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Abstract commutative ideal theory without chain condition 

D. D. ANDERSON 

A multiplicative lattice is a complete lattice L on which there has been defined 
a commutative, associative multiplication which distributes over arbitrary joins 
(i.e., A ( V  ~ B~) = V ~ AB,~) and has greatest element I as a multiplicative identity. 
In [16], M. Ward and R. P. Dilworth extended the Noether  decomposit ion theory 
to suitably defined multiplicative lattices; however, further development  was not 
possible because of the lack of a proper  abstraction of principal ideals. In [7], 
Dilworth defined such a principal element and extended the Krull Intersection 
Theorem and Principal Ideal Theorem to what he called a Noether  lattice. A 
Noether  lattice is an abstraction of the lattice of ideals of a Noetherian commuta- 
tive ring. For the development of the theory of Noether  lattices, the reader  is 
referred to [1], [5]-[7], and [10]. In this paper we introduce the r-lattice as an 
abstraction of the lattice of ideals of a commutative ring. An r-lattice is a special 
type of compactly generated multiplicative lattice. It is part of the folklore of the  
subject that compactly generated lattices can replace lattices with ACC for many 
aspects of the subject including the theory of localization. We make this statement 

precise. 
In the first section we study principal elements in some detail. We show, for 

example, under quite mild hypothesis that a weak meet  principal element is 
principal, r-lattices are introduced in the second section. Some basic results for 
r-lattices are established and a theory of localization is developed. In the third 
section, distributive r-lattices are studied. It is shown that any quasi-local distribu- 
tive r-lattice is the lattice of ideals of a very special type of commutative monoid 
with zero. This result is used to show that any distributive r-lattice may be 
embedded in the lattice of ideals of a commutative ring. It is also shown that a 
distributive r-lattice domain is representable as the lattice of ideals of a commuta- 
tive ring if and only if it satisfies the weak union condition. In the fourth section, 
r-lattices in which the principal elements are products of prime elements are 

studied. 
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1. Principal elements 

Let L be a multiplicative lattice and for A, B ~  L let ( A : B ) =  
V {Xe L IXB<--A}. Following Dilworth [7] we define M ~ L  to be meet  (join) 
principal if A A M B = M ( ( A : M ) ^ B )  ( A v ( B : M ) = ( A M v B : M ) ) .  M is weak 
meet (join) principal if A ^ M = M ( A : M )  ( A v ( O : M ) = ( M A : M ) )  for all A e L .  
Finally, M is said to be (weak) principal if M is both (weak) meet  and (weak) join 

principal, 
For L a multiplicative lattice and A ~ L, L / A  = {B ~ L I B >- A}  is a multiplica- 

t ire lattice with multiplication C o D = CD v A. The following results about  princi- 
pal elements are well-known and easy to establish (see [1], [5~[7],  and [10]). 

PROPOSITION 1.1. Let L be a multiplicative lattice and let M e  L. Then 
(1) M meet (join) principal implies M is weak meet (join) principal, 
(2) M is weak meet principal if and only if A <- M implies A = M C  for some 

C e L ,  
(3) M is weak join principal if and only if A M  < - B M  implies A <- B v ( 0 : M ) ,  
(4) M is join principal if and only if M y  A is weak join principal in L / A  for all 

A ~ L ,  
(5) i l l  is modular, then M (weak)  meet principal implies M v  A is (weak)  meet 

principal in L/ A, 
16) if L is modular, then M is principal if and only if it is weak principal. 

A multiplicative lattice will be called quasi-local if it has a unique maximal 
element ( ~  I). The first theorem shows that under quite general circumstances a 
weak meet principal element is join irreducible. 

T H E O R E M  1.2. Let (L, M) be a quasi-local multiplicative lattice. Assume 
every element of L is a join of weak join principal elements. Then every weak meet 
principal element is join irreducible. In particular, if L is generated by (weak) 
principal elements, then the following are equivalent: 

( 1 ) K is (weak) principal 
(2) K is weak meet principal, and 
(3) K is join irreducible. 

Proof. Let K e  L be weak meet  principal. We may assume K S 0 .  Let K = 
V A,~. Then A~ <-K and K weak meet  principal gives A~ = K ( A ~ : K ) ,  so K = 
V A , , = V  ( K ( A , : K ) ) = K ( V  (A , :K) ) .  If V ( A ~ : K ) = I ,  then since L is quasi- 
local some (A~o: K) = I and so K = A=o. Hence we may assume V (A~ : K) <- M so 
K = M K .  Let 0 # A < - K  be weak join principal. Then A = K ( A : K ) =  
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( M K ) ( A : K ) = M ( K ( A : K ) ) = M A .  But A is weak join principal, so I -  < 
M v ( 0 : A ) ,  and hence A = 0 since L is quasi-local. Thus K is join irreducible. The 
second statement of the theorem is now immediate. 

Recall that an element A of a multiplicative lattice is compact if A-< V B~ 
implies A-< B ~ , v - . . v  B~ for some subset {a~ . . . . .  a,}. The following result [9] 
will prove useful. 

T H E O R E M  1.3. Let L be a multipl!cative lattice in which I is compact. 
Suppose A ~ L is weak principal Then A = V A,~ implies A = A ~  v . . . v A~,~ for 
some finite subset {al . . . . .  a,}. 

Proof. Now A weak meet  principal implies A , = A ( A ~ : A ) ,  hence A =  
V An = V ( A ( A ~ : A ) ) = A ( V  (A~:A)) .  But A is also weak join principal so 
I = V ( A ~ : A ) v ( 0 : A ) .  I is compact so I = ( A ~ , : A ) v . . . v ( A ~ : A ) v ( O : A )  for 
some finite subset {a~ . . . .  , a ,} .  Hence A = A ( A ~ , : A ) v . . . v A ( A ~ : A ) v  
A ( O : A ) = A ~ 1 v .  �9 . v A ~ .  

The next theorem is an abstract version of Nakayama's Lemma. 

T H E O R E M  1.4. Let (L, M) be a quasi-local multiplicative lattice and suppose 
B is a finite join of join principal elements. Then for C and D ~ I ,  B < - C v D B  
implies B <- C. In particular, MB = B implies B = 0. 

Proof. By passing to L/C it suffices to prove MB = B implies B = 0. Suppose 
B # 0  and let B = A l v . . . x / A ,  be a minimal representation of B as a finite join 
of join principal elements of L. Now B = M B  gives A ~ v . . . v A n =  
M A I v A E V "  . v A , .  Let E = A E V  . .  . v A , ,  then in L/E A l v E  = 
( M v E )  ~  But since A I v E  is join principal in L/E, we get A l V E < - E .  
Hence A i -< E = A 2  v -  �9 �9 v A n ,  s o  B = A 2  v -  �9 �9 v An. This contradiction shows that 
B = 0 .  

For results on join principal elements in Noether  lattices, see [4], [11], and 
[13]. In the general case we have 

T H E O R E M  1.5. Let (L, M) be a quasi-local multiplicative lattice and suppose 
J ~ L is join principal and is a finite join of principal elements each of which has 
zero annihilator. Then J is principal. In particular, if J is join principal and is finite 
join of principal elements, then J v P  is principal in LIP for every prime P of L. 
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Proof. Let J =  A1v .  �9 �9 vAn  be a minimal representation of J as a finite join of 
principal elements with 0=(0 :A1)  . . . . .  (0:An). Assume n > l  and put C =  
A 2 v - - . v A n .  Now ( 0 : A ) = 0 ,  so 

A = (A2:A) = ( A C v A 2 : A )  = C v ( A ~ : A )  = C v ( A ~ : A l v  C) 
= Cv( (A2:A1)  A(A2: C)) = C v ( A I ^  (A2: C)) = CvAI((A21: C) : A0 .  

If ( (A2:C):A1)~ I, then by Nakayama's  Lemma we get A = C, a contradiction 
and hence A is principal. We may suppose ((A2:C):A~)= I so AI<-(A2: C) and 
hence A I C < - A  2. Since A~ is weak join principal and (0:A1)= 0 we get C<-A~. 
This contradiction proves that A is principal. 

2. r-lattices 

A multiplicative lattice L is called an r-lattice if it is modular, principally 
generated, compactly generated (every element is a join of compact elements) and 
has I compact. Thus an r-lattice is a generalization of a Noether lattice, in fact, a 
Noether lattice is just an r-lattice satisfying ACC. For any commutative ring R, 
L(R) ,  the lattice of ideals of R is an r-lattice. More generally, if R is a graded 
ring over a torsionless grading monoid, then LG(R), the lattice of graded ideals of 
R, is an r-lattice. In section three, we shall see that L(S), the lattice of ideals of an 
r-semigroup is also an r-lattice. 

A key result is that a principal element of an r-lattice is compact. 

T H E O R E M  2.1. Let L be an r-lattice and let S be a set of principal elements 
which generates L under joins. Then A ~ L is compact if and only if it is a finite join 
of elements of S. 

Proof. If A is compact, then clearly A is a finite join of elements of S. 
Conversely, let B be principal and let B = V B~ where B~ is compact. Then by 
Theorem 1.3, B=B,~,v" " . vB~  n. Since a finite join of compact elements is 
compact, we have shown that any principal element is compact. Thus any finite 
join of elements of S is compact. 

Thus in an r-lattice, the product of two compact elements is compact. A 
non-empty subset S of compact elements is called sub-multiplicatively closed if 
for any A, B ~ S, there exists an element C in S with C <- AB. If actually A B  ~ S, 
we simply say that S is multiplicatively closed. The following theorem allows us to 
construct prime elements. 

T H E O R E M  2.2. Let L be an r-lattice and let S be a sub-multiplicatively closed 
subset of L. Suppose A ~ L and T ~  A for every T ~ S. Then there exists an element 
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B >- A maximal with respect to the property that T ~  B for every T~  S. Further, any 
such B is prime. 

Proof. By Zorn's Lemma, such a B exists. Suppose B is not prime, then there 
exist, C, D ~ L with CD <-- B but C:~ B and D:~ B. Then C v B > B and D v B > B 
so there exist 7"1, T2~S with T I < - C v B  and T2<-DvB.  Since S is sub- 
multiplicatively closed, there exists U e S with U-< T17"2. Hence U -  T~T2 <- 
( C v  B)(D v B) <- CD v B -< B, a contradiction. 

Let  L be an r-lattice and let A ~ L. A is called a zero-divisor if ( 0 : A ) #  0. We 
define x/-A= V {X  e L  principal l X " - A  for some integer n}. The next two 
theorems use Theorem 2.2. 

T H E O R E M  2.3. Suppose L is an r-lattice, then any minimal prime P of L 
consists of zero divisors, that is, any compact element contained in P is a zero 
divisor. 

Proof. Let S denote the set of elements A B  where A : ~ P  is compact and B is 
a principal non-zero divisor of L. Then S is multiplicatively closed and 0~ S. By 
Theorem 2.2, 0 can be enlarged to a prime element Q with C:~ Q for every C e S. 
Now Q --- P so Q = P by minimality and clearly every compact element  contained 
in Q = P is a zero divisor. 

T H E O R E M  2.4. Suppose L is an r-lattice and A ~ L .  Then ,f-A= 
A { P e L I P >- A is a prime minimal over A }. 

Proof. Since any prime containing A can be shrunk to a prime minimal over A 
(Zorn's Lemma), it suffices to show x/A = A {P s LIP >-A is prime}. Of course, 
x / A < - A { P ~ L I P > - A  is prime.}. Suppose X is principal with X : ~ 4 ~ ,  then 
Xn:~ A for every integer n > 0 .  Let  S be the multiplicatively closed set {Xn}~=~. 
By Theorem 2.2, there exists a prime element Po with Po>-A but Xn:~Po for 
every n > 0. Thus ~ = A {P ~ L I P -> A is prime}. 

The next theorem is a generalization of Cohen's theorem which states that a 
commutative ring is Noetherian if every prime ideal is finitely generated. 

T H E O R E M  2.5. An  r-lattice L satisfies A C C  if and only if every prime 
element is compact. 

Proof. Suppose every prime element of L is compact. Let  S = {B e L I B is not 
compact}. Assume B # 0 .  By Zorn 's  Lemma,  S contains a maximal element P. If 
P is prime, the it is compact. Suppose not, then there existpr incipal  elements 
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A, B ~ L with A B  <- P but A :~ P and B :~ P. Now P v A > P so P v A is compact. Put 
J = ( P : A ) ,  then J>-B and J>-P so J > P  is compact. Now A is principal, so 
P A A = A ( P : A ) = A J - a n d  hence is compact. Since L is modular P / P ^ A  = 
P v A / A .  Therefore P = T v ( P A A )  where T is compact. Thus P is compact. 

An important property of r-lattices is that they can be localized at sub- 
multiplicatively closed sets. Previously localizations for Noether lattices had been 
defined using primary decomposition [7]. 

Suppose L is an r-lattice and S is a sub-multiplicatively closed set of L. We 
define A-< B (S) for A, B ~ L if for every principal element X -  < A, there exists 
T a S  such that TX<-B and A = B ( S )  if A<-B(S)  and B<-A(S) .  Using the fact 
that S is sub-multiplicatively closed (and hence consists of compact elements) it is 
easily seen that =(S) is an equivalence relation. For A eL ,  define As = 
{B e L [ B = A(S)} and let Ls be the set of equivalence classes of elements of L. 
Ls is a partially ordered set with the partial order As-<Bs if and only if 
A <-- B(S). 

The following proposition, whose proof will be omitted, shows that Ls is again 
an r-lattice. 

PROPOSITION 2.6. Let L be an r-lattice and S a sub-multiplicatively closed 
set. Then 

(1) for any set {A,,}~ L, (V A,,)s = V A~s, 
(2) ( A l ^ ' '  " ^ A , ) s  = A t s ^ "  " ^ A , s  for any finite subset of L, 
(3) the product AsBs = (AB)s  makes Ls a multiplicative lattice, 
(4) for A, C e L  with C compact ( A : C ) s = ( A s : C s ) ,  
(5) M principal in L implies Ms is principal in Ls, 
(6) A compact in L implies As is compact in Ls. 

Consider the map O:L---> Ls defined by 0 (A)=  As. Then 0 is a multiplicative 
lattice homomorphism which further satisfies 0(V A~)= V O(Aa). For B ~ Ls, we 
define 0-I(B) = V {xE L I O(X)<-B}. As for rings, we have the following result, 
the proof of which is rather similar to the ring case. 

T H E O R E M  2.7. Let L be an r-lattice and S a sub-multiplicatively closed set. 
Then 

(1) for B ~ Ls, (O-'(B))s = B, 
(2) there is a one-to-one correspondence between the primes of Ls and those 

primes P of L for which T ~  P for every T ~ S. 
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Let  L be an r-lattice and P a prime element of L. Let  S be the multiplicatively 
closed set consisting of all principal elements X:~ P. Then Ls has Ps as its unique 
maximal element and the prime elements of Ls are in one- to-one correspondence 
with the prime elements of L contained in P. For such localizations we use the 
notation Lp. The next theorem will be very useful. 

T H E O R E M  2.8. Let L be an r-lattice and let J, K ~ L. Then J = K if and only 
if JM = KM for every maximal element M of L. 

Proof. If J =  K, then JM = K~  for every maximal element M. Conversely, 
suppose JM = K~ for every maximal element of L. Suppose J ~  K, so there exists a 
principal element E<-J ,  but with E:~K.  Now E ~ < - J ~ = K ~  so ( K : E ) M =  
(K~:EM) = IM for every maximal element M since E is compact. Thus ( K : E )  is 
contained in no proper  maximal element,  hence ( K : E ) = L  Hence E<-K,  a 
contradiction. Thus J -  K. 

We are now in a position to characterize principal elements in r-lattices. 

T H E O R E M  2.9. In a quasi-local r-lattice L, [or J ~  L, the following are 

equivalent 
(1) J is principal, 
(2) J is weak meet principal, 
(3) J is join irreducible. 

In an r-lattice L, an element J is principal if and only if J is compact and JM is 
principal in LM for every maximal element M of L. 

Proof. The first statement follows from Theorem 1.2. B y  Theorem 2.1 any 
principal element is compact. Since J is compact, ( A : J ) ~ = ( A M : J ~ )  for any 
maximal element M and any A in L. Thus by Theorem 2.8, it follows that J 
satisfies the meet and join principal laws in L if and only if JM does in LM for 
each maximal element M of L. 

In a commutative ring, an ideal which is weak meet  principal is called a 
multiplication ideal. Since localization preserves multiplication ideals, it follows 
from Theorem 2.9, that a multiplication ideal is locally principal. The second 
statement of Theorem 2.9 for rings is found in [14]. 

Now that we have discussed r-lattice localization let us see what has been done 
in the case of commutative rings. Suppose R is a commutative ring and S a 
multiplicatively closed set of R. Then S = {(a) ] a ~ S} is a multiplicatively closed 

set in L(R) .  It is easily seen that the map Js ~ Jg is a multiplicative lattice 
isomorphism from L(Rs )  to L(R)~.  
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3. Distributive r-lattices 

In this section we study distributive r-lattices. Distributive multiplicative 
lattices have been studied in [3], [5], [6], [12], [15], add [17]. By a semigroup we 
mean a commutative semigroup with 0 and ! written multiplicatively. A non- 
empty subset'3~ of a semigroup S is called an ideal if JS = J. The set theoretic 
union of any set of ideals is an ideal, as is the set theoretic intersection. Thus 
L(S),  the lattice of ideals of S, is a completely distributive lattice. L(S)  is a 
multiplicative lattice under the usual product of ideals. The units of S form an 
abelian group and the non-units form the unique maximal ideal of S, hence L(S)  
is quasi-local. 

L e t S  be a" semigroup. Any ideal (a) is meet  principal, but such a principal 
ideal need not be even weak join,principa!. Consider the semigroup S = {0, 1, x, y} 
with multiplication x = x 2, y - y2 ,  and,x3,,= 0. Then (x) and (y) are meet  principal, 
but not  weak join principal. Note that (x, y) is both meet and join principal, but  is 
not join irreducible. 

A principal ideal (x) of S is (weak) join principal if and only if (x)(b)= 
(x)(c) ~ 0 implies (b )=  (c). Thus L(S) is principally generated if and on!y if for 
every x ~ S, xb = xc ~ 0 implies b = }tc for some unit }t ~ S. A principally generated 
semigroup will be called an r-semigroup. It is clear that if S is an r-semigroup, 
then L(S) is an r-lattice. The proof of the following lemma may be found in [3]. 

L E M M A  3.1. Let L be a multiplicative lattice. Then L is isomorphic to the 
lattice of ideals of a semigroup if and only if 

(A) L is distributive, 
(B) L is quasi-local, and 
(C) there exists a set S of weak meet principal elements of L which generates L 

under joins, is closed under products, and whose elements are join irreducible and 
compact. 

T H E O R E M  3.2. Let L be a quasi:local distributive r-lattice. Then L is 
isomorphic to the lattice of ideals of an r-semigroup. 

Proof. The weak meet principal elements of a quas!-local r-lattice are princi- 
pal, join irreducible and compact. The result now follows from Lemma 3.1. 

In [3], we showed that any distributive local Noether lattice could be embed-  
ded in the lattice of ideals of a Noetherian ring. We extend this result to r-lattices. 

T H E O R E M  3.3. A distributive r-lattice is embeddable in the lattice of ideals of 
a commutative ring. 
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Proof. Let L be a distributive r-lattice. The map L ~ I I L ~  given by A 
(AM) where M ranges over all maximal elements of L is an embedding. Thus it 
suffices to embed LM in the lattice of ideals of a commutative ring. Hence we may 
assume that L is a quasi-local distributive r-lattice. Thus L ~-L(S) where S is an 
r-semigroup. Let k be a fixed field and let k[X, S] be the semigroup ring over S 
with coefficients in k. We denote the generator in k[X, S] determined by a ~ S by 
X~. Let R be the ring k[X, S]/(Xo). We claim that L --- L(S) can be embedded in 
L(R); Let J be an ideal in S. We send J to (Xj)jej +(Xo), an ideal in R. This map 
is well-defined, order preserving, injective, preserves arbitrary joins, products, 
and meets, sends (0) to (Xo) and S to R, and sends principal elements to principal 
ideals. 

In [12], it is shown that a distributive Noether lattice is representable as the 
lattice of ideals of a ring if and only if it satisfies the weak union condition. (Recall 
that a multiplicative lattice L satisfies the weak union condition if given A, B, 
C e  L .with A ~  B and A ~  C, there exists a principal element E-< A with E:~ B 
and E~C.)  We extend this result, by a different method, to an arbitrary 
distributive r-lattice domain. 

T H E O R E M  3.4. Let L be an r-lattice domain, then the following are 
equivalent: 

(1) L is distributive and satisfies the weak union condition, 
(2) for'every maximal element M, LM is totally ordered, 
(3) ( A : B ) v ( B : A ) = I  for A, B compact, 
(4) (A v B): C = (A : C) v (B : C) for C compact, 
(5) C : ( A A B ) = ( C : A ) v ( C : B )  for A, B compact, 
(6) A ( B A C ) = A B A A C  for all A, B, C, 
(7) ( A v B ) ( A A B ) = A B  for all A, B, 
(8) every compact element of L is principal, 
(9) L is representable as the lattice of ideals of a Priifer domain. 

Proof. (1)::), (2). For M a maximal element, LM is a quasilocal distributive 
r-lattice domain satisfying the weak union condition. Thus LM is isomorphic to 
the lattice of ideals of an r-semigroup (Theorem 3.2). However, it is easily seen 
that a semigroup satisfying the weak union condition must be totally ordered. The 
implications (2) ::> (3), (3) ~ (2), (2) => (4), and (2) ~ (6) follow by localization, 
since these properties hold if and only if they hold locally for each LM, M a 
maximal element. ( 4 ) ~  (3): For A and B compact, A v B  is compact and hence 
I = ( A v B : A v B ) = ( A : A v B ) v ( B : A v B ) = ( A : B ) v ( B : A ) .  (5)=>(3): For A 
and B compact, I = ( A A B : A A B ) = ( A A B : A ) v ( A A B : B ) = ( B : A ) v ( A : B ) .  
( 6 ) ~ ( 7 ) : A B < - ( A v B ) ( A A B ) = ( ( A v B ) A ) v ( ( A v B ) B ) < - A B .  (7) :r (8): It 
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suffices to show that the join of two principal elements is principal. Let A and B 
be principal, then ( A v B ) ( A A B ) = A B  and A B  being the product of two 
principal elements is principal. It is easily verified that in a domain, any factor of a 
principal element is still principal. Thus A v B is principal. (Note that in this case 
we have also shown that the intersection of two compact elements is compact.) 
(8) ~ (9): Let S be the set of non-zero compact (in this case principal) elements of 
L. Then (S, >-) is a partially ordered cancellation monoid under multiplication; 
moreover, - (the order -< reversed) is actually a lattice order. Let (S*,>-) be the 
group of quotients of S with >- the partial order induced by ->. Then (S* , -  >) is 
lattice ordered. By the Krull-Kaplansky-Jaffard-Ohm theorem [8], S* is the 
group of divisibility of a B6zout domain R. It now follows as in [2], that 
L = L(R).  (9)::> (1): The lattice of ideals of a Priifer domain is distributive and 
satisfies the weak union condition. ( 9 ) ~  (5): It is well-known that a Priifer 
domain satisfies 5). 

The extension of Theorem 3.4 to non-domains evidently requires a better 
understanding of arithmetical rings. There are many other conditions equivalent 
to representability of a distributive r-lattice domain involving conditions satisfied 
by a Priifer domain, see [8]. We remark that Theorem 3.,4 may be used to prove 
the representability theorem for distributive Noether lattices. 

4. 7r-lattices 

A ring in which every principal ideal is a product of prime ideals is called a 
7r-ring. It is well-known that a 7r-ring is a finite direct product of zr-domains and 
special principal ideal rings [8]. A multiplicative lattice L will be called a 7r-lattice 
if there exists a set S of elements of L (not necessarily principal) which generate L 
under joins such that every element of S is a finite product of prime elements. For 
example, the usual case would be L the lattice of ideals of a ring R and S the set 
of principal ideals of R. We begin with an elementary, but useful, lemma. 

LEMMA 4.1. Every minimal prime of a 7r-lattice is weak meet principal. 

Proof. First note tha t  since 0" is a product of primes, minimal primes do exist. 
Let  P be a minimal prime and let A -  P where A ~ S. Since A is a product of 
primes and P is minimal, A = PB for some B e L. Since S generates L under 
joins, the result follows. 

A multiplicative lattice L is said to satisfy the union condition on primes if for 
any set P~ . . . . .  Pn of primes in L and any A ~ L with A:~ P1 . . . . .  Pn, there exists 
a principal element E <-A with E:~ P1 . . . . .  Pn. 
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T H E O R E M  4.2. Let (L, M) be a quasi-local modular principally generated 
rt-lattice. Then either L is a domain or L has only finitely many prime elements. 

Proof. By Theorem 1.2, every principal element is a product  of primes. If 
dim L = 0, then every principal e lement  is a power of M. Thus L is a special 
principal element lattice. Thus we may suppose dim L > 0. Since 0 is a product  of 
primes, L has a finite number  of minimal primes Px . . . .  , P,. By L e m m a  4.1, the 
Pi 's are weak meet  principal and hence principal by Theorem 1.2. Now dim L > 0 

implies M:~ P ~ , . . . ,  P,. 
First suppose that there exists a principal e lement  E - < M  with 

E ~  P~ . . . . .  E:~ P,. (This is indeed the case when L satisfies the union condition 
on primes.) Let A = x / 0 = P ~ ^ . . - ^ P , ,  then L/A is a principally generated 
modular  quasi-local 7r-lattice and E v  A is a principal e lement  in L / A  which is 
not a zero divisor. Let  E = Qx �9 �9 �9 Q, be a representation of E as a product  of 
primes in L. Then in / .~=L/A,  E = E v A  = 0 1 " "  07. Since /~ is a non-zero 
divisor (i.e., ( 0 : / ~ ) = 0 ) ,  each 0i  is a factor of a principal e lement  and hence is 
principal. Say 0x---/5~, then 151= QiP1. But 151 is principal and hence I-= 

0 1 v ( 0 : P 0 .  Therefore  P1 = A, so L has a unique minimal prime P. Now L /P  is a 
principally generated quasi-local ~ '-domain,  so L/P contains a non-zero principal 
prime Q v P where Q ~ L is principal. In L we have Q = Ql �9 �9 " Q~ a product  of 

primes. In L/P, Q v P = 0 = 01 �9 �9 �9 OF, so t = 1 and hence Q is prime. Now Q is a 
principal prime and Q > P implies P = PQ, so P = 0 since P is principal. Thus L is 
a domain. 

Thus we may assume that every principal element of L contained in M is 
contained in one of the minimal principal primes P~ . . . .  , Pn. It easily follows that 
every principal e lement  is a product  of the primes P~ . . . .  , Pn. Thus every prime 
element  in L is a finite join of the primes P~ . . . . .  Pn and hence L has only finitely 
many primes. 

C O R O L L A R Y  4.3. A quasi-local principally generated modular ~r-lanice 
satisfying the union condition on primes is either a domain or a special principal 
element lattice. 

C O R O L L A R Y  4.4. A quasi-local r-lattice L which is a 7r-lattice is either a 
domain or a Noether lattice with a finite number of prime elements. 

Proof. Suppose L is not a domain.  By the proof of Theorem 4.2 it follows that 
every prime in L is a finite join of principal elements. By Theorem 2.5 L is a 
Noether  lattice. 

We next globalize Corollary 4.3. 
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T H E O R E M  4.5. Let  L be an r-lattice satis[ying the union condition on primes. 

Then L is a 7r-lattice i[ and only if it is a finite direct product of r t -domains  and 
special principal element lattices. 

Proof. Now 0 = P~ . . . .  P~- where the Pi are the distinct minimal primes of L. 
Since any localization of a ~r-lattice is a rr-lattice, by Corollary 4.3 we get that the 
P~'s are comaximal and hence the P~"s are comaximal. Thus L 
L/P~ , x  . . . .  x L/P~.. Each L/P~' is an zr-r-lattice satisfying the union condition on 
primes and has a unique minimal prime. If dim L/P~ ~= O, then L/P~' is quasi- 
local and hence a special principal element  lattice. If dim LIPS'>O, then PJP~' is 
locally 0 and hence 0 by Theorem 2.8. In this case L/P~' is a ~--domain. The 

converse is clear. 

By a UFD lattice we mean a principally generated multiplicative lattice 
domain in which every principal e lement  is a product  of principal primes. If R is a 
commutative domain, then L ( R )  can be a UFD without R being a UFD.  For 
example, for any Dedekind domain R,  L ( R )  is a UFD lattice. In fact, L ( R )  is a 
UFD if and only if R is a ~r-domain. First we need the following 

T H E O R E M  4.6. Let L be an r-lattice domain.  Then L is a UFD if and  only if 

every non-zero prime of L contains a non-zero principal prime. 

Pro@ If L is a UFD lattice, then every non-zero prime element contains a 
non-zero principal prime. For the converse, let S = {0 # J e L [ J is a product  of 
principal primes}. Now S #  ~ is a multiplicatively closed set and 0 ~ S. Hence 0 can 
be enlarged to an element K maximal with respect to exclusion of S and K is 
prime (Theorem 2.2). By hypothesis K contains a principal prime; thus we must 
have K - - 0 .  Therefore  every non-zero principal element contains a non-zero 
principal element which is a product  of principal primes. Let J e L  be any 
non-zero principal element,  then J > - Q ~ . . .  Q, where Q 1 , - . . ,  Q, are principal 
primes. Now since J is principal, J A  = QI " �9 " Q, for some A ~ L. Thus it suffices 
to show that S is "saturated."  Suppose A B  is a product of principal primes, 
A B  = Q~ �9 �9 �9 Q,, we show that A is a product  of principal primes. The case n = 1 
is clear. Now A B  = Q~ �9 �9 �9 Q ,  <- QI ,  so say B -< Q~. Then B = CQ~ for some C s L 
since Q~ is principal. Hence Q ~ . . .  Q,  = A B  = A C Q t ,  so A C =  Q 2 " ' "  Q,- By 
induction A is a product of principal primes. 

C O R O L L A R Y  4.7. Let  L be an r-lattice. Then L is a UF D if and only if it is a 

zr-domain. 
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Proof. Clearly any UFD is a ~r-lattice. Conversely, suppose L is a ~r-domain. 
Then L is generated under joins by a set S of elements (not necessarily principal) 

each of which is a product  of primes. Let  P be a non-zero prime of L. Then Le is 
a rr-lattice domain in which every principal element is a product  of principal 
primes (by Theorem 2.9, the set Sp = {Ae I A ~ S} necessarily contains all principal 
elements of Lp). Thus there is a non-zero prime Q - P such that Qp is principal in 
Lp. Thus Qe has rank 1 in Lp and hence rank Q = 1 in L. A slight modification of 
Lemma  4.1 shows that Q is weak meet  principal in L. Since L is a domain,  Q is 
actually principal. 

We remark that Corollary 4.3 is not true without the union condition on 
primes. Let  (R, ~') be a D V R  and let T be the graded ring R[X]/(TrX). Then 
Lc(T) is a quasi-local ~r-lattice with dimension one which is not a domain.  More 

generally one can show that a quasi-local distributive ~--r-lattice is either the 
lattice of ideals of a free semigroup or of the form RLMA where (X1 �9 �9 �9 XK) n <- 

A-<X~ . . . .  ,XK and X1 . . . . .  XK is the minimal basis for RLK. (RLK is the 
distributive regular local Noether  lattice of dimension K.) 

It  is classical that a domain is a Dedekind domain if every ideal is a product  of 
primes. A remarkable  result is that if every ideal generated by two elements  is a 
product of primes, then the ring is a ZPI  ring [8]. Actually, more  is true, if 
R - - R o ~  R1 ( ~ - . .  is a graded ring in which every homogeneous  ideal generated 
by two homogeneous  elements  is a product  of homogeneous primes, then R is a 
ZPI  ring. We generalize this result to r-lattices. 

L E M M A  4.8. Let (L,M) be a principally generated modular quasi-local 
multiplicative lattice. Suppose that every join of two principal elements of L is a 
product of primes, then every element of L is a power of M and M is principal. 

Proof. We may suppose M S 0 .  We first note that L contains a non-zero 
principal prime P. If P = M we are done, so assume P <  M. Then there exists a 
principal element Y with Y ~ P .  By hypothesis, Pv  Y =  P~ . . . .  P'P and P v  y2= 
Q• . . . .  QT" where P1 . . . . .  Pt, Q1 . . . .  , Q~ ~ L are primes. Passing to L/P, we get 
P v  Y =  Y=/5~  . . . .  /5~, and P v  y2 = x~2 = ( ~  . . . .  ()~.. Now L/P is a domain and 

is principal, so s = 2t and after rearranging/51 = ( ) b - - . , / 5  = ~,. Then P v  y 2 =  
p2n, . . ,  p2n,= (p~ . . . .  pT~)2 = ( P v  y)2 and hence P<-P2v Y. Now in L/P 2, P = 
p v p 2 < - y v P  2 and Y v P  2 is principal so P = p v p 2 = ( C v p 2 ) o ( y v P 2 )  = 
C Y v  p2 for some C ~ L. P >- CY implies C-< P since P is prime and Y ~  P. Hence 
P = P y v p 2 = p ( Y v P )  so I = Y v P v ( 0 : P )  since P is principal. P # 0  implies 

I = Y v  P ~ M, a contradiction. Therefore  M = P is principal. It follows that every 
element of L is a power of M. 
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T H E O R E M  4.9. Let  L be an r-lanice and let S be a set of  e lements  (not 

necessarily principal) which generates L under  joins. A s s u m e  that every join of  two 

elements of  S is a product o f  primes. Then L is isomorphic to the lattice of  ideals of  a 

Z P I  ring. 

Proof. Le t  0 = P~ . . . .  P ~  where  P~ . . . .  , P~ are the distinct min imal  p r ime  
e lements  of  L. By L e m m a  4.8, each  max ima l  e l emen t  contains  a unique min ima l  
pr ime,  so the P1 . . . . .  P~ are c o m a x i m a l  and hence so are P~', . . . .  P'~. Thus  
L -~ L/P~ ~ x .  �9 �9 x L/P~ ~. If d im L/P~' = 0, then  L/P~' is quasi- local  with max ima l  

e e l emen t  PdP~'. Le t  (R, 7r) be  a D V R ,  then  L / P ~ ' = L ( R / T r " R ) .  If d im L / P  > 0 ,  

then  PdP~' is locally 0 and hence  0, so L/P~' is a domain .  Since L/P~' is a d o m a i n  it 
is a U F D  and since dim.L/P~'  = 1, every  p r ime  of L/P~' is pr incipal  so by  T h e o r e m  
2.5, L/P~' is a Noe the r  lattice. By  T h e o r e m  2.9, every  e l emen t  of  L/P~' is 
principal.  I t  follows tha t  L/P~' is i somorph ic  to the lattice of ideals of  P I D  

e l ( T h e o r e m  3.4 or [12]). If  L / P I ~ L ( R ~ ) ,  then L ~ L / P ~ I x . . . x L / P ~  ~= - 

L ( R 0 •  " x L ( R , ) = L ( R l x  ' '  �9 x Rn). Since R ~ x - . . x R ~  is a p roduc t  of  P I D ' s  
and special principal  ideal rings, it is a Z P I  ring. 

T h e o r e m  4.9 yields what  might  be  cal led the ul t imate  charac te r iza t ion  of Z P I  
rings. 

C O R O L L A R Y  4.10. Let  R be a commuta t i ve  ring and S a set of  ideals of  R 

(not necessarily principal) which generates R under sums. A s s u m e  that every s u m  of  

two ideals of  S is a product of  prime ideals. Then R is a finite direct product o f  
Dedek ind  domains  and special principal ideal rings. 
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