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ABSTRACT: Painlev6's paradox is one of the basic difficulties for solving LCP of dynamic systems 
subjected to unilateral constraints. A bi-nonlinear parameterized impact model, consistent with dy- 
namic principles and experimental results, is established on the localized and quasi-static impact model 
theory. Numerical simulations are carried out on the dynamic motion of Painlev6's example. The re- 
sults confirm "impact without collision" in the inconsistent states of the system. A "critical normal 
force" which brings an important effect on the future movement of the system in the indeterminate 
states is found. After the motion pattern for the impact process is obtained from numerical results, 
a rule of the velocity's jump that incorporates the tangential impact process is deduced by using an 
approximate impulse theory and the coefficient of restitution defined by Stronge. The results of the 
jump rule are quite precise if the system rigidity is big enough. 
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I I N T R O D U C T I O N  

Dynamical systems with unilateral constraints 

have attracted much attention due to their relevance 

in high-tech, especially in aerospace technology[I]. Al- 

though very complicated structures are involved in 

practice[ ~1, the theoreticM difficulties of the unilateral 

constraint systems can be found in very simple con- 

figurations and Painlev~'s example is acknowledged as 

o n e .  

Painlev~'s example is shown in Fig.1. There is 

an isotropic slender rod with one end A sliding on the 

ground. The length of the rod is 2I, the mass is m 

and the angle between the rod and ground is 0. The 

contact point A is subjected to Coulomb's friction law 

(with friction coefficient being p). Fn and Ft are nor- 

mal and tangential contact forces, respectively. 

According to Ref.[3] the relationship between 

the normal acceleration Ya and the normal force Fn 

on the contact point can be expressed as 

= A(O, , ) r a  + B(0, 0) (1) 
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Fig.1 Painlev~'s example 

A(0,#) : 1 ( 1  + 3 c o s O ( c o s O  - #sin 0)) (2) 
m 

B(o, 0) = 102 s ine - g (3) 

It is proven [a] that  if # > 4/3, there are four 

cases of LCP (Linear Complementarity Problem) as 

depicted in Fig.2 by selecting proper values of 0 and 

t) on the basis of (1): 
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2 A>0 and B>0 

) @ 1  A>0 and B<0 

\ /  

Fig.2 Relationship between Fn and /IA 

C a s e  1: A > 0, /3 < 0. This situation corre- 

sponds to continual sliding leftwards, which is given 

by the solution/)A = 0, F~ > 0. 

0. The rod leaves the sur- 

solution is YA > 0, F~ = 0. 

0. There is no solution at 

C a s e  2: A >  0, /3 > 

face due to inertia and the 

C a s e  3: A < 0, /3 < 

all and it is inconsistent. 

C a s e  4: A < 0, /3 > 0. I t  is clear that  contin- 

ual sliding and separat ion are possible solutions for 

the rod. It  is indeterminate.  

Painlev~ gave a method called LCP to solve 

such unilateral constraint systems as one in Fig.1. 

When the rod moves into the indeterminate or in- 

consistent states, LCP can not be solved. Due to this 
fact, Painlev~' paradox is known. I t  is an acknowl- 

edged method to solve LCP of dynamical  systems 

subjected to unilateral constraints[ 2J and this method 

is supported by a number  of algorithms [4]. However, 

Painlev~' paradox is one of the basic difficulties to the 

algorithms. 

Many scientists have studied the problem since 

Painlev~ brought forward Painlev6' paradox. The  

possibility of solutions with velocity discontinuities to 

the inconsistent case was first recognized by Lecornu, 

or perhaps more or less at the same t ime by Bolotov [3] . 

The velocity jump of Painlev~' example in the in- 

consistent s tate means that  the comparat ive normal 

speed /)A is zero at the moment.  So it is called "im- 

pact  without  collision ( IW/OC)"  for such impact  or 

"tangential  impact" .  Now a question arises: How can 
we compute the velocity jump? Baraff [3] proposed the 

following rules: 

(1) Since the inconsistency is caused by dynamic 

friction, the impulse must convert at least one of the 

contact points to static friction. 

(2) The contact  impulse must  be such tha t  the 

bodies do not separate after the discontinuity. 

Baraff 's  rules provide a jump rule for the veloc- 

ities after a tangential  impact  occurs. But  one may 
argue whether it is true for a real jump. Yu Wang [5] 

2004 

provided another jump rule using Routh 's  diagram 

method in terms of a proper  collision model and he 

believed tha t  the jump process should be divided into 

two phases: In the first phase, the rod moves along 

the line of limiting friction; In the second phase, it 

moves along the line of sticking. 

Some questions may be asked: 

(1) Is it true that  "impact without collision" will 

occur when dynamical systems are in the inconsistent 

state? 

(2) If  it is true, what is the jump rule? 

(3) How to obtain interactive forces and motion 

in detail when the impact  occurs including I W / O C  

if the actual unilateral constraints of the dynamica l  
systems are not absolutely rigid? 

Song[6] provided an effective method to study 

Painlevfi's paradox. He used a compliant contact 

model with the parameter  of local rigidity tending 
to infinite to simulate the impact  process. The con- 

tact  model he used is a continuous viscoelastic damp 

impact  one and the plastic effect is not considered 

by him. His research concerns only with the case of 

indeterminate state. 

A bi-nonlinear impact  model, in which the plas- 
tic distortion is the only form of energy dissipation, is 

established on the basis of local and quasi-static im- 

pact  model theoryFl in this paper.  The impact  model 

is also based on contact mechanics and results of ex- 

periments. Coulomb's dry friction is considered in the 

tangential direction neglecting compliance. We have 

carried out numerical researches on all the cases of dy- 

namic motion of Painlevs example using normal and 

tangentiaI models. (We call this method the softened 

method.) The effects of different dynamic motions 

start ing from general initial states as well as initial 

states with surface energy of unilateral constraints are 

considered here. The instances of dynamic motions 

of the system in actual cases by using the softened 
method as well as cases when the system converges to 

a rigid-body one are studied. 

Our research indicates tha t  the numerical results 

converge to the  unique solution ~)A = 0, F~ > 0 of 

LCP in Case 1 of Painlev~' example as the elastic 

modulus tends to infinity. The  inertial-jump-up solu- 
tion by using the softened impact  model agrees with 

the unique jump-up solution of LCP in Case 2 when 

no initial surface energy exists. 

The softened solutions converge to " IW/OC"  in 
Case 3 when no initial surface energy exists. The 

jump rule depends on the normal and tangential im- 

pact models. For the impact  models we use, the 
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jump rule is made up of three phases: tangential  

impact  phase while the tangential  speed at the con- 

tact  point changes from negative to zero at the end 

of this phase; sticking-compression phase; sticking- 
resti tution phase. In the last par t  of this paper,  the 

jump rule is given in detail on the basis of an approx- 

imate impulse theory. The numerical research indi- 

cates that  the theoretical results of the jump rule are 

quite accurate if the system rigidity is big enough. 

The dynamic motion has complicated structure 

in Case 4 as the initial surface energy is an impor- 
tant  factor which affects the future motion form of 

the system. The inertial-jump-up solution of LCP 

in Case 4 is the only possible one if the initial sur- 

face energy is zero. Although another  sliding solution 

(F~*~ = - B / A )  of LCP in Case 4 is also a theoretical 
one, it is not a stable one. The dynamic motion will 

depart  far from it once disturbance exists. The dy- 

namic motion forms of the system are not consistent 
with each other entirely with the change of the ini- 

tial normal force at the contact point. The dynamic 

motion forms are divided into two groups in the in- 

determinate states of Painlev6's example. In the first 

group, the initial normal force at the contact point is 

less than F~ and the dynamic motion is close to the 

inertial-jump-up solution of LCP in Case 4. In the 
second group, the initial normal force is greater than 

F~* and the dynamic motion is just like I W / O C .  

The impact  models we use agree with the ac- 

tual material  contact and impact  rule. The numeri- 

cal results obtained not only give proper answers to 

Painlev6's paradox, but contain detailed information 

of forces and motion during the impact  process of the 

dynamical systems subject to unilateral constraints. 

The information obtained is very useful in practical 

design. 

Resolution on Painlev6's Paradox 661  

quasi-static method [7] . 

The normal impact  model is independent of 

the tangential  motion in the condition of a low 
speed impact.  The tangential  model neglects com- 

pliance and is only subjected to Coulomb's  friction 

law. There are many normai  force-displacement im- 

pact models: linear spring-damping models, nonlin- 

ear spring-damping models and bi-nonlinear spring- 

damping models. For these impact  models, we will 
consider bi-nonlinear spring-damping models. Be- 

cause impact  forces are very great and the duration 

of impact  is relatively short, the plastic distortion is 
local. Johnson Is] applied Hertz theory and the von 

Mises yield criterion to determine the normal  force at 

which the incipient yield occurs in two spheres sub- 
jected to a normal load. Loc Vu-Quoc and Xiang 

Zhang[ 9] proposed a normal force-displacement model 

for contact spheres accounting for plastic deformation 

based on finite element theory. A relationship be- 

tween the normal force and normal displacement is 

established through the formalism of the continuum 
mechanics of elasto-plasticity by Liu Caishan [1~ and 

the contact yield stress definition clearly accounts for 
the plastic deformation. Shivaswamy[ 111 presented a 

bi-nonlinear impact  model in his Doctoral  thesis us- 

ing modified Hertzian contact theory. He revised the 

exponent of relative displacement and gave a relation- 

ship between plastic permanent  deformation and co- 
efficient of resti tution on the basis of experimental  

results. Because the last impact  model agrees with 

the experimental  results, we modify and use it in this 
paper. 

2.1 I m p a c t  M o d e l  in C o m p r e s s i o n a l  P h a s e  

In the compressional phase of impact,  the rela- 

tionship between normal force and relative displace- 
ment can be writ ten as 

2 P A R A M E T E R I Z E D  I M P A C T  M O D E L  

A N D  S U R F A C E  E N E R G Y  

The impact  models used not only are convenient 

to the research work of Painlev6's paradox, but  also 
agree with the material  impact  law. The process of 

impact  is very complicated and the inconsistent con- 

tact  area is small. So the localization is a very effective 

method for the impact  process, in which the resultant 
force and moment  are acquired instead of the actual 

impact  process. Because the speeds of stress wave 

are much greater than the relative impact  speeds in 
a low speed impact,  it is reasonable to assume that  

the stresses due to an impact are t ransmit ted  to every 

particle in the body instantaneously, which is called 

F~ = K~6 n (4) 

where n is the modified constant exponent. Kc is stiff- 

ness and 5 is normal  deformation. In Hertzian theory 

n = 3/2 Kc = 4/3E*R .1/2 

with 

1 1 1 1 1 
- -  i + GUT q- GU- q- -V/ R* /~1 R1 R2 R2 

1 1 - p~ 1 - ~ 

E* E1 E2 

where R~ and R[ r are two principal curvature radii at 

the contact point of one body and R~ and R~ ~ two 
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principal curvature radii of another bodyl Ei is ma- 

terial elastic modulus and y.t is Poisson's ratio. 

The force-displacement model in restitution 

phases is given by 

5-- 5p__~p)rZ 
F U = J~nmax (5i~ 2 (5) 

where 5 ..... and F~ . . . .  x represent the maximum defor- 

mation and the maximum normal force. W'e modify 

Shivaswamy's suggestion here and obtain 5m~x and 

Fn ..... at the exact time when 3 = 0 and 5 < 0 at the 

end of the compressional phase with impact process 

being continuous. 

The parameter 5p in (5) represents the perma- 

nent deformation during the impact and depends not 

only on the energetic coefficient of restitution e~, but 

on the maximum deformation 5 . . . .  

5p = 5 ..... (1 - e~) (6) 

Here the plastic distortion is the only form of 

the energy dissipation that is assumed. In terms of 

(4), the work the normal force Fn does during the 

compressional phase of impact can be expressed as 

~00 5 .... 5"n+l fn maxSma x Iu = F a d 5  = K e - l l l g x  _ ( 7 )  
r t + l  n + l  

In terms of (5), the work the normal force Fn 

does during the restitution phase of impact can be 

written by 

f SP Fn ..... (5ma x -- 5p) 
= = - ( 8 )  

a ..... n + l  

Here Stronge's energetic coefficient of restitution 

e~ is properly considered as 

Wr = - e ~ W ~  (9) 

By substituting W~ and Wr from (7) and (8), 5p 

becomes the form of (6). 

2.2 Surface Energy  in Uni latera l  Constra ints  
For the dynamical systems subjected to uni- 

lateral constraints we must distinguish the softened 

method in which the system converges to a rigid-body 

one and LCP in which the system is a rigid-body. 

When the softened method is used, the dimensions 

with the unilateral constraints are free and the free 

dimensions appended contain the initial "surface en- 

ergy". But in the rigid systems with unilateral con- 

straints the energy reserved can not be considered at 

all due to the dimensions constrained. The initial 

"surface energy" must be expressed in other way, the 

initiM normal force at the contact area for example, 

since it has a critical effect on the future movement 

of the systems. 

Integrate (4) from zero to the initial deformation 

5o in the contact area 

KeS; ~+1 __ fn050 (10) 
E n ~  n + l  -- n + l  

where En0 is considered as the initial surface energy 

and Fn0 is the initial normal contact force. 

3 N U M E R I C A L  R E S E A R C H  ON D Y N A M -  
ICS F O R  PAINLEVI~'S E X A M P L E  US- 
IN G  S O F T E N E D  I M P A C T  M O D E L  

In order to make the problem clear, the values 

of parameters of Painlev6's example are m = lkg,  

l = 1 m, g = 9.8 kg �9 m/s  2 and the static and kinetic 

frictional coefficient is supposed to be # = 1.4. The 

rod moves as a rigid body as a whole in the softened 

method and the impact models are introduced and 

applied locally at the contact area. The rod and the 

ground are assumed to be of the same material. The 

value of exponent is n = 1.764 according to the ex- 

perimental result in Ref.Ill  ]. The elastic modulus is 
E = 20.9 • 1010 N/m 2, which can be changed in the 

numerical research. The Poisson's ratio v = 0.3 and 

the radius of contact end A R - 0.00645m. The 

energetic coefficient of restitution is assumed to be a 

constant e~ = 0.75. 

In the numerical research the system of 

Painlev~'s example is considered, which is made up 

of three kinetic forms: sliding, sticking and free fly- 

ing without contacting the ground. The transform 

conditions must be given properly. When the contact 

point A of the rod is sliding on the ground, IFtl =/~Fn. 

When point A of rod is sticking on the ground, xA = 0 

and 2A = 0 if the sticking is holding. By using dy- 

namic equations and the condition 21 - 0, the tan- 

gential force Ft at the contact area can be expressed 

as 

3 sin 0 cos OFn - ~ tO 2 cos 0 

3 sin 2 0 + 1 

The condition on which sticking holds is IFtl _< 

uFn. When the rod is free without contacting the 

ground, Fr~ = Ft = 0 N. 
Additionally it is assumed that there is only one 

kinetic form in one step during computing process as 

sliding, sticking or free flying. It is reasonable if the 

length of step is very small and the numerical results 

obtained will be precise enough. 
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3 .1  U n i q u e  S o l u t i o n  o f  L C P  f o r  A > 0, B < 0 

The  ini t ia l  s t a t e  of Pa in lev6 ' s  example  is shown 

in Table  1. 

T a b l e  1 I n i t i a l  s t a t e  ( u n i t :  I U )  

Zhao Z et al.: Impact Model Resolution on Painlev4's Paradox 

:cA 2A YA YA 0 t) A B 

0 -1  0 0 0.5 1.0 1.5434 -9.3206 

Linear  c o m p l e m e n t a r y  so lu t ion  in Painlev6 is 

shown in Fig.3. Obviously,  the  unique  so lu t ion  is the  

rod  s l iding lef twards  on the  g round  and  the  no rma l  

con tac t  force Fn = - B / A  = 6.039 N. 

xl0 -3 
6 

2 

0 

2 { I ] Q ~ I  iiii i!!!ii! il ~4 
6 

-8  
0.000 0.004 0.008 0.012 0.016 

t/s 

(b) History of 9A 
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/ 

, Y .  

/ '  
the unique solution 

j~,4 =AF~ t B 

I1 

Fn 

Fig.3 Unique solution of LCP for A > 0, 13 < 0 

In  the  sof tened me thod ,  the  in i t ia l  s t a t e  is the  

same as the  one in Table  1. The  numer ica l  resul ts  are 

shown in Fig.4 ( E  = 20.9 • 101~ N / m 2 ) .  

S t a r t i ng  f rom the  in i t ia l  s ta te ,  the  no rma l  

d i sp lacement  YA (Fig .4(a) )  and  n o r m a l  force FI~ 

(Fig .4(c) )  at  the  con tac t  po in t  s top  osci l la t ing and  

become  s table  at  6.40 N af ter  a pe r iod  of t ime  (0.01 s) 

when  the  no rma l  speed  ~)a t u rns  to  zero and holds.  

If  we increase  elast ic  modu lus  to  E = 20.9 • 

1014 N / m  2, from the  in i t ia l  s t a t e  the  no rma l  force F,~ 

osci l la tes  for a b o u t  0.75 • 10 as  and  then  becomes  

s t ab le  at  6 .071N (Fig .4(d) )  as c o m p a r e d  wi th  the  

value - ]~ /A  = 6.039 N. 

0.0 

0.2 

0.4 

< 
a., . 0.6 

0 .8  

1.0 

xl0 -5 
i ~' ! i i ~' :' 

i ..... " ! i .... i .... i " ...... i 
i i i 
, ', ~ ,, 

0.000 0.004 0.008 0.012 0.016 
t/s 

(a) History of YA 

-- ~ . . . . . . . . . . . . .  ! - 4  . . . . . . .  i - !  ! . . . . . . .  
�9 i i i i 

14 . . . . .  : . . . . . .  : i i i  - 

0.000 0.004 0.008 0.012 0.016 
t/s 

(c) History of Fn for E = 20.9 x 101~ N / m  2 

.Z 

1 8  - - - - w -  i 
i i - ~ - - i  i - [  7 

14 i i i i i i 

10 i ..... i i . . i  .... i i . .  ........ . 

2 
0.0 0.4 0.8 1.2 1.6 

# S  X 1 0 - 3  

(d) History of Fn for E = 20.9 • 1014 N / m  2 

Fig.4 NumericM results for A > 0, /3 < 0 

Al l  the  numer ica l  resul ts  above  show t h a t  the  

b igger  the  e las t ic  modu lus  is, the  less t ime  pe r iod  of 

the  sys t em undergoes  f rom s t a r t i ng  to  s tab le  s t a t e  

wi th  no obvious impac t  appea r ing .  In  add i t ion ,  the  

resul ts  also reveal  t h a t  s t a r t i n g  from in i t ia l  s t a t e  wi th  

smal l  in i t ia l  surface energy, the  d y n a m i c  charac te rs  

and  m o t i o n  t r e n d  to r ema in  unchanged .  

W h e n  A > 0 and  B < 0 and  the  sys t em con- 

verges to  a r ig id-body,  the  so lu t ion  F~ = - B / A ,  

~)A = 0 of L C P  in Pa in lev6 ' s  example  is j u s t  appro-  

pr ia te .  
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3.2  U n i q u e  S o l u t i o n  o f  L C P  fo r  A > 0~ B > 0 

The  solution of L C P  is shown in Fig.5 and the 

normal  accelerat ion YA is positive, which means  tha t  

the rod will j u m p  up from ground.  So the normal  force 

Fn and tangent ia l  force Ft are zeroes. We call this so- 

lut ion of  L C P  the  iner t ia l - jump-up solution. We can 

test the ra t ional i ty  of the solution straight  away. 

/ Ya::AG +B 

/ 
G 

Fig.5 Unique solution in LCP for A > 0, B > 0 

If  we remove the contact  plane in Fig. l ,  the dy- 

na.mical equat ions  can be wri t ten  as 

1.2 

1.0 

0.8 
E 
~, 0.6 

0.4 

0.2 

0.0 
0.0 

x lO "6 

:i 

0.2 0.4 0.6 0.8 1.0 
t/s • 10 -3 

Fig.6 History ofyA for A > 0 ,  B > 0  

3.3 I n c o n s i s t e n t  S t a t e  o f  P a i n l e v 6 ' s  E x a m p l e  

(A < o, B < o) 

The  frictional coefficient is # = 1.4 > 4 /3  in 

all examples of this paper.  The sys tem of Painlev6's 

example is just  in the inconsistent s tate  when A < 

0, B < 0 if the initial state is selected as shown in 

Table 3. The solution of LCP  is shown in Fig.7 and 

obviously there is no solution at all. 

mS} = 0 

. ~  = - . ~ g  (11) 

J / / =  0 

where normal  accelerat ion YA at the contact  point  is 

Table 3 Initial state (unit: IU) 

XA ~?A YA ~)a 0 0 A /3 

0 --1 0 0 1.0 1.0 --0.0037 -8.9585 

Y* = Y - l0 cos 0 + lt) 2 sin 0 (12) 

Subs t i tu te  ~) and 0 from (11) to (12), we have 

~lA = - g  + lO z sin 0 (13) 

If  B > 0, by (13) we know tha t  /)A > 0. So 

the rod would j u m p  directly if there was no unilateral  

constraint .  I f  there is a unilateral  constraint  and the 

rod slips on the  g round  (F,~ _> 0), tile normal  acceler- 

at ion and normal  force should satisfy the relationship 

i ja = A F n + B .  Therefore w h e n A  > 0 and B > 0, 

Yl > 0 and the rod  will always j u m p  up inertially. 

The  initial s tate  used by the softened m e t h o d  is 

shown in Table 2 with elastic modulus  E = 20.9 • 

10 l~ N / m  2. From Fig.6, one can find tha t  the rod 

jmnps  up inertially and obviously no interact ion forces 

exist in the contact  area. The  numerical  results are 

consistent with the solution of L C P  when A > 0 and 

B > 0 .  

Table 2 Initial state (unit: IU) 

XA ~?A YA ~)A 0 ~) A B 

0 --1 0 0 0.5 5 1.543 4 2.185 6 

YA 

G 

N YA =AG +B 

Fig.7 No solution in Painlev6's paradox 

Elastic modulus  used by the softened method  

is bigger than  the  one before (here E = 20.9 x 

1014 N / m  2) to get a smaller response period of time. 

The  numerical  results are shown in Fig.& 

In  Fig.8 the tangent ia l  speed .~a at the contact  

point  turns  from sliding leftwards to sticking in a very 

short  t ime (about  4x  1 0 - 4 s  in (a) of  Fig.8), which is 

the  result  of "tangentiM impact"  produced  by great  

frictional force Ft. At  the same t ime of Tangential  hn-  

pact ,  there is a deformat ion in the contact  area ((b) 

of Fig.8), which results in a downward velocity at the 

contact  point  ((c) of Fig.8) and the rotat ional  speed 

t) j umps  to increase ((d) of Fig.8). In  view of energy, 

by the  tangential  impact ,  a por t ion  of the leftwards- 
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Fig.8 Numerical results of Painlev6's ex- 
ample in the inconsistent state 

sliding kinetic energy of the rod is t ransformed into 

the compressional  potent ia l  energy, a por t ion  into the 

downwards-moving kinetic energy and a por t ion  into 

the ro ta t ional  kinetic energy. Jus t  after the tangen-  

tial impact ,  the sys tem continues in the compressionM 

phase while the contact  point  is sticking on the ground 

for a shorter  period of t ime (about  10 . 4  s). In  this 

period the compressionM potent ia l  energy and rota- 

t ional energy of the rod Continue to increase. At  the 

end of the second period, the normal  speed ~/A be- 

comes zero when the compressionM phase ends and 

the res t i tut ion phase begins. Dur ing the res t i tu t ion 

phase (the th i rd  period),  the rod keeps sticking on the 

ground until  it bounces  up by resilience and the rota- 

t ional speed 0 falls down a little ((d) of Fig.8). Now 

the whole process of impact  is achieved. 

The m a x i m u m  normM contact  force ((e) of  

Fig.8) and pe rmanen t  deformat ion ((f) of Fig.8) in 

the contact  area can be also found in Fig.& which 

may help to see the special behavior  of the  impact  

process above. 

By using the softened method ,  more comprehen-  

sive dynamic  propert ies of Painlev6's example can be 
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f o u n d .  

The process above is getting closer to an " im-  

pact" with the increase of elastic modulus (Fig.9). 

The whole impact  process involves a very short period 

of t ime comparing with the period (about 2.3 s) of the 

same single pendulum in gravity. It  is in this short 

t ime tha t  the general velocities as a?a, YA and 0 change 

rapidly and only "velocity jump" can describe such 

phenomena,  which is just the characteristic of "impact 

without collision". "Negative inertia" maybe appears 

by the coupling interactions between normal  force and 
tangential  force when the frictional coefficient is big 

enough in dynamic systems subjected to unilateral 

constraints. Once negative inertia appears, pressure 

in one direction may lead to acceleration in the oppo- 

site direction. This "regenerative feedback" will result 

in impact.  It  is called the frictional "catastrophe" [12] 

in literature. Tangential sticking can help the system 

to escape from it. 
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Different initial speeds XA in the tangential  di- 

rection do not affect the impact  t ime greatly by fixing 

elastic modulus as shown in Fig.10. The system with 

the shortest impact  t ime in Fig.10 possesses the ini- 

tial surface energy and others do not. The dynamic 
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-5 
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F i g . 1 0  H i s t o r y  o f  s  f r o m  d i f f e r en t  i n i t i a l  s t a t e s  

process is different from that  described above ff the 

initial value of t) is in the inconsistent field and near 

the border by fixing elastic modulus. The value of 0 

will escape from the inconsistent field during the dy- 

namic process. However, with the increase of elastic 

modulus, such phenomena will rarely occur. 

3.4 I n d e t e r m i n a t e  S t a t e  of  P a i n l e v 6 ' s  E x a m p l e  

( A < 0 ,  B > 0 )  

In Painlevs example, two solutions appear  as 

A < 0 and /3 > 0 if tL > 4/3, which is another dif- 
ficulty of LCP. In this instance we select the initial 

s ta te  of the system listed in Table 4. The two solu- 

tions of LCP are shown in Fig.11. One of the solutions 

is Fn = 0, {)A > 0, which is called the inertial-jump-up 

solution. Another solution is Fn > 0, YA = 0, which 
is called the sliding-leftward solution and satisfies the 

relationship Fn = - B / A .  

Table  4 Ini t ial  s t a te  (unit:  IU) 

XA XA YA ~IA 0 '0 A B 

0 --1 0 0 1 5 - -0 .0337 11.2368 

\ 
YA 

% ~ o  solutions 

J'a =AFn +B 

F i g . l l  T w o  s o l u t i o n s  of  P a i n l e v 6 ' s  e x a m p l e  

First, three initial states are considered as listed 
in Table 5 (E = 20.9• 1014 N/m2),  where the state (1) 

is the general one in which no initial surface energy 

exists and other two initial states are the disturbance 

of state (1). The initial normal forces are 150 N and 
300 N, respectively, in state (2) and state (3). 

Table 5 Initial  s tates  (unit: IU) 

(1) (2) (3) 

XA 0 0 0 

a~ A - - 1  - - 1  - - 1  

YA 0 - - 1 . 7 6 2 8  X 10 - 7  - 2 . 6 1 1 3  x 10  - 7  

YA 0 0 0 
0 1 1 i 

0 5 5 5 
A --0.033 7 --0.033 7 --0.033 7 

B 11.236 8 11.236 8 11.236 8 
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The  numer ica l  resul ts  are  shown in Fig.12.  

S t a r t i ng  from the  s ta tes  l i s ted  in Table  5, the  rod  

j u m p s  up iner t i a l ly  ((a) and  (b) in Fig.12)  and  the  

no rma l  force F .  decreases  to  zero d i rec t ly  and  r ap id ly  

((d) in Fig.12),  where  the  dynamic  mo t ion  s t a r t i n g  

f rom ini t ia l  s t a t e  (1) is the  i n e r t i a l - j u m p - u p  so lu t ion  

of L C P  when A < 0 and  B > 0. No impac t  occurs  at  

all ((d) in Fig.12).  

A l though  ano the r  sl iding so lu t ion  (F~* = - B / A )  

of L C P  is a theore t i ca l  one, i t  is not  a s tab le  one. I f  the  

in i t ia l  no rma l  force Fn0 is less t h a n  Fs  the  rod  will  

j u m p  up iner t ia l ly  (like Case 3 above) .  If  Fn0 > F,~*, 

the  sys t em will  move in the  "negat ive  iner t ia"  field, 

which will lead  to f r ic t ional  " ca t a s t rophe" ,  where  t he  

dynamic  mo t ion  is j u s t  like I W / O C  in incons is ten t  

s ta tes .  

A n o t h e r  th ree  in i t ia l  s ta tes  are  cons idered  (Ta- 

ble 6) here, which represent  th ree  k inds  of s t a t es  

wi th  bigger  in i t ia l  surface energy. The  cor respond-  

ing in i t ia l  n o r m a l  forces are 350 N, 500 N and  1 000 N 

( E  = 20.9 • 1016 N / m 2 ) .  The  numer ica l  resul ts  are  
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Fig.12 Numerical inert ial- jump-up results 
of Painlev6's example in indetermi- 
nate states 

shown in Fig.13.  I t  is obse rved  t h a t  s t a r t i n g  f rom the  

s ta tes  l i s ted  in Table  6, the  dyna mic  m o t i o n  is j u s t  

like the  one in the  incons i s ten t  field of t he  sys tem.  

It  is i nd i ca t ed  in Fig .14 t ha t  the  b igger  the  elas- 

t ic modu lus  of the  i m p a c t  mode l  is, the  shor t e r  t ime  

the  i m p a c t  will t ake  and  the  b igger  peak  values the  

no rma l  force will reach.  

Table  6 In i t ia l  s t a t e s  (unit:  I U )  

(1) (2) (3) 

x A 0 0 0 

X A  - - 1  - - 1  - - 1  

YA --2.0942• 10 -8 --2.5635 • 10 - s  --3.7974 • 10 - s  

YA 0 0 0 

0 i 1 1 

0 5 5 5 

A -0.033 7 -0.033 7 --0.033 7 

B 11.236 8 11.236 8 11.236 8 
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4 JUMP RULE 

The nmnerical research shows how to overcome 

the difficulties in Painlev6's example. The conclusions 

are summarized as follows when no initial surface en- 

ergy exists in the system: 

(I) If the system has a Unique solution of LCP, 

there is no problenl. 

(2) If the system has two solutions of LCP, the 

inertial-jump-up solution is selected. 

(3) If the system is in the inconsistent state, the 

"impact without collision" does happen�9 

The jump rule of IW/OC depends on the normal 

and tangential impact models. For the impact mod- 

els we used, the jump rule is made up of three phases: 

tangential impact phase while the tangential speed 

at the contact point changes from negative to zero 
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at the end of this phase; sticking-compression phase; 
sticking-restitution phase. The velocities jump rules 
of the three phases can be obtained on the basis of an 
approximate impulse theory and the whole jump rule 
is made up of the three integrant rules. 

4.1 Tangential Impact Phase  [t0,tl) 
If it is assumed that  the rod slides leftwards, 

namely ~a(to) < 0, the following conditions will be 

satisfied in this phase: 
(1) The system is on the boundary of the cone 

of dry friction: Ft = #F~. 
(2) The tangential speed at the contact point 

changes from negative to zero at the end of this phase 

&(t) < 0 t E [t0,tl) and a?A(tl) = 0 

Since [t0,tl) is a very short period of time, the 
following assumptions are reasonable (the approxi- 
mate impulse theory). 

(1) The configuration of the system does not 
change during the time period [to, t l) .  

(2) Impulses of general forces including gravity 
and centrifugal forces are neglected during this period. 

Integrating dynamic equations [a] of Painlev~'s 
example from to to tl  in terms of the assumptions 
above, we will obtain 

a?a(t ) = 0 

~/A(Q) = YA(t0)-- 

1 - a . s i n  0 cos 0 + ac~ a 
(14) 

; = E iVo  a-+ sin 

32A (t0)(# sin 0 -- cos 0) 
O(tl) = ~)(t0) - 31 sin 0(# sin 0 - cos O) + >l 

m 

> - 3sinOcosO + 3#sin 2 0 j:Akt~ 

For the need of the subsequent steps, the com- 

pressional potential energy accumulated need to be 
obtained. Since the rod is sliding leftwards in this 

period, then Ft = #Fn. So in this phase 

ijA = A(O, p)Fn + B(O, O) (15) 

Multiply (15) by YA and then by dt 

d ( ~ - )  = A(O,#)FndyA 4- B(0,0)dyA 

One is justified in writing 

~)2(tl) y (t0) = f( t~)A(O,  #)F~,dyA+ 
2 a (to) 
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(tl) B(0, 0)dyA (16) 
o) 

where Fn is the force that  the ground acts on the end 
of the rod. So the force F" which the end of the rod 
acts on the ground is equal to ( - F n )  on the basis of 
Newton's Law. One obtains 

9~(t l )  _ 9~(t0) _ f ( t , )  A(O, p)F" dyA + 
2 -- - la (to) 

(tl ) 13(0, 0)dya 
0) 

Here the assumptions above are also suitable. 
Then A(O, #) can be regarded as a constant. Parame- 
ter 0 is bounded and B(O, O) is bounded too. So that  

'(t t*) B(O, 0)dya can be neglected. 
o) 

/ ( t l )  
= F[ dyA -- (17) 

a (to) 2A(O, #) 

where Enl  is the compressional potential energy ac- 
cumulated in the ground in the first phase. 

4.2 Stlcklng-compression Phase  [tl,t2) 
There are two special features in this phase: 
(1) The contact point of the rod is sticking on 

the ground in the tangential direction: IF~I _< ~Fn 
and 2A(t) = 0, t E [tl,t2). 

(2) The normal speed of the contact point of the 
rod turns from negative to zero: ~)a(t) < 0, t C [tl, t2) 

and 9A(t2) = 0. 
Then by the approximate impulse theory, one 

can obtain 

= 0 

3cos 0 . . (18) 
O(t2) = O(tl) + ~ g A ( t l )  

1 + 3 sin 2 0 ~)A 
Pn2 = - m  4 (tl) 

Here the compressional potential energy is also 
needed in the subsequent steps. Since the rod is stick- 
ing on the ground in this phase, one is justified in 

writing 
~IA ~ - -  A'(O)Fn + t3'(0, O) (19) 

where 
4 

4Isin0 0 2 _ g  
t3'(0, {)) - 3 sin 2 0 + 1 
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Just  using the same method in obtaining Enl,  
one has 

En2 = ~)2(t2) -- ~)2(tl) -- ~)2(tl) (20) 
2A'(0) 2A'(0) 

where En2 is the potential  energy accumulated in the 

ground in the second phase. 

4.3 Sticking-rest i tution Phase  [t2,t3] 
The rod is still sticking on the ground during 

this phase, namely IFtl _< ~f, l .  On the assumption 
tha t  the definition of Stronge's coefficient is valid, the 

resti tution potential  energy released in this phase can 

be writ ten by 

Here Ear is negative, which represents the potential  
energy released. And hence 

~ a ( t 3 )  = 0 

~)A(t3) = @-2A'(O)En~ (21) 

o(t ) = o(t2) 3 cos [ o .yAit,), " 

When the rod is in the inconsistent state, we can 
get the velocity jump after impact  using (14), (18) and 

( 2 ! ) .  
Because the jump rule is deduced on the basis 

of the approximate  impulse theory, it is valid only 

when the system rigidity is big enough. In this paper, 

elastic modulus of Painlev~'s example should be more 
than  1014 N / m  2 if the results of the theoretical jump 

rule is precise enough. 

5 C O N C L U S I O N  

Numerical research is carried out on the dynamic 
motion of Painlev~'s example by using a bi-nonlinear 

impact  model in the normal direction and Coulomb's 
friction law in the tangential  direction. The numer- 

ical research solves Painlevg's paradox. A jump rule 

of " I W / O C "  is derived in this paper  from an approxi- 

mate  impulse theory and the coefficient of resti tution 

defined by Stronge. The results of the jump rule are 

quite precise if the system rigidity is big enough. 
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