
ACTA MECHANICA SINICA (English Series), Vol.13, No.3, August 1997 
The Chinese Society of Theoretical and Applied Mechanics 
Chinese Journal of Mechanics Press, Beijing, China 
Allerton Press, INC., New York, U.S.A. 

ISSN 0567-7718 

A P P R O X I M A T E  E S T I M A T I O N  OF H A R D E N I N G - S O F T E N I N G  
B E H A V I O U R  OF C I R C U L A R  P I P E S  S U B J E C T E D  

TO P U R E  B E N D I N G  

Yang Jialing ( ~  ~ ~ )  

(The Solid Mechanics Research Centre, Beijing University of Aeronautics and Astronautics, 

Beijing 100083, China) 

S. R. Reid 

(Department of Mechanical Engineering, UMIST, P.O.Box 88, Manchester M60 1QD, UI 0 

A B S T R A C T :  An approximate method for describing the plastic hardening- 
softening behaviour of circular pipes subjected to pure bending is presented. Theo- 
retical estimation based on the uniform ovalization model and local collapse model 
proposed in the paper is incorporated to give several simple formulations with rea- 
sonable accuracy for determining the relationship between bending moment (M) and 
curvature (~;) in the purely bended pipes. Attention is focused on the critical cur- 
vature associated with maximum resistant moment and the maximum change in the 
original diameter before the end of uniform ovalization stage as well as the local 
collapse behaviour. Some comparisons between analytical results and experimental 
results axe made in order to examine the theory. 

K E Y  W O R D S :  hardening-softening behaviour, pure bended pipes, circular pipes, 
deformation characteristics of pipes 

1 I N T R O D U C T I O N  

The deformation characteristics of pipes subjected to bending moment are more com- 
plicated than that  of the pipes subjected to uniform axial compression, although the latter 
at tracts more studies than the former whose application is quite extensive in engineering 
such as power plant and offshore structural system. For those frequently used pipes with 

outer diameter (D) to thickness (H)  ratio (D/H) between 15 to 40, according to the observa- 

tion of the pure bending test and theoretical analysis published in the past, the deformation 
process of the bending pipe from initial elastic bending to large plastic local collapse can be 

described by three stages in the curve of its relationship between the bending moment and 
curvatures as shown in Fig.l ,  which is summarized in the following: 

(1) Elastic bending stage of conforming to classical beam theory. The linear relations 
between the bending (M) and the curvature (~) precisely conform the classical beam theory, 
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Fig.1 Deformation process of pure bending pipes and moment-curvature response 

and the equation is given by 
M = E I ~  (1) 

where E is Young's modulus and I the second moment of area of the cross-section. No 
obvious ovalization of the pipe's cross-section can be observed and therefore the estimation 
based on classical beam theory is in good agreement with experimental results. 

(2) Plastic hardening bending stage with uniform ovalized cross-section. With the 
increase of curvature, more and more materials of the cross-section enter into the plastic 
state from outer fibre toward the cross-section centre. The uniform ovalization of the cross- 
section becomes remarkable. For those pipes with D / H  = 15 ,~ 40, the ovalization is 
significantly influenced by the plastic behaviour of the material. During the initial stage 
of ovalization, the strain hardening still governs the resistant bending of the cross-section 
when comparing with the progressive reduction of bending rigidity of the pipe resulted from 
the ovalization. So the resistant bending moment increases with the growing of curvature. 
The development of the ovalization, however, will eventually overwhelm the effect of strain 
strength of the material and consequently a critical curvature is observed where the bending 
moment reaches its maximum value. Hereafter, further increase of the curvature results 
in a drop of bending moment which leads to local buckling and collapse of the pipe (see 
following stage 3). Therefore the research of the critical curvature (or strain) is important 
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in the evaluation of load carrying capacity of pipes. Since Brazier [3] studied the problem 
in the range of elasticity in 1927, a series of studies by using plastic theory associated with 
numerical methods and pure bending tests have been carried out by several researchers [4~1~ 
The key results can be summarized as a relationship between outer fibre critical strain (e~) 
corresponding to the critical curvature (~ )  of the pure bending cross-section and the ratio 
of the thickness to outer diameter (H/D)  of the pipes. The critical strain and curvature can 
be approximately expressed by 

= c  H 
ec R ~c -- C~2  (2) 

where C is a constant and R = D/2. It is observed that most of the experimental data is 
in the narrow range between the lines defined by Eq.(2) with C = 0.2 and 0.5. During the 
uniform ovalization stage, the cross-section of pipes is deformed to be like the shape of an 
ellipse. The ovalization rate characterized by the shortening of the pipe diameter is small 
in comparing with D, usually less than 10%. But this leads to critical transition of load 
carrying capacity from strengthening to weakening of the pipe. 

(3) Local collapse stage with nonuni- 
form ovalization. During the latter period of 
uniform ovalization when resistant bending 
is close to its maximum value, a series of 
short wavelength "ripples" become more vis- 
ible on the compression side along the axial 
direction of the pipe, which is similar to the 
bifurcation buckling of an axially compressed 
shell. The uniform ovalization soon stops and 
the "ripples" localize into a "kink" while the 
bending moment drops sharply, leading to 
catastrophic collapse. Four point bending 
test shows that the "kink" is restricted in 
a small region (see Fig.2) whose half-length 
(c) can be estimated by c = j3(DH) ~ where 

is a constant depending on the property 
of the material while other regions are in 
the unloading state. As the serious localiza- 
tion of deformation occurs in the region of Fig.2 Local collapse characterized by a "kink" 

the "kink", an abrupt change of the slope over the "kink" in pipe line direction can be 
observed, and therefore the relationship between bending moment (M) and the rotation (0) 
of the "kink" are available to describe the local collapse behaviour of the pipe rather than 
using the moment-curvature relation. However, as a generalized constitutive characteristic 
study of the hardening-softening behaviour of pure bended pipes, it is desired to utilize the 
unified parameters (M-~ relation) for description of the deformation history of the three 
stages introduced above. By noting that the "kink" is formed also in a small region, the 
average curvature increment can be defined in this region by 

= (3) 
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and then the moment-curvature relationship during local collapse stage can be also depicted, 
which is sketched in Fig.1 of stage 3. 

The precise theoretical elastic-plastic analysis of the local collapse behaviour of a pipe 
under pure bending is quite complicated, having to do with 3-D large deformation equation 
of the shell. As a rough estimation with reasonable accuracy, however, a simple model 
based on the plastic yield line method is proposed in the paper which achieves fairly good 
agreement with experimental results. 

As to the application of the M-~ relationship of pipes under pure bending, it is worth- 
while to mention the pipe-whip model suggested by Reid et al.[n]. The model, incorporating 
the generalized constitutive relationship between M and ~ which takes account of the whole 
deformation history described in above three stages into large deflected dynamic governing 
equations based on beam theory, provides a good estimation of the dynamic behaviour of 
whipping pipes through a series comparisons between theoretical results and experiment 
data. 

The objective of this paper is to suggest an approximate method for describing the 
elastic-plastic hardening-softening behaviour of pipes subjected to pure bending. Attention 
is focused on the simplification of the formulations based on [1] with reasonable accuracy to 
give the approximate description of the M-~ relationship in uniform ovalization stage and 
suggest a new model to describe the local collapse behaviour of the bended pipe. 

2 U N I F O R M  OVALIZATION B E H A V I O U R  

2.1 E s s e n t i a l  F o r m u l a t i o n  o f  t h e  P r o b l e m  F r o m  [1] 
Figure 3 shows schematically the deformed shape of an infinitely long circular pipe 

subjected to pure bending. Three basic assumptions adopted in [1] for the analysis are as 
follows: 

(1) the middle surface of the pipe is inextensible, which is based on experimental 
observation and this condition can be expressed by 

w = d v / d 8  (4) 

where v and w are displacement components at middle surface in circumferential and radial 
direction, respectively. According to the geometric relations between strain and displace- 
ments, the longitudinal strain ex and circumferential bending strain es can be expressed 
by 

Fig.3 

I 

~.v 

M 

Middle surface of a pipe subjected to bending 
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ex = g[(R - w) cos 0 - v sin 0] (5a) 

z ( + o ~  (Sb) 
es = --~ kw O0 ~ ) 

where 0 is co-ordinate as shown in Fig,3 
(2) the volume of the pipe element is incompressible during plastic deformation, and 

by employing the deformation theory of plasticity, the constitutive equations are given by 

(7 s _- 

w h e r e  g and # are the effective strain and 
(3) the plastic material behaviour is 

2a + es) (6a) ~x = ~ (2~x  

2~ 2e  ~--~( s + ex)  (6b) 

stress, respectively. 
modeled by a power hardening law of the form 

a = ao~" (7) 

where a0 and n are two characteristic constants of the material, obtained from a best fit to 
the experimental stress-strain curve. The effective strain e is given by 

2 2 = ~ ( ~ s  + ~ + ~s~x) ~ (8) 

Based on above assumptions, the strain energy per unit length of the pipe is given by 

U= -~aO " fH/2 [ ~oeX g'~-z(2ex + es)deX + foeS g'~-z(2es + (9) 

According to extremum and variational principles, the real stress and strain fields which 
satisfy the equilibrium equations in the bending pipe render the strain energy, U, minimum. 
The numerical calculation is carried out by letting the displacement, w, be expressed by a 
series of orthogonal functions 

oo 
w ---- R Z (,r (10) 

{----1 

where r r and Cn(0) are the displacement functions which are normally chosen 
to satisfy 

d ~ i  0 = 0 , .  dO = 0 (11) 

due to symmetry about the vertical plane of the cross-section. (1 ,~2 , ' " ,  ~,~ can be deter- 
mined by the stationary nature of U, and then the applied bending moment, M, is calculated 
by 

~-~ ~ ( U  min) (12) M 

2.2 Approximate Analysis 
Although [1] suggested an approximate method for simplifying the numerical calcu- 

lation, no further simple formulations were provided to estimate the M-~ relationship and 
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critical curvature and bending value. An extended and improved procedure is presented a nd  
some approximate estimate formulations with reasonable accuracy are given in the section. 

After integration of Eq.(9) with respect to 6x and es,  the strain energy is found to be 

U = 3(n8a~ 1----~ 2 ,~-1 ~ O.So.s [2(s~: + ~  +exes) 2 - [ e x ]  '~+1 - [es [n+l ]dzdO (13) 

where z = Z/H. During uniform ovalization, pure bending experiment shows that the 
changes of the cross-section in vertical and horizontal diameters were quite close to each 
other, indicating that it is reasonable to assume that  the pipe which is initially round 
becomes elliptical shape [4], and therefore the strains ex  and 6s are expressed by functions 
of 0 and z, 

r~D -6zH 
ex = -~ - f l (O , ( )  es  = -~ f2(O,() (14a, 14b) 

where 

f l  = cos 0(1 - ( cos 2 8) f~ = ( cos 20 (15a, 15b) 

Introduce a characteristic curvature n0 which is defined by 

H 
~0 = D--- 5 (16) 

and then ~x is rewritten in the form 

ex = ~ D g / l ( 0 , r  (17) 

where g = ~/~o is the nondimensional curvature. Using (14) and (17), the strain energy 
Eq.(13) can be rearranged as 

/o'f_ ?' 4aoDtt 2 n (~  32gflf2 4- 9z2]~)n+2'dzdO - 
1 

/o /o ) ~ 1 7 6  
n + 2 08)  

In the first double integral, the integration from the lower-limit - 1  to the upper limit 1, can 
be approximated by a Gauss three-point integral formulation and after setting 0 = lr/2 - r 
above equation becomes 

2aoOH ( 2_2_~ n-1 
U ~ 3(n + 1) \ v/'3] (H/D)'~+tU* (19) 

in which 

where 

U* = f~/2 2"22[0"2592f~ _ 1.1619gflf2 4- 5.4f~] 2 d r  
J-~r/2 

12 x 1121n+ dr 
�9 2 /  so n + 2  so 

(20) 

f l  = sin ~b(1 - ( s in  2 r f2 = r ~ b - i)  (21) 
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The above integral can be easily estimated by Simpson's method and the minimum U*, 
therefore, is determined by a given g with an appropriate value of r which renders the 
integral minimum. The bending-curvature relationship is obtained by 

OU min aoD2H(_~3)n+l 
M = 0 ~  = 2(n + 1----~ (HID)riM* (22) 

where 
0V* rain 

M* -- (23) 
O~ 

depending on both g and material strain hardening exponent n, and the critical non- 
dimensional curvature g~ is attained by setting 

{ 0 g  - -0  (24) 
J~=~o 

for which, the bending moment reaches its maximum values. 

2.3 A p p r o x i m a t e  F o r m u l a t i o n  a n d  C o m p a r i s o n  
Equation (24) indicates that  g~ only depends on the material strain hardening exponent 

n. For those experimental stress-strain curves whose plastic behaviour can be approximately 
described by power law formulation (7), n is usually in the range of 0.15 < n < 0.3 for mate- 
rials such as low carbon steel and ah,minum, and 0.35 < n < 0.5 for hardening materials such 
as alloyed constructural steel. As a typical example, n is selected to be 0.26, a representative 
hardening exponent for mild steel. From (22) and (20), it is found that  

M* ~ -0.218~ 2 § 0.5105~ + 1.242 (25) 

for 0.35 < g < 2.0 and hence from (24), it is estimated that  

gc = 1.2 (26) 

which gives 

t% ~ 0 . 3 ~  (27) 

The difference between the result and that  from Reid et alfl] when letting R -- 24.1 mm 
and H = 2.6 mm is less than 4%. 

For 0.15 < n < 0.5, (22) together with (20) provides a good approximate estimate 
formulation for gc and M * ~  which are 

gr ~ n~ - n) (2Sa) 

M*~r ~ 1.478 + n 2 (28b) 

The critical curvature Ice as well as the critical strain ee are then approximately estimated 
by 

~ ~ ln~ - n ) H  (29a) 

g (29b) c~ ,~ n~ - n ) ~ -  
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Comparing with Eq.(2), it is estimated that  the value of C varies between 0.18 and 0.43 

for the materials with n varying from 0.15 to 0.5. In order to further examine Eq.(29), a 

comparison with the experimental results given by Reddy [2] is made herein. Figure 4 shows 
two typical actual stress-strain curves for steel and aluminum alloy specimens which are 

given by Reddy[ 2]. The curves can be approximated by 

a = 5 784e ~ for the steel (30a) 

a = 998e ~ for the aluminum (30b) 

to describe their plastic behaviour. After putt ing n = 0.39 and n -- 0.2 into Eq.(29), it gives 

r-/ 
ec = 0.38~ for steel pipes / 

(31) 
er = 0.23 R for aluminum pipes 

These estimations provides excellent agreement with the experiment results for both steel 
and alloy aluminum pipes which are shown in Fig.5 plotted by Reddy [2]. 
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Fig.5 Comparisons between theoretical 
predictions and experimental data 

On the other hand, the maximum bending moment can be approximately estimated 

by substituting (28b) into (22), which gives 

OUmi" __,~o a~ ( 2 ~'~+'(H) '* 
Mm~, - 0 ~ - - -  ~ 2(n + 1) \ ~ 1  (1.478 + n 2) (32) 

The value of Mmax is always smaller than the value of Mob estimated by the classical beam 
theory at the same point when ~ = ~c- But  the difference between them is small as well 
because the flatten rate of the cross-section is very limited during the uniform ovalization 

stage. Based on classical beam theory, the value of Mob can be estimated by 

: "12 D:H(HiD),~r4~fo'~l'sin,,+lOdO Mob = 4 aHR 2 sinOd8 = a0 (33) 
d O  
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and from (32) and (33), the ratio, r*, of Mma x to Mcb is given by 

r*--Mmax ( 4 ) -  1.478 + n  2 (34) 
Mob = v (n + 1 )n - ( - -0 s ) (2 .65 -  + 1) 

where 
I(n + 1) - ~{0.889(0.5) 2 + 0.555 6[0.984 "+1 + 0.176"+1]} (35) 

for the value of n varying between 0.15 and 0.5, it is found that r* varies from 0.94 to 0.88 
about 6% ~ 12% below the value obtained from the classical beam theory. 

The maximum change, 2A, of the diameter in deformed cross-section at the end of the 
uniform ovalization when ~ --- gc (M --- Mmax) can be roughly estimated by employing the 
classical beam theory (CBT) with taking into account of the ovalization. Assume that the 
vertical diameter decreases to D - 2A and horizontal diameter increases to D + 2A at the 
critical point when g = gc and M = Mmax- Then for the oval shaped cross-section, CBT 
predicts its value of the bending moment, Moval, thus 

aoHD2~'~ n - A ~r/2 /oval" "~ (H/D){l-n-~}~o sinn+lo{1- 2~h sin20}d0 (36) 

At critical point where the bending moment reaches the maximum value, let (36) equal to 
(32) and neglect the high order term in A/R,  the maximum change of the diameter then is 
approximately estimated by 

~__ I(n + 1) - 2n-i(2/V~)n+l(n2 + 1.47~ 
, (n + 1)nn('~-~ (2.65 -- ~ (37) 

n 2I(n + 3) + nI(n + 1) 

The maximum change of the diameter estimated from (37) is found to be in the range from 
3.5% ,-~ 6.5% for n varying between 0.15 to 0.5, which is in quite good agreement with the 
observations by Reddy [2] in his pure bending experiment. 

2.4 Discuss ion  
(1) It should be emphasized that all of the simple approximate formulations for esti- 

mation of critical curvature (~c) or strain (ec), maximum bending moment (Mm~x) and the 
maximum change of diameter (A) are based on the plastic deformation theory associated 
with the effective strain-stress relationship obeying the hardening power-law form given in 
(7), (8). As is well known that this constitutive relation is better in describing the plastic 
behaviour of material, in particular, when the strain is larger, rather than elastic behaviour 
of material. The formulations presented in the paper, therefore, is appropriate for the case 
of D/H being smaller rather than for very thin shell. As mentioned before, the objective 
of the paper is to provide some approximate formulations for describing the M-~; behaviour 
for pipe-whip model, the background of the study is concerned with behaviour of pipes in 
nuclear power-plant where the actual used pipes having the ratio of D/H in the range of 
15,,40. 

(2) To estimate the critical values of ~ ,  e~, Mm~x and A as accurately as possible, it 
is important to correctly determine the strain hardening exponent, n, which depends on 
the hardening plastic behaviour of the material. A suggested method is that (i) roughly 
estimate the upper plastic limit strain as 0.4H/R; (ii) restrict the range of the stress-strain 
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curve experimentally obtained between the yield strain and the upper plastic limit strain , 
and fit the curve in the range with appropriate n and a0 in the form of (7); (iii) use (29) to 
estimate the critical strain defined here by 6~1 and check it to see if it is far smaller than 
0.4H/D. If it does, decrease the upper plastic limit strain to be slightly larger than ecl but 
close to it and then repeat (ii). If the newly obtained ec2 is obviously larger than eel, then 
select ec2 as the new upper plastic limit strain and repeat (ii) step by step until satisfactory 
results is achieved. 

(3) Recently, Calladine[ s] provided a simple estimate of the critical strain 

where E8 and Et are the secant and tangent module, respectively, of the material. If the 
material is assumed to obey the power law relationship between stress and plastic strain as 
shown in Eq.(7) and noting Et = da/de, E~ = a/e, then above equation becomes 

ec ~ O.7(H/R)v/-n (39) 

After putting n = 0.39 and n = 0.2 into Eq.(39) for the comparison with experimental 
result [2], it gives 

H 
ec = 0.437~ 

ec = 0.313 H 

for the steel pipe [ 

J for the aluminum pipe 

which are 15% and 36% larger than the estimations from Eq.(31). 

(40) 

3 L O C A L  C O L L A P S E  B E H A V I O U R  

3.1 Local  Col lapse  M o d e l  
Four point bending tests performed on pipes have indicated that for pipes with D / H  

in the range of 15,,~40, the local collapse occurs shortly after the ripples have developed, see 
Fig.2. The plastic "kink" which is formed on the compression side of the pipe and initially 
localized in the range of a full wavelength of the ripple has the inverted triangular shape 
across the diameter as  shown in Fig.6. The main yield plastic hinge line AC will deepen 
transversely into the pipe and grow along the circumferential direction. The nonuniform 
ovalized cross-section cut along the main hinge line is assumed to be deformed as shown in 
Fig.? in which the initial change of the diameter during uniform ovalization stage is ignored 
since it is sufficient small. The resistant bending moment of the cross-section is contributed 
by the main hinge line (AC) and the rest flattening portion ABC. Based on the assumption 
that the circumferential middle surface of the pipe is inexteusible, the geometrical relation 
for the deformed cross-section requires (Fig.7) 

R1 sin r = Re0 

- e l ) R 1  = - r  

(41a) 

(41b) 

where r r and R1 are defined in Fig.7. From above equation, r and R1 can be expressed 
b y  

r ~ 2.626 4r - 8.337 8r -t- 9.378 4r ~ - 4.094 2r + 1.618 1r (42a) 
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R1 - (~ - r (42b) 
71" - -  ( ~ 1  

/ A  ; kh~k / 

Fig.6 Position of "kink" in a bending pipe 

B 

Fig.7 A cross-section of the "kink" 

According to the pure bending test, the maximum moment Mma x which occurs at the 
end of the uniform ovalization as described in section 2 is quite close to Mp, the fully plastic 
limit moment. This indicates that as first order estimate, it is reasonable to assume that 
the average axial stress, a*, of the ovallzed cross-section during local collapse stage can be 
estimated by 

Mmax (43) 
a* .~ 4HR2 

and therefore, the resistant bending moment contributed by the main hinge line AC can be 
obtained by 

M Ac = 1g2a*Dr (44) 

while for the rest flattening portion of the cross-section (ABC), considering the equilibrium 
of the stress, the neutral axis position is determined by 

fA a d A l + f A  adA2=O (45) 
1 2 

where A1 and A2 are tension and compression stress regions divided by the neutral axis in 
the cross-section. It is found that the angle between the neutral axis and deformed circle 
centre is 

= r (46) 
2 

The bending moment contributed by the flattening portion of the cross-section (ABC) is 
given by 

M A B c = 4 a * R ~ H ( c o s ~ - s i n r  

and the total resistant bending moment then is given by 

M :  M Ac -F MABC ---- l~*H2Dd, o + 4a*R~H( cos r 1 . 

(47) 

(48) 
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The longitudinal central section of the "kink" is shown in Fig.8 where r is an angle in 
relative to the uniform ovalizated region of the pipe and xl and x2 are defined in Fig.8. By 
considering the geometric relation, we have 

~/D r r = - -  s i n ~ ( 2 c - D s i n ~ )  (49a) Xl  

r i r ( 2 c -  D sin 2r (49b) x 2 = D c o s ~ -  Dsin 

L_ 

c c 

Fig.8 Deformation mechanism of the "kink" 

and the change of the diameter is then estimated by 

A* = D - x2 (50) 

Therefore, from Fig.7 the relation between r and r is determined by 

r c _  
r  = c o s - l { 1 -  2 [ 1 -  cos 2r ~s in  ~ ( ~ sin ~ ) ]  } (51) 

Finally, the resistant bending moment in the localized cross-section is obtained by substitu- 
tion of (42) into (48), thus 

1 H ls n ,] 
LTr - -  q~l J "2-  - -  5 

As mentioned before, the "kink" is restricted in a small region and its half-length c can be 
written in the form 

c -- A Dv/D--H (53) 

where A is a constant depending on the property of the material. At initiation of local 
collapse stage, Murry and Bilston[ 12] found that the half length of ripples which is measured 
from both their axial compression and bending test can be perfectly estimated by 

c ~ ~ 1.22~/-DH (54) 
[12(1 - 0. 5 

where v is Poisson's ratio. This value is assumed to be the approximate half-length of the 
"kink" and, therefore the curvature corresponding to the bending moment from Eq.(54) 
during local collapse stage can be estimated by 

= + r  (55)  
2c 
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in the region of the "kink". When r = 0, Eqs.(55) and (52) give 

since r ----- ~bl = 0. 
collapse stages. 

3.2 Examples  

239 

= ~c M = Mm~x (56)  

This is the critical point between the uniform ovalization and local 

In the previous section it is suggested that the bending moment and curvature rela- 
tionship during local collapse stage should be approximately estimated from (52) and (55). 
When the structural parameters D, H and the material property E, a0 and n of the pipe 
are given, the behaviour of the pipe from elastic bending stage to uniform ovalization un- 
til local collapse can be estimated following the description in above. As the examples, 
Fig.9 shows three typical M-~ relationship curves for mild steel pipes (E = 200GN/m 2, 
ao = 830MN/m 2, n = 0.26) which are used in pipe-whip tests. Each of the three pipes has 
the same outer diameter 50.8 mm with wall-thickness of H = 2.6 ram, 1.8 mm and 1.58 ram, 
respectively. It is seen that the values of the critical points (Mm~, ~c) estimated from (32) 
and (30) are (1 720Nm, 1.34m), (1 120Nm, 0.90m) and (960Nm, 0.8m), respectively, for 
2.6 mm, 1.8 mm and 1.58 mm wall-thickness pipes. After critical point, the pipes enter into 
the local collapse stage and the curve obviously departs from the uniform ovalization curves 
(Fig.9). 
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4 C O N C L U S I O N S  

An approximate method was developed for the evaluation of the plastic hardening- 
softening behaviour i.e., the relationship between the bending moment and the curvature 
of pipes subjected to pure bending. Theoretical predictions from the simple analytical ex- 
pressions suggested in this paper give results of the critical curvature, the critical strain, 
the maximum bending moment and the maximum change of the pipe diameter, which are 
in good agreement with the experimental ones during uniform ovalization. Based on ob- 
servations of four-point bending tests, a local collapse model following the end of uniform 
ovalization stage was proposed to describe the softening behaviour of purely bended pipes. 
The formulations established are better applied to the pipes with D / t t  ranging 15 ~ 40. 
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