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A n  algebra has a solvable word problem if and only if it is 
embeddable  in a finitely generated simple algebra 

TREVOR EVANS 1 

Introduction 

We consider the word problem for recursively presented algebras in a variety 
V, given by a finite number of finitary operations and a finite number of identities. 
Kuznecov (see Malcev [6], p. 209) was apparently the first to note that a finitely 
generated simple V-algebra which is recursively presented has a solvable word 
problem. Hence, so does any recursively generated subalgebra of such an algebra. 
We prove a converse of this in the following form. Let V* be the variety of all algebras 
of the same similarity type as V (i.e. having the same set of operations but defined by 
the empty set of identities). 

THEOREM.  A V-algebra has a solvable word problem if and only if it can be 
embedded in a finitely generated simple V*-algebra which is recursively presented. 

Boone and Higman [1] have shown that a finitely generated group has a 
solvable word problem if and only if it can be embedded in a simple group which 
is in turn embeddable in a finitely presented group. One cannot hope for an exact 
analogue of this for other varieties of algebras since a fundamental aspect of the 
result for groups is the use of the embedding theorem of Higman [4] that a finitely 
generated recursively presented group is embeddable in a finitely presented 
group. Using the analogue of this for semigroups (Murskii [7]), Boone and 
Higman prove in [1] the theorem for semigroups corresponding to their theorem 
for groups. There cannot be a Higman-type embedding theorem for lattices, 
non-associative systems such as loops and quasigroups, commutative rings, com- 
mutative semigroups, abelian groups, nilpotent groups, and" commutative 
Moufang loops. The most plausible candidate for such a theorem would seem to 
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be rings. However, even without this embedding theorem, K. Mandelberg, M. F. 
Neff and the author [2] were able to show for the varieties of (i) rings of 
characteristic p, (ii) loops, (iii) groupoids, (iv) lattices, that a finitely generated 
V-algebra (V, one of the above varieties) has a solvable word problem if and only 
if it can be embedded in a simple V-algebra which is embeddable in a finitely 
generated recursively presented V-algebra. 

The main point of this paper is in the observation that if we allow embeddings 
in recursively related algebras there is a corresponding universal-algebraic result 
since an identity may be replaced by a recursive set of defining relations and we 
can consider the problem in the context of varieties defined by the empty set of 
identities. Of course, it is still of interest to obtain analogues of the Boone- 
Higman result in which a V-algebra is embedded in a finitely generated simple 
V-algebra (there is such a theorem for loops) or further analogues of the type in 
[2]. 

We remark finally that we will always assume that the varieties V we discuss 
contain no nullary operations and do not consist solely of unary operations. A 
non-trivial unary algebra cannot in general be embedded in a simple algebra. 

Embedding an algebra in a simple algebra 

Let V and V* be as in the introduction. Let  A be a V-algebra generated by a 
finite or countably infinite set gl, g2, g3 . . . . .  A will be said to be recursively 
presented, as a V-algebra, by these generators and a set of defining relations if, in 
terms of some effective enumeration wl, w2, w3 . . . .  of the set W of all words in 
the generators, the set of defining relations is a recursively enumerable set of 
ordered pairs of words. We observe that A is also a V*-algebra and that since 
each defining identity of V may be replaced by a recursive set of defining 
relations, A is also recursively presented as a V*-algebra. 

To construct the simple algebra K containing A, we begin by selecting some 
k-ary operation 1-I of A, for k - 2. The generators of K will be the generators of 
A and a countably infinite set H = {c~, c2, bl, b2, b3 . . . .  }. It will be convenient, in 
describing the defining relations of K, to use the notation Y((x), y) as an 
abbreviation for the word Y.(x, x . . . . .  x, y) where Y~ is any operation of V* and 
x, y are any words in the generators of K. The defining relations of K are four 
types. 

(1) The defining relations of A as a V*-algebra. 

(2) For i, j = 1, 2, 3 . . . .  
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((wl),  CO = c2, FI ((w,), C2) = Cl, 

((w~),bj)=~cl if w~=wj in A, 
t c2 if w~#wj in A, 

I-[ ((c~), w,) = c~, 1-I ((c,) ,  cl)  = wi,  

1-I ((ci), c2) : cl, I I  ((cl), bi) = w,, 

r ]  (<c:), w,) = w,, I-I (<c~), cl)  = cl,  

r I  ((c2), c2) = bl, 1"I ((c2), b,) = b,+l, 

I I  (,(bi), wj) = ci, YI ((bl), Cl) = Cl, 

((b,), c2)= q ,  I I  ((b,), b,)= I cx II ( c2 

if i=], 
if iS]. 
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(3) For  any words Ul,/22 . . . .  , uk e W U H  such that at least one is an element  
of H and ux, u2 . . . . .  uk-1 are neither (i) the same generator from H nor (ii) words 
in W which are equal in A, we take as a defining relation of K 

I-[ (u l ,  u2 . . . . .  uk) = Cl. 

(4) For  any n-ary operation Y. of V* other than I-I and any words 
Ux, u2, �9 �9 �9 u~ ~ WU H such that at least one u~ is a generator from H, we take as 

a defining relation of K 

( [~1 ,  U 2 ,  �9 �9 �9 , U n )  = C1.  

We remark that if l-I is a binary operation then the set of relations (3) above is 
vacuous. Of  course, we can always regard V as having a binary operation by 
treating the derived operation [[ ((x), y) as one of the fundamental operations of 
A but in V* it will no longer be a derived operation. The effect of the relations 
(1) is to guarantee that A or some homomorphic  image of A is Contained in K 
and the relations (4) make every operation, other  than 1-I, constant outside A. In 
fact, relative to the presentation of A, the defining relations above are the 
complete operation tables for  K. 

L E M M A  1 K is generated by cl. If A has a solvable word problem, then K is 
recursively presented. 
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Proof. K is generated by cl since I-I((Cl),Cl)=W1, [ - ' [ ( ( W 1 ) , C l ) = C 2 ,  

1-1 ((c2), c2) = bl and ~ ((c2), b~) = b~+~, I-[ ((cx), b~) = w~, for i = 1, 2, 3 . . . . .  We as- 
sume that in the enumerat ion Wl, w2, w3 . . . . .  we know in particular which are the 
generators gl, g2, g3 . . . .  and thus have an effective way of writing every generator 
of A as a word in c~. Now, if A has a solvable word problem, so that we have a 
procedure for deciding if w~ = w i in A, then the defining relations we have given 
for K form a recursive set. Substituting the corresponding words in Cl for the 
generators of K gives a recursive presentation for K in terms of the generator cl. 

The  length of a word in the generators gl, g2, g3 . . . . .  Cx, c2, b~, b2, b3 . . . .  is 
defined by (i) each generator has length one (ii) if the words Ul, u2 . . . . .  u~ have 
length )t~, ) t 2 , . . . ,  )tn respectively and ~ is an n-ary operation in V, then the word 
~, (u~, u2 . . . . .  u,) has length l+) t l - I - ) t2+. . .+~.n .  The subwords Ul, u2 . . . . .  u~ of 
the word Y. (Ux, u2 . . . . .  u~) are called its principal subwords. 

L E M M A  2. K is simple. 

Proof. We first show that any word u in K is equal to some w~ in W or one of 
c1, c2, b~, b2, b3, �9 �9 in H. This is certainly true for words of length one. Le t  u be 
Y. (u~, u2 . . . . .  ~ ) ,  of length A, and assume the lemma true for words of length less 
than h. The induction hypothesis applied to the principal subwords of u gives 
~(u l ,  u2 . . . . .  u~)=Y~(ti~,t~2 . . . . .  f~) where ~ = u ~  in K and ~ W U H ,  i= 
1, 2 , . . . ,  n. The defining relations (2), (3), (4) imply that ~ (ill, t~2 . . . . .  t~) is 
equal to a word in W U H. Induction completes the proof. 

It follows from this result that in considering a non-trivial congruence on K, 
we may restrict ourselves to congruences which contain a pair (u, v) of words in 
W U H. Furthermore,  since K may be generated by c~ using only the operation I'[, 
all we need for the simplicity of K is that l-I ((Cl), cO =- Cl(O) for any non-trivial 
congruence 0. All possibilities are covered by the following eight cases. 

w~=wi(O) for some w ~  wj in A. (i) 

Then I-1 ((w,), b i ) -  [-I ((wi), bi)(O). By the defining relations (2), Cl-= c2(0). Hence,  
[I ((cl), cl) - l-I ((c2), cl)(O)-- c~(0), again by (2). 

wi=c1(O) for some w~. (ii) 

Then [[ ((cl), cl)-=1-I ((cl), wi)-= el(O)." 

w~--c2(O). (fii) 
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Then l-I ((wl), w~)---[-I ((wi), c2)(0). That  is, wk-c1(0)  for some wk. Case 2 now 
applies. 

w~ ---- bi(O), (iv) 

Then I-I ((wl), wi)=I-I ((hi), w~). That  is, wk =-cx(O) for some wk. Case 2 applies. 

C 1 ~ C2(0 ). This is covered by the argument for case 1. (v) 

Cl - b~ (0), for some i. (vi) 

Then [I ((cl), Cl)-[-I ((b,), cl)=- cl(O). 

c2 -  bi(O), for some i. (vii) 

Then I-I ((c2), wl ) - l - I  ((bl), WX)(0). i.e. wl-c l (O) .  Case 2 now applies. 

b~ =- bi(O), for some i#  ]. (viii) 

Then I-I ((bl), bi)--1-I ((bi), bi)(O), i.e. cx --- c2(0) and case 5 applies. 
This concludes the proof  that K is simple. It remains only to show that K 

contains A isomorphically. The next four lemmas are devoted to this and 
constitute a refinement of the result of the first paragraph in the proof  of Lemma 
2. We show that for any word u in K the word fi in Wt0 H equal to u is unique 
(to within equality in A).  

Let  u be a word in K. By a reduction of u of type (2), (3), (4), we mean replacing 
a subword of u which is the left-hand side of a defining relation of K of type (2), 
(3), (4) by the corresponding right-hand side of the relation. By a reduction of 
type (5) we mean a similar use of the following relations which are consequences 
of the first three defining relations of type (2) and the defining relations (1) of A. 

(5) For  any w~l, w~ . . . .  , w~_, ~ W such that w~ = w~ . . . . .  wi~_~ in A, 

F I  (w,  . . . . . .  w, . . . .  c l )  = c 2 , 1 - [  . . . . . .  wl . . . .  c2) = c l ,  

l - i(wl . . . . . .  w,~l, bj)={cx if wi~=wj in A, 
- c2 if w ~ w j  in A. 

A word in K is reduced if no reductions of it are possible. A reduced word ti is 
a reduced form of u if it can be obtained from u by a finite sequence of 
reductions. 
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L E M M A  3. I f  u is a word in K and u --~ u', u ---) u" are two reductions o f  u 

with u', u" different words, then either u' or u" can be reduced to the other or there is 

a word u" obtainable from both u', u" by reductions. 

Proof. We use induction on the length of u. The  s ta tement  is vacuously true 
for  u of length one. Assume it true for words of length less than )t and let u be of 
length )t. Now u has the form Y. (ul, u2 . . . . .  u~) where Ux, u 2 , . . . ,  u~ are its 
principal subwords and Y. is an operat ion of V. There  are three cases to consider. 

(i) The  reductions take place in different principal subwords of u, say u ~ u'  
reduces u~ to uf and u---~u" reduces uj to u~, i < ] .  We may take u "  as 

~,  ( U I ,  �9 . �9 , U~ . . . . .  U~ . . . . .  U n ) .  

(ii) Both reductions take place in the same principal subword of u, say u~, 

reducing u~ to u,'. and u~. The  l emma follows by the induction hypothesis applied 
ipt Ht 

to u~ since u~, u~ can be reduced to a word u~. 
(iii) One  of the reductions, say u --~ u'  involves the whole of u and the other 

takes place in the principal subword u~, reducing it to uf. By consideration of each 
type of reduction, we see that  ~ (ul . . . .  , u f , . . . ,  u,,) can also be reduced to u'. 

This completes the proof  of the lemma.  Note that it is impossible for both 
reductions u ~ u', u ~ u" to involve the whole of u. 

L E M M A  4. Every  word in K has a unique reduced form, either some w~ or one 

o f  cl, c2, bl, b2, b3 . . . . .  

Proof. We again use induction on length. If u is a word in K, we have to show 
that  any two sequences of reductions u --> u '  --> . . . .  u --> u" - -> . . .  end in the same 
reduced form tZ The l emma is true for words of length one. Assume true for 
words of length less than h and let u be of length h. If u', u" are the same word, the 

s ta tement  follows by the induction hypothesis since ~'is the unique reduced form of u'. 
If  u', u" are different words, then by the induction hypothesis, they have unique 
reduced forms t2', fi". By L e m m a  3, ei ther a sequence of reductions of one of them 
contains the other in which case by induction ~', ~" are the same, or else there is a word 
u " obtainable f rom u', u" by reductions and then once again by induction fi', ~" are the 

same. 

This concludes the proof  of the lemma.  We remark  that  the techniques used in 
L e m m a s  3, 4 are similar to those in Theo rem 2.1 in [3]. 

L E M M A  5. Le t  u, v be words in K such that u = v in K. Then, either 

(i) ~, ~ ~ W and  f~ = ~ in A ,  or 

(ii) a, 13 are identical and  belong to H. 
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Proof. The proof is by induction on the number  n of applications of the 
defining relations (1), (2), (3), (4), (5) needed to transform u into v. The induction 
step is trivial and the only case requiring a detailed proof  is n = 1. In this case, if 
the defining relation used is of type (2), (3), (4), (5), then one of u, v is obtained 
f rom the other  by a reduction and the result follows from L e m m a  4. If  n = 1 and 
the transformation uses a relation of type (1), i.e. an application of the defining 
relations of A, we use induction on the length of u, as follows. 

Let  u be ~ (ul, u2 . . . . .  u~) where ~ is an n-ary operation and ul, u2 . . . . .  u, 
are the principal subwords of u. If the application of the defining relation of A 
involves the whole of u, then both u and v are words in W and there is nothing to 
prove.  Otherwise, the application of the defining relation takes place inside one of 
the principal subwords u~, transforming it to vi, so that v is ~ (u~ . . . .  , v~ . . . . .  u,,). 
Consider the words ~ ( a z , . . . ,  ~- . . . .  , f~) and Y. ( ~  . . . . .  ff~, . . . ,  f~). By L e m m a  
4, each of ul, u 2 , . . . ,  f~, ff~ is either a w~ or one of c~, c2, bx, b2, b3 . . . . .  By our 
induction hypothesis either ~, ~ ~ W and ~ = fi~ in A or else ~., vi are identical 
and belong to H. At  most  one further reduction is possible for each of 

( t~z , . . . ,  ~. . . . .  , t~) and Y. (t~ . . . . .  f i i , . . . ,  f~) and consideration of cases shows 
that  the reduced forms a, fi obtained satisfy the conclusion of the lemma.  

L E M M A  6. A is embedded isomorphically in K. 

Proof. By L e m m a  5, if wi, wj ~ W, then wl = wj in K if and only if wi = w i in A. 

This concludes the proof  of one half of our  main result. 

T H E O R E M .  A recursively presented V-algebra has a solvable word problem if 
and only if it can be embedded in a one-generator recursively presented simple 
V*-algebra. 

The other  half of the proof  is essentially due to Kuznecov (see Malcev [6], p. 
209). Le t  K be a one-genera tor  recursively related simple V*-algebra.  Le t  A be a 
subalgebra of K given by its generators wl, w2, w3 . . . .  as words in the generator  c 
of K. Let  u, v be  two words in A. An enumerat ion of the consequences of the 
defining relations of K will eventually yield u = v, if this equation holds in A. On 

the other  hand, since K is simple, if u ~  v in A, then an enumerat ion of the 
consequences of the defining relations of A and the added relation u = v will yield 
the equations ~ (c, c, . . . .  c) = c for every Y. of K. Combining these enumerat ions,  
we have a procedure for solving the word problem for A. 

Since this paper  was submit ted my attention has been drawn to an announce-  
ment  by Kuznecov [5] in which he states that  a finitely presented algebra A has a 
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solvable word  p rob lem if and  only if A can be e m b e d d e d  in a finitely p resen ted  

simple algebra B where  " e m b e d d e d "  here  means  that  the sets of  e lements  of  A,  B 

are  the same but  the set of  opera t ions  of  A is a subset  of  the set  of  opera t ions  of  

B. B o t h  A and B lie in finitely p resen ted  varieties. N o  details of  the p roof  are 

given. 
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