significant and for small times there are 
appreciable viscoelastic effects on the shear stress at the plate, for large times the viscoelastic 
effects become weak. 

2 T H E  F R A C T I O N A L  M A X W E L L  MODEL A N D  BASIC E Q U A T I O N S  

First, we begin by recalling the definition of a fractional integral of order - p  of a 
function f ( t ) .  This is given by the Riemann-Liouville integral operator[ 12] 

DtPf ( t )  = ~(p) (t T ) P - ' f ( r ) d r  p > 0 (1) 

where F(.) is the Gamma function. Next, the fractional derivative of order p is defined as 

d ~ 
DtPf(t) = ~-g (D~'-~y(t)) 0 < n - p  < 1 (2) 

Now, following Palade et al.[12], we shall use the shorthand notation 

Dtq/(t) = day 
dtq (3) 

for the fractional integral or differential operation of order q on any function f ( t ) .  Using the 
notation, we observe from [12] that  the composition rule for integration and differentiation 
obeys the simple form 

d p d q dp+q 
dtP dtq -- dtP +q (4) 

for all numbers p and q, whether they are positive or negative. 
The fluid considered in this paper is a viscoelastic fluid with the fractional derivative 

Maxwell model[ 14] and its constitutive equation is given by 

a + A a d a a  = GA ~d~e 
dt ~ dt• (5) 

where a is the shear stress, e is the shear strain, A = # / G  is a relaxation time, where G is 
a shear modulus, /z  is viscosity. Also, a and fl are fractional calculus parameters such that  
0 _< a _<fl < 1. For a > /3 the relaxation function is increasing, which is in general not 
reasonable [14], and one has to require that  a < ft. When a = /~  = 1, it may be simplified 

as the ordinary Maxwell model; when a = 0, fl = 1, it may be simplified as the classical 
Newtonian fluid. 

We shall interpret the derivative on the right hand side of (5) as a fractional integral 
of order fl - 1 of the ordinary derivative of e, i.e. 

d ~  d~- i  ( d 6 )  d ~ - ' ,  
dt~ = ~  d-t = dt~ -1 (6) 
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where d is the shear rate. Thus, we can write (5) as follows 

A~ d~a d~-i~ 
cr + dt ~ = GA ~ dt~_ 1 (7) 

We are interested in the flow of a viscoelastic fluid modeled by (7) over an infinite flat 
plate, which is driven by the impulsive motion of the flat plate with a constant velocity U. 
We select the direction of motion of the wall as the x axis and the direction perpendicular 
to the wall as the y axis and assume that  the side effects of the wall axe neglected, namely, 
the  wall is infinitely long. After that ,  we seek a solution for the velocity field of the form 

9=u(y,t ) i  (8) 

where u is the velocity in the x coordinate direction and i is its unit vector. The fluid is set 
into motion through the action of the stress at the plate. For this problem the constitutive 
relationship becomes 

ayx+AaOaayx ~0 ~-I (OU) 
at  - GXPo--i- (9) 

0U 00"y x 
P Ot - Oy 

The momentum equation is 

(lO) 

where p is the density of the fluid. From (9) and (10), we can obtain the basic equation 

Ou Oc~+iu ~ 0  ~-1 (021t~ 

For this problem the initial and boundary conditions are 

u(y,O)=O for y > 0  

u ( 0 , t ) = U  for t > 0  

u - + 0  for y --+ c~ 

(ii) 

(12) 

(13) 
(14) 

3 S O L U T I O N  O F  B A S I C  E Q U A T I O N S  

3.1 The Velocity Field 
Let us introduce dimensionless variables: u* = u /U, y* = (yU p) / #, t* = ( tU~ p) / t ~, ~ = 

(U2p)/G, in which U and I~/(U2p) denote characteristic velocity and time, respectively, ~/is 

a dimensionless parameter.  Using the first mean value theorem of the integral, it can easily 
be proved that  the operator  D7 has the fractional time dimensions [#/(U2p)]-~. Thus, the 
dimensionless equation and its boundary and initial conditions are obtained as follows (for 
simplicity, the dimensionless mark %" will be omitted hereinafter) 

Ou O~+lu O~-i (02u~ (15) 
O---t "~- T]a 0]~ a+l -- 7113--10t fl-I k OY 2 ] 

u(y,O)=O for y > 0  (16) 

u ( O , t ) = l  for t > O  (17) 
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u- -~0  for y - + c ~  (18) 

Let us suppose that  ~(y, 8) = L{u(y, t), s} = f o  e-~tu(Y, t)dt is the image function of 
u(y, t), where s is a transform parameter. The type of the initial condition (16) suggests 
that  the fractional derivative in Eq.(15) must be interpreted as a properly chosen sequential 
fractional derivative [15]. Using the Laplace transform properties for sequential fractional 
derivatives we can obtain 

d2~2 1 + rlas a+i 
= 0 (19) dy2 r/fl-ls/~-i 

K0, s) = i/s (20) 

~- -40  for y --+ c~ (21) 

Solving the above equations yields 

~(y ,~ )  = - e x p  - ~ y  (22) 
s ~. rl~-ls ~ 

In order to avoid the burdensome calculations of residues and contour integrals, we 
will apply the discrete inverse Laplace transform method to obtain the velocity distribution. 
Firstly, we can rewrite (22) in a series form by using Taylor theorem. 

~-~ (-y)nr/"('+~-~) ~-~ F ( n / 2  + 1),7 -~'~ ~ - " ~ - , ~ - 1  
i + ~  n! ~ m ! F ( n / 2 - m + l ) S n -  2 (23) 

n = l  m = 0  

Here, we have used the well-known property of the Gamma function 

1 
r(-k---S = 0 k = o, 1, 2, 3 , . . .  (24) 

Applying the inverse Laplace transform to (23), we obtain 

u(y,t) = i + ~ n! 

o 

in which H~,$(z) denotes H function [11]. To obtain (25), we used the property of H function 

P 
( -z )~  1-I r (aj + Aim) 

qi=i =rrl,p [ z ] (26) 
~=o n! I-[ F (b i + Ban ) (0, 1), (1 - bi, Bi )  , . . .  (1 - bq, Sq) 

i = l  

3.2 T h e  Stress  Fie ld  

Since the fluid is set into motion through the action of the stress at the plate, 
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the calculation of the stress field is needed. From (9) the dimensionless stress can be repre- 
sented by 

F + ~la OaF = ~3_l a Ot ~-1 ( O_~yy ) (27) 

where F(y, t) = (%x) / (PU2). The Laplace transform of (27) is 

~(y ,  ~) + ~ % . ~ ( y ,  s) = n ~ _ ~ _  ~ d~(y, ~) (28) 
dy 

Substituting (22) into (28), we have 

F(y's) = - l  ( i T - ~ a  exp -sy \ -~_-~s~ . j (29) 

Applying the discrete inverse Laplace transform method again, we obtain 

F(y,  t) = - 

t (~- l~-a)  

k! k----O 

H~:~ -~l-at~ (0,1),(1 k _1) ( k _ ( k - 1 ) ( ~ - a )  (30) 
2' ' 2 '~/  

In order to obtain the value of the shear stress at the plate, taking y = 0 in (29), we 
obtain the followin$ expression 

-J~p(8) = i ( .?lfl._~-18 fl ~ 1/2 
- s  \1 +~laSa/ (31) 

Similarly, we obtain the formula to calculate the shear stress at the plate. 

1 ] "'1,2 ~ ~ t a  (32) 
(0,1), ,~  

4 D I S C U S S I O N  A N D  R E S U L T S  

4.1 The Relationship between Stress Field and Velocity Field 
Substituting (22) into (29), we obtain 

_ ( F(Y'~) = \ I  + ~  ~(Y'~) (33) 

In the same way, we can easily obtain the Laplace inversion of the first term of the 
right hand side of Eq.(33) 

1 + c s ~  / , t  = ~ 2 n! r [n~ - (~ - ~j  ~.~ (34) 
n~-O 



Vol.18, No.4 Tan & Xu: Motion in a Viscoelastic Fluid 347 

Using the convolution theorem of the Laplace transform to (33), we have 

1 ~-o-~ ~ r (1/2 + ~) (-~-~)~ f f  
F(y,t) = - - ~ q  ~ E n!~--~[n~-__-~: a-~-~] ( t -  r ) " ~ - ~ - l u ( y ,  T)d'r (35) 

n ~ O  

Using the definition of the fractional calculus, (35) can be rewri t ten as 

1 P-~-~ E V (1/2 + n) (_  _a)n _ ~_~ 2 .Dr ha+ 2 u(y,t) F(y,t)  = - - ~ /  ~=o n! (36) 

The physical meaning of (35) and (36) is tha t  the stress at a given point at any time 
in the viscoelastic fluid depends on the t ime history of the velocity profile at that  point, and 

this t ime history can be depicted by the fractional calculus. 

4.2 T h e  C a s e  c~ = 0, ;3 = 1 
In the case of a = 0, ;3 = 1, Eq.(15) may be simplified as 

Ou 10Zu 
Ot 20y 2 

I t  is obvious tha t  the fluid may be simplified as a viscous Newtonian fluid. 

Substi tuting a = 0,/3 = 1 into (25), we have 

(37) 

u(v, t)  = - ~ . ~ - ( i - ~ / z )  = w-v~ ,~  = erfc Y 
n = O  

(38) 

c ~  Z n 

in which Wp,u(z) = ~=o ~ n! r (pn + ~) z e c ,  is Wright function[16]. This is the classical 

Rayleigh's similarity solution of (37). It  is obvious tha t  the result of this paper  includes the 

classical Newtonian fluid as a special case. 
Similarly, substi tuting a = 0,/3 = 1 into (36), we have 

F(y,t)  = v~_~  ~ , t )  (39) 

Here we used a useful particular value of G a m m a  function: F(1/2)  = ~ and the 
( - 1 7 r ( 1 / 2  + ~) 

equivalent formula: l / v / 2  = 1 + ,~=1 ~ r (1 /2 )n !  . The formula (39) just is the result 

of Bagley and Torvik [1~], which is obtained for Newtonian fluid. Therefore the result of this 
paper  is a generalization of the results given by Bagley and Torvik[ 17] . 

4.3 C o m p u t i n g  R e s u l t s  
T h e  dimensionless velocity can be evaluated by (25). Figure 1 and Fig.2 are the velocity 

distributions for several selected parameters  a and ;3, respectively. The  curves in Fig.1 and 
Fig.2 are plot ted at the fixed t ime t = 4 and ~7 = 10. The effect of the fractional orders a 

and ;3 in the constitutive relationship on the flow field is significant. The greater the a ,  the 

more slowly the velocity changes near the plate. The effect of/3 on the velocity is opposite to 

tha t  of a .  But it seems that  in a critical point their effect on velocity will change direction. 

Figure 3 is the velocity distribution for several selected parameters  71 at the fixed time. 

It  represents the relationship between parameter  ~/and velocity. 
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T h e  shear  s t ress  a t  t he  p l a t e  can  be  ca l cu la t ed  by  (32). F igu re  4 shows the  va r ia t ion  of 

t he  shear  s t ress  a t  the  p l a t e  for var ious  values  of  t ime.  For  sma l l  t imes ,  t he re  are  apprec iab le  

v iscoelas t ic  effects. Fo r  large t imes  the  v iscoelas t ic  effects become  weak.  I t  is c lear ly  seen 

f rom Fig .4  t h a t  for t he  values  of ( tU2p) /#  >_ ~ t he  fluid behaves  as if i t  was a Newt0n ian  

fluid. 
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5 C O N C L U S I O N S  

We have p resen ted  here  resul t s  for the  flow field of  a non -N e w ton i a n  v iscoelas t ic  fluid 

w i th  f rac t iona l  Maxwel l  m o d e l  near  a wal l  s u d d e n l y  set in mot ion .  Exac t  so lu t ions  of veloci ty  

and  s t ress  are  o b t a i n e d  by  us ing the  d i sc re te  inverse Lap lace  t r ans fo rm of  t he  sequent ia l  

f r ac t iona l  der ivat ives .  T h e  resul t s  show t h a t  for large t imes  t h e  viscoelas t ic  effects become 

weak.  
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The fractional calculus approach in the constitutive relationship model of viscoelastic 

fluid is introduced. The effect of the fractional orders in constitutive relationship on the 

flow field is significant. The fractional constitutive relationship model is more useful than 

the classical Maxwell model for describing the properties of viscoelastic fluid. 

The model and the analytical method employed in this paper may be useful in theo- 

retical and engineering analyses. 
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