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STOCHASTIC INTEGRATION AND ONE CLASS OF 
GAUSSIAN RANDOM PROCESSES 

A. A. Dorogovtsev UDC 519.21 

We consider one class of Gaussian random processes that are not semimartingales but their increments 
can play the role of a random measure. For an extended stochastic integral with respect to the processes 

considered, we obtain the h6 formula. 

1. Introduction 

Let (f2, F ,  P)  be a probability space, let {w( t ) ;  t ~ [0; 1]} be a Wiener process on [0; 1], and let F = 
~(w).  The main object of  investigation is the class F of Gaussian random processes on the segment [ 0; 1 ] with 
the following properties: 

(i) every element y a F is jointly Gaussian with w; 

(ii) for every y ~ F, there exists c > 0 such that 

V n > l  V a l , . . . , a n ~  ~ ,  O = t o < t l < . . . < t n = l :  

n-1 n - I  
9 

M ak(y(t~+l)-Y(t~) <_ c a~(tk+l-tk); 
= k = 0  

(iii) for every y~  F and arbitrary te  [ 0; 1 ], 

My(t) = O, y(O) = O. 

In what follows, the elements of F are called integrators. This name is explained by the fact that condition (ii) 

enables one to integrate functions from F over random processes from L 2 ( [ 0; 1 ]). Indeed, according to the Kol- 
mogorov criterion, condition (ii) implies that every element of  F has a continuous modification with probability 
one. Therefore, the sum 

n-1 

ak (Y(tk+l)  - T(tk )) 
k = 0  

1 
can be regarded as the integral ~o fdy of the step function 

n-1 

f =  ~aak)~[tk;tk+l) 
k = 0  
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over the process y, and the validity of the inequality enables us to conclude that the mapping 

f 
1 

f f d T e  L2(f2, F ,  P)  
0 

can be extended to a continuous linear operator on the entire space L2([0 ;  1 ]). The result of this extension is 

called an integral over the process 7. The class F contains certain martingales and processes with smooth trajec- 
tories. At the same time, it also contains some other objects. 

Exaraplel. Let L C L2( [0 ;  1]). Denote 

cpdw, cp ~ L 
0 

Then the process 

7(0 = M(w(t)/FL), t ~ [  0; 1], 

is an integrator. Indeed, it suffices to verify the validity of condition (ii). According to the Jensen inequality, we 
have 

n-1 ))I M( ~-"oak (7( tk +l ) Y(tk 
Z )1 

2 n-1 

= M akM(w(tk+l)-- W(tk)/F L 
k = 0  

, l w w L II 2 

< 
n - I  n-1 

MM Zat(w(tt+1)--W(tk)) /FL = Za2(tk+l--tk). 
k = 0  k = 0  

In Sec. 2, we consider the internal structure of integrators and, in particular, the presence or absence of a quad- 
ratic variation. In Sec. 3, we construct an extended stochastic integral with the use of an integrator and give the It6 
formula for this integral. 

2. Construction of Integrators and Quadratic Variation in the Mean 

Here and below, we use the following notation: 

1 

Vq3~ L2( [O;1] )  (qo;~) "= Iq~dw, 
0 

(.; .) and II II are the standard scalar product and norm in L 2 ([ 0; 1 ]), and ~ can be regarded as a generalized 

Gaussian random element in L2(  [ 0; 1 ]) with mean value zero and identity correlation operator [1]. An arbitrary 
process 7~ F is jointly Gaussian with ~ and, hence, can be represented as follows: 
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~,(t) = ( g ( 0 ; ~ ) ,  t~ [0; 1]. (l~ 

In this case, condition (ii) means that there exists a linear continuous operator A ~ L (L 2 ( [ 0; 1 ])) such that 

V t e  [0 ;1 ]  g(t) = A(Z[o;0 ). (2). 

For instance, in Example 1, the operator A is an orthogonal projector onto a subspace generated by L In turn, 

it is easy to verify that, by virtue of equalities (1) and (2), any operator A e L (L 2 ( [ 0; I ])) can be associated with 
a random process from F. In particular, taking isometry as A, we obtain a new Wiener process as y. 

Since the processes from F admit the integration of functions from L 2 ([0;  1 ]) over these processes, it is 
natural to expect that these processes possess properties similar to the properties of  semimartingales or processes 
with smooth trajectories. Both semimartingales and processes with smooth trajectories have a quadratic variation. 

Let y e  F .  For the partition 0 = t o < t I < ... < tn= 1 of the segment [0; 1 ], we form the sum 

n--1 
S = ~ (~%+1)- ~,(t~))2. 

k=0 

The corresponding mathematical expectation has the form 

n-I  
V = MS = ~lEg(tk+i)-g(t~)l[ 2. 

k=0 

It turns out that, even among projectors, one can find those for which expressions V constructed by a sequence of 
partitions whose diameter converges to zero have no limit for the corresponding functions g. 

Example 2. To construct an integrator that does not have a quadratic variation in the mean, we specify an 

orthonormal basis { ek; k > 1 } in a subspace the projector onto which would be associated with the required pro- 

cess. For every n > 0 ,  we deno teby  L n the subspace of L2( [0 ;  1]) generated by the family of indicators 

{Z[i/2n;i+l/2n], i = 0  2 n -1} .  We set l and defme vectors as follows: e l ~  e2 e210+l 

e k = 2 5 (~[(k_2)/21O;(k_2)/21O+l/211) -- ~,[(k_2)/210+l/211;(k_l)/2tO)). 

Analogously, we construct vectors e2m+2 . . . . .  eemo+210 by partition of the segment [ 0; 1 ] into 2 m~ equal parts. 

Continuing this procedure, we obtain an orthonormal sequence of functions possessing the following properties: 

~ / n > 0  V i  = 2 + 2 t ~ 1 7 6  . . . . .  1 + 2 m + . . . + 2 1 ~  ei~Llo,.,+l, ei_l_Lm~+~. 

Let A be the projector onto the subspace generated by the sequence { e k; k > 1 } and let y be the integrator 

the expression for Vn constructed for the partition 0 < 1/2 n < . . .  < corresponding to A. Then, for every n > 1, 

(2 n - 1 ) / 2" < 1 has the form 

v~ = 

( (i+i)/2 n -~2 

i=O k = l  \ i /2  n J 
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Therefore, 

VIO 

21~ 

i=0  k= l  

r (i+l)/21~ ds] 

i/21~ 

2 
1 

210 , 

V11 : I 
i=0  [_ 

/+lJ21i 1 2 / / + l  J211 12] 1 1 
ds +210 I ds = ~ - ~ + ~ . ,  

i/21I i/211 

V100 = [ ds + 2 l~ ds = + 
29---- 6 , 

�9 = i /2100 k i /2100 

etc. Thus, 

1 
VIO j --~ O, j ~ oo, VIOJ+ 1 --> =, j --~ oo. 

Z 

Hence, the sequence { Vn; n > 1 } does not have a limit and, consequently, the integrator 
quadratic variation in the mean. 

Let us consider sufficient conditions for the integrator T, in terms of the operator A, 
variation in the mean. 

qt does not have a 

to have a quadratic 

L e m m a  1. I f  A is a Hilbert-Schmidt operator, then y has a quadratic variation in the mean equal to zero. 

Proof. The operator A*A is nuclear. Consider the corresponding Riesz representation: 

A*A = ~ ~.kek | 
k = l  

where {ek; k > 1 } is the orthonormat sequence, 

e ~  

Lk > 0, k >  1, ~ ' k  < + ~ -  
k= l  

For an arbitrary partition 0 = t o < t 1 < ... < tn = 1, the corresponding expression for V has the form 

i=0  i=0  = \ ti j j 

, /2/ 
~ ~'k e k(s) ds 
k= l  i=0  \ ti 

< ~'k e~(s)ds (ti+ 1 - ti) < max (ti+l - ti) ~'k- 
i=0  ..... n-1 k= l  ~ i = 0  ti k= l  

Therefore, V converges to zero as the diameter of the partition tends to zero. The lemma is proved. 
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Remark. 

where A*{ is an ordinary random element in 
iation of y is equal to zero. 

A. A. I)OaOGOVTSF.V 

The statement of  Lemma 1 becomes clear if we note that, in this case, the process 7 has the form 

t 
y(t) = f (A*~)(s)ds, t~ [ 0; 1], 

0 

L 2 ( [ 0; 1 ]). Thus, in the case under consideration, the quadratic var- 

L e m m a  2. Let the restriction of  the operator A onto the space C([  0; 1 ]) be a continuous linear operator 
that maps C( [ 0; 1 ]) into itself Then the corresponding process Y has a quadratic variation in the mean. 

Proof It follows from the conditions of the lemma that the operator A can be associated with the function 

Ix : [ 0; 1 ] x B ( [ 0; 1 ]) ~ 1R ( B  ([ 0; I ])) that is the (y-algebra of Borel subsets of  the segment [ 0; 1 ] such that 

(i) fo rany  t~ [ O; 1],IX ( t , . )  is a finite charge on B([O;  1]); 

(ii) 

(iii) 

fo rany  A~ B ( [ 0 ;  1]),IX (.,A) is aBorel  function on [0; 1]; 

for every f ~  C([O;  1]) and t~ [ O; 1], 

Since the operator A 
rem that 

(AN(t )  = 

is continuous on L 2 ( [ 0; 1 ] ), 

1 

f f(s)ix(t, ds) .  
0 

it follows from Lebesgue 's  dominated convergence theo- 

V t ~ [  0; 1] (Az[0;t])('~) = tl('c, [0; t]) (modE), 

where ~. is the Lebesgue measure. Therefore, for any partition 0 = t o < t I < ... < tn= 1, the corresponding expres- 

sion for V has the form 

n-1 n-1 1 

v - -   llazt,i: ,+,l[l= = 
i=0  0 0 

Since, by condition, there exists a number c such that 

V t e [  0 ;1 ]  

where l IX [ is the variation of  the charge IX, 
tends to zero: 

1 n - 1  

~1,('~, [ti; ti+l])2 d'~ = I 2 g (% [ t i ;  ti+l])2 d'~. 
0 i=0 

I xl(x, [0; 1]) <__ c, 

we conclude that V has the following limit as the diameter of  partition 

1 

I Z 2d . 
0 tzk 

Here, for every "~, { txk; k >_ 1 } is the set of all atoms of the charge Ix ('~, �9 ) (this set is always at most countable). 
The lemma is proved. 
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Note that the conditions of Lemma 2 are satisfied by integrators of various types. 

Example 3. The integrator 

t 
y(t) = I w(s)ds,  

0 

is associated with the operator A acting according to the rule 

t~[  0; 1], 

1 

V q ~  L 2 ( [ 0 ;  1])  (A tp ) ( t )  = ~ ~p(s)ds.  
0 

555 

bt(z, .) = 8 3 - 2zL,  z~ [ O; 1]. 

3. Extended Stochastic Integral and the It6 Formula for Integrators 

Recall the necessary information on an extended stochastic integral over a Wiener process. It is now more con- 
venient to reason in terms of a generalized random element ~, replacing integrals of nonrandom functions over w 

by a scalar product with ~. An arbitrary random element x in L 2 ( [ 0; 1 ]) that has a finite second moment of the 
norm can be uniquely represented as the sum [ 1 ] 

x = ~ r k ( ~  . . . . .  ~). 
k=0 

(*) 

Here, {Tk( ~ . . . . .  {), k > 0} are multiple Wiener integrals with symmetric kernels taking values in L2( [ 0; 1 ]) over 
the corresponding powers of [ 0; 1 ], and Tk, k > 1, are interpreted as k-linear symmetric Hilbert-Schmidt forms 

on Lz ( [0 ;  1]) withvalues in L2([0;  1]). Forevery k >  0, on L2([0;  1]) we consider the (k+  1)-linear Hil- 
ber t -Schmidt  form 

Sk+l(q)l . . . . .  q)k+l) = (q)l; Tk((P2 . . . . .  q)k+l)), 

q)1 . . . . .  q)k+l E L2( [O;  1]). 

Let AS k +1 be the symmetrization of S~+ 1 over all arguments. 

and the martingale w ( t ) -  2tw(1 ), 
the collection of charges 

Therefore, y satisfies the conditions of Lemma 2, and the corresponding charges are the following: 

g ( z , A )  = k ( [ z ;  1 ] N A ) ,  z ~ [  O; 1], A~ B([O; 1]). 

Thus, as expected, the quadratic variation in the mean of the process 7 is equal to zero. Similarly, one can verify 
that the Wiener process is associated with the collection of charges 

~,(-c,.)= 8~, z ~ [ O ; l ] ,  

t ~ [ O; 1 ] (with filtration different from the Wiener filtration) is associated with 
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Definition I [1]. An extended stochastic integral o f  x is defined as the sum of the series 

o o  

k=O 

provided that this series converges in mean square. 

Denote 

1 
x(s)dw(s) = (x; ~).  

o 

In the case where x is a random process consistent with a flow of (y-algebras generated by a Wiener process, the 

extended stochastic integral of x coincides with the It6 integral. 
In addition to an extended stochastic integral, we need the notion of stochastic derivative, which can also be de- 

fined with the use of  expansion (*). For a random variable cz with t-mite second moment, we consider its represen- 
tation in the form of a sum of multiple Wiener integrals: 

o a  

a =  2Rk(  . . . . .  

k=O 

Definition 2 [ 1 ]. A random element ~ in L 2 ( [ O, 1 ] )  with finite second moment is called a stochastic de- 

rivative of the random variable c~ if for any cp~ L2([O; 1] ), the series 

o o  

k=O 

converges in mean square and 

(4; (P) = ~kRk(CP,~ . . . . .  ~) (modP~  
k=0 

Denote ~ =Doz.  
The stochastic derivative of a random element in a Hilbert space and higher derivatives are defined in a similar 

way. We denote by Wk(H)  (if H =/R,  we simply write W k) the collection of all random elements in a Hilbert 
space H that have the stochastic derivative of order k. At present, there are many works where the properties of 
extended stochastic integrals and stochastic derivatives and methods for their determination in Gaussian and more 
general cases are studied (see [2-5]  and the bibliography therein). Here, we present several relations necessary for 
what follows (see, e.g., [1]). 

If  x~ W 1 (L 2 ([  0; 1 ])), then the extended stochastic integral of x is defined and 

M ( x ; ~ )  = O, M(x ;~ )  2 = M l l x l l 2 + M t r ( D x )  2. (3) 

In (3), we is taken into account that the stochastic derivative of a random element x ~ W 1 (L  2 ( [ 0; 1 ])) is a random 

Hilbert-Schmidt  operator. If  a random variable cz~ W 1 and a random element x in L 2 ( [ 0; 1 ]) are such that x 
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and otx belong to the domain of definition of the extended stochastic integral and o~(x; ~) has a finite second mo- 
ment, then 

(czx; r = Cz(x; ~) - (x; Ocz). (4) 

Formulas (3) and (4) yield the following property of extended stochastic integrals: 

Proposi t ion 1. Let x e WI(L2([0 ;  t ] ) )  and let K be a H i l b e r r - S c h m i d t o p e r a t o r i n  L2([0;  1]). Then 

K X E  W I ( L 2 ( [ 0 ;  1 ] ) )  a n d  

(Kx; ~) -- (x; K*~) - t rK*Dx.  (5) 

The validity of (5) easily follows from relation (4) for a finite-dimensional operator K, and the possibility of 
passing to the limit is guaranteed by (3). 

In a similar way, we can obtain the following statement about the approximation of an extended stochastic 
integral, which is true not only in the Gaussian case [5]: 

Proposition 2. Let { Kn; n > 1 } be a sequence of  Hilbert-Schmidt  operators in L2([0;  1]) with kernels 

{ hn; n > 1 } strongly convergent to the identity operator. Then for  arbitrary x ~ W l (L2( [0 ;  1])), the follow- 

ing equality holds: 

I 

~ x d w  = lim 
n -..-) oo 

l 1 1 1 "~ 

Ix(s) f ds - I f 
0 0 0 0 

where the convergence is understood in the mean-square sense. 

Now let 7~ I" and let A be the corresponding continuous linear operator. 

Definition 3. A random element x in L2([0;  1 ]) with finite second moment belongs to the domain o f  de- 
finition o f  the extended stochastic integral over "f if A x belongs to the domain o f  definition o f  the extended 
stochastic integral over w and 

Let us consider several examples. 

Example  4. Let 

1 

x d 7  "= (Ax; ~). 
0 

7(t) - w(1).  t, t~ [0; 1]. 

In this case, the corresponding operator A acts as follows: 

V~0 ~ ~ ( [ 0 ;  1]) 

1 

(a r = ~ ( p ( s ) d s ,  t ~ [ 0 ;  1]. 
0 
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Therefore, for a random element x in L2(  [ O; 1 ]) that has a finite second moment, the stochastic integral over 
y is defined if the random process identically equal to 

1 

x(s)ds 
0 

belongs to the domain of definition of the extended stochastic integral over w. In this case, 

I 1/1 / 
f f fx(s)ds 
o 0 0 

In particular, if x e  W l ( L 2 ( [ 0 ;  1])), then 

1 1 1 

I = I x(s) sw( II 
0 0 0 

Therefore, in the case where y has smooth trajectories, the stochastic integral over 7 does not coincide with the 
Stieltjes integral. 

The next example shows that integrators and stochastic integrals over them appear in the course of the solution 
of problems of filtration for ordinary stochastic differential It6 equations. 

Example 5. Let L C L 2 (  [0; 1 ]) and let 5rL be constructed in the same way as in Example 1. A random 

element x in L 2 ([ 0; 1 ]) that belongs to the domain of definition of the extended stochastic integral over w sat- 
isfies the equality 

/ 1 ) i  M [ x ( s )dw(s ) /FL  = M(x ( s ) /YL)dy ( s ) ,  
0 0 

where, on the right-hand side, we have the stochastic integral of the process {M(x(s ) /FL) ,  s e [0; 1]} over the in- 
tegrator {y(s)= M(w(s) /SrL) ,  s e [0; 1]}. One can verify this relation by using expansion (1) and the fact that 

multilinear forms of ~ (i.e., multiple Wiener integrators) satisfy the equality 

M(Sk(~ . . . . .  ~ ) /FL)  = Sk(PL~, PL~ . . . . .  PLY), 

where PL is the orthogonal projector in L 2 ( [  0; 1 ]) onto the linear subspace generated by L. 

We now write the It6 formula for processes from F. 

Theorem. Let y~  F and let an operator A satisfy one o f  the following conditions: 

(i) A is a Hilbert-Schmidt  operator, 

(ii) 3c > O: Vt e [0; 1] Vcp ~/_~([0; 1]) N C([O; t]): 
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AA*((p)e  C([O; t ] ) ,  

maxlAA*(q )l _< cmaxlq l. 
[0; t] [0; t] 

Then for  any twice differentiable function F: [0; 1 ] x N ~ N with bounded derivatives, the equalities 

t t 

I ' I l trA*WTA, s ~ [ O ; 1 ] ,  f ( t , y ( t ) )  = F ( 0 , 0 ) +  Fl(s,y(s))ds + Fz'(S,y(s))dy(s ) + 
0 0 

(6) 

and 

t t 
t , 1 ~AA*(F~; ( sv . , y ( sv . ) ) ) ( s )ds  (6a) F(t ,y ( t ) )  = F ( O , O ) +  IF{(s ,y(s))ds + IF~(s,y(s))dy(s)  + ~ __ 

0 0 0 

are true in cases (i) or (ii), respectively. Here, ~Pt is the integral operator in L 2 ( [ 0, 1 ]) with the kernel 

Z[O:tl(S)Z[o;tl(r). F2'~(s v r,  y(s v r)), s, r ~ [ O; 1]. 

Proof. For a nonnegat ive even function h E C 1 (IR) such that 

I h(x)dx  = 1, 
]R 

we set hn(s, "c) = n h ( n ( r -  s ) ) ,  z, s~  [ 0; 1 ], n > 1. Then the integral operators {Kn; n > 1 } corresponding to 

the kernels {hn; n > 1 } in L 2 ( [ 0 ;  1]) satisfy the conditions of  Proposition 2. Moreover,  for every n > 1, K n is 

a continuous linear operator in C(  [ 0; 1 ]). For n > 1, we consider the new random process 

t 1 

7 n ( t )  = f l h n ( s , ' c ) d v ( ~ ) d s ,  t e l 0 ;  1]. 

0 0  

Since 

7 . ( 0  = 
0 0 0 \ 0 

y ( 1 ) n l h ( n ( 1 - s ) ) d s - n 2 1  Ih ' (n(T.-s) )ds  y ( z ) d z  
0 0 0 

t 1 1 

y(1) n I h(n(1 - s))ds + n I h(n("c - t)) y( '0  d'c - n I h(n'c)y(x)dz 
0 0 0 

(mod  P), 

Yn converges uniformly on [ 0; 1 ] to y as n---~oo with probability one. Therefore, for any t e  [ 0; 1 ], 
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F(t, y~(t)) = l i m  F(t, Yn(t)) 
t / - ' - )  ~ 

(mod P). 

According to the Newton-Leibniz  formula, we have 

v(t ,  v,, (t)) 
t t 1 

= F(O,O)+ f F{(s, Yn(s))ds + I ~'(S'Yn(S))f hn(s'"QdT('~)ds" 
0 0 0 

We transform the second term as follows: 

t I 

I ~'(s, Tn(s))j" hn(s, "c)dy('c)ds 
o o 

t 1 t 1 
I F~(s, yn(s))I hn(s , ~c)dy(~J)ds - f t D~'(s, yn(s))('C)A*(hn(s, "))('c)d~ds 
0 0 O0 

+ 
t 1 
[. [ DFC(s, %(s))('c)A* (h~(s,.))('Od'cds 
0 0  

l t 1 

I g n ( F 2 ' ( "  7n('))X[O;t]) (T')d~[(T') + f I VF2"(s" 7n (S ) ) (~ )A  (hn(s" ) ) (T ' )d ' cds"  
0 o o  

Under the assumptions made for the functions h and F, the random elements K n (F~(., yn(.))%)[0; t]), n > 1, 
are stochastically differentiable; as n---~,  they converge in mean square, together with their stochastic derivatives, 
to the random element F~(., Yn())%f0:tl. Therefore, 

1 1 t 

lim ~ Kn(~(. ,  yn('))%[o;t](-))(x)dy('0 = I F~(s, ]t(s)))~[o:t](s)d]r(s) = ~ F2'(s, y(s))dT(s), 
t l - - a z e ~  

0 0 0 

where the convergence is understood in the mean-square sense. We now consider 

t 1 

I I DF~(s, Yn(S))('r.)A* (hn(S, .))('~)d'~ds 
O0 

= F22(s, '~n(S)) a (hn(r,'))('c)A (hn(s,'))("c)d'c drds 
0 0 \ 0  

1 F~2(svr, Tn(SVr)) A (hn(r,.))(~)A (hn(s,.))('c)d'c dsdr. 
2 o  o 

In this case, the statement of the theorem follows from Lebesgue's dominated convergence theorem in case (ii), and 
from the properties of nuclear operators in case (i) (see [6]). The theorem is proved. 
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Example 6. Let y = w be a Wiener process. In this case, A is the identity operator. Condition (ii) is sat- 
isfied, and relation (6a) turns into the standard It6 formula for Wiener processes. 

Remark. Note that if condition (ii) is satisfied, then the process 7 has differentiable trajectories with prob- 

ability one. However,  there is a term containing the second derivative of F because the integral over 7 is an ex- 
tended stochastic integral. 

REFERENCES 

1. A.V. Skorokhod, "On one generalization of a stochastic integral," Teor. Ver. Primen., 20, No. 2, 223-237 (1975). 
2. T. Sekiguchi and Y. Shiota, "L2-theory of non-causal stochastic integrals," Math. Repts. Toyama Univ., 8, 119-195 (1985). 

3. E. Pardoux and D. Nualart, "Stochastic calculus with anticipating integrands," Probab. Theory Related Fields, 78, 535-581 (1988). 
4. Yu. L. Daletskii, "A biorthogonal analog of Hermite polynomials and inversion of the Fourier transformation with respect to a non- 

Gaussian measure," Funkts. Anal. Prilozhen., 25, No. 2, 68-70 (1991). 
5. A.A.  Dorogovtsev, Stochastic Equations with Anticipation [in Russian], Institute of Mathematics of the Ukrainian Academy of 

Sciences, Kiev (1996). 
6. M. Sh. Birman and M. Z. Solomyak, Spectral Theoo, of Self-Adjoint Operators in a Hilbert Space [in Russian], Leningrad Univer- 

sity, Leningrad (1980). 


