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Boolean powers 

Stanley Burris 

The source of our investigations is Boolean algebras - indeed we were initially in- 
terested in proving that the first-order theory of  the class J :  of  congruence lattices of 
Boolean algebras is decidable (the question is still open, but see Burris and Sankap- 
panvar [5] for a fuller discussion of the problem). We noted that ~f" could also be 
thought of as the class of congruence lattices of the variety ~/" generated by the ring 
3p  of integers modulo a given prime p. A little more reflection and it was clear that 
every algebra in ~e" is a Boolean power of 3p, and furthermore there is a natural trans- 
lation of first-order statements about ~e- into statements about  Boolean algebras. In 
the course of analyzing these findings we were led to some new theorems about Boolean 
powers, and, thanks to Higgs, Djokovi6 and Macintyre, an extensive bibliography 
has been compiled. Along with new results we try to organize the subject of Boolean 
powers so that the reader will also find a useful survey. The contents fall rather clearly 
into two areas: algebraic and logical aspects of Boolean powers. Let us first give a 
sketch of the history and results. 

In 19421) Rosenbloom [41] axiomatized the variety of n-valued Post algebras and 
noted many similarities with Boolean algebras, for example every finite algebra in 
such a variety is a direct power of the n-valued Post algebra of order n, ~n. He goes on 
to say ([41], p. 187): "The structure of Post algebras of infinite order is much more 
complicated and it seems as though a far from trivial extension of Stone's methods 
will be necessary to determine their structure as completely as he has determined the 
structure of infinite Boolean algebras." 

In 1953 Foster [13] showed that there is a striking connection between n-valued 
Post algebras and Boolean algebras, namely, up to isomorphism the n-valued Post 
algebras are precisely the Boolean powers (or Boolean extensions) ~n [ ~ ] .  Actually 
Tarski [46] had invented an equivalent construction in 1949 for the case of  Boolean 
semigroups (see [48], p. 219). In brief Foster's two main results were: (1) Boolean 
powers of certain finite algebras are isomorphic to normal subdirect powers, and vice- 
versa, and (2) every algebra in a variety generated by a primal algebra is isomorphic 
to a Boolean power of  the given primal. (The ~3, mentioned above are primal.) In 1967 

1) Dates refer to the year of publication. 
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Gould and Gr~itzer [15] extended Foster's result (1) to cover all finite algebras. (It is 
interesting to note that it is still not known for which finite algebras 92 it is true that 
every algebra in the variety generated by 92[ can be represented as a Boolean power of 9.I.) 

The definition of a Boolean power 9/[~B 1 suffers from one defect, namely if 92[ has 
an infinite universe then ~3 is assumed to be a complete Boolean algebraZ), so Foster 
also introduced the concept of  a bounded Boolean power 92 [~3]*. In 1972 Quacken- 
bush [38] proved that if ~30 and ~ l  are two Boolean algebras then ~o  [~1]* is iso- 
morphic to ~o* ~ t ,  the free product of ~3o and ~1 relative to the class of Boolean 
algebras. This leads to our basic result: (92[~01")[~3t1"~92[~3o,~3~]*. Hence 
iterated bounded Bootean powers are bounded Boolean powers. 

In 1953 Kinoshita [261 gave examples of denumerable Boolean algebras ~o,  ~31 
and ~32 such that ~3o ---- ~o  x ~ t  x ~2 but ~3o ~ ~o x ~3~, i.e. there are two denumerable 
Boolean algebras such that each is a direct factor of the other, but they are not iso- 
morphic. Hanf [17] modified this construction in 1957 to describe two denumerable 
Boolean algebras ~ o  and ~3I such that ~ 3 o ~ o  x ~3i x ~B1 but ~ 0 ~ o  x ~ l -  Tarski 
pointed out that this implies the existence of two denumerable Boolean algebras ~3, 
such that ~ x ~3_-__~ x ~ ,  but ~ .  J6nsson [21] and Tarski [48] realized that if92 
is an algebra such that ~30 ;~1  implies 9.I[~3o]*~9.I [~311" then one could derive 
similar direct product results for the class of bounded Boolean powers of 92. In the 
text we refer to such an ~ as B-separating, and our basic result on this topic is to find 
a condition on simple algebras 9.I which ensure that they are B-separating (Theorem 
3.5). An immediate application is to show a non-trivial congruence distributive variety 
~v- has a B-separating algebra, and we use this to show that such a #" has 2 a isomorph- 
ism types of power ;t for ~. at least the power of the language of ~/'. (Not only does this 
generalize known results for Boolean algebras, it also answers a special case of 
Vaught's question [501 concerning the number of countable models of a countable 
first-order theory.) Another easy application of our sufficient conditions for B-sep- 
arating algebras is to give a complete description of all algebras N such that every 
congruence on 9.I [~31" is determined by a filter on ~ (Corollary 3.6). This was done 
by Neumann and Yamamuro [33] in 1964 when 9/is a group. 

The logical aspects of Boolean powers rest on two pillars, first the positive decid- 
ability results for the theory of Boolean algebras achieved by Skolem [43] 1919, 
Tarski [47] 1949, and Rabin [391 1969, and secondly the technique for translating 
first-order assertions about a power 92[: into assertions about the Boolean algebra of 
subsets o f l d u e  to Mostowski [32] 1952 and Feferman-Vaught [11] 1959. A variation 
of the Feferman-Vaught translation suitable for Boolean powers was introduced by 
W~glorz [54] in 1968, and refined by Wojciechowska [57] in 1969. We will use her 
formulation to show that bounded Boolean powers n,i[~3]* preserve elementary 

z) Recently Banaschewski and Nelson have proposed a remedy for this via a topological approach. 
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equivalence and elementary substructure in both arguments 91 and ~ .  With a slight 
modification we obtain partial results of this nature for Boolean powers - Theorem 
4.3 gives a survey of what we know, including the fascinating connections with reduced 
powers and Horn sentences made by Waszkiewicz and W~glorz [51] in 1968. With 
these tools we prove that relatively free products of Boolean algebras preserve elemen- 
tary equivalence and elementary substructure. Later we extend this to varieties gener- 
ated by any primal algebra. Also we show any two bounded Boolean powers (or 
reduced powers) of an algebra have isomorphic reduced powers. 

�9 In 1967 Ershov [10] discovered that when studying the first-order properties of a 
variety generated by a primal algebra the Feferman-Vaught translation could be 
replaced by a remarkably simple translation. Using this we are able to show that if 9/ 
is a finite algebra, then ~ is complete implies 91 [~3] is equationally compact, and if 

is x-saturated (x1> a~) then 91 [ ~ ]  is x.-saturated. A surprising property of  finite 
B-separating algebras is that not only do they separate isomorphism types, they also 
separate elementary types! 

With a slight extension of Ershov's translation we are able to improve on results 
of Comer [7]  and show that the theory of countable m-rings with quantification over 
ideals is decidable, extending the aforementioned theorem of Rabin on Boolean 
algebras, z) The paper concludes with a last look at varieties generated by primal 
algebras, and several interesting problems are posed. 

w Preliminaries 

An algebra 9i is a pair (A, ~ ' )  where ~" is a family offinitary fundamental opera- 
t ionsfr,  indexed by ordinals ? less than ~, for some ~, where the rank of  each function 
fr is nr, i . e . f~ :A"~A .  A is the universe of 91 (which we will often designate by [91]). 
The type of 91 is the sequence (no, nl .... , nr .... )~<,. For convenience we will occasion- 
ally use the notationf~(6) for f~(a o .. . . .  a,_l ) .  An algebra 91 is trivial if Card [91] = 1. 
A subset B of A closed under the operationsf~ is a subuniveJ'se, and the pair (B, ~-)  
denotes the corresponding subalgebra of 91. Con91 is the lattice of congruences of 9/ 
(we also use Con91 for the set of congruences). 9/is finite if 1911 is finite. 

A Boolean algebra ~ is an algebra (B, v ,  ^ ,  ', 0, 1) with the usual properties. 
Let 91 = (A, ~ )  be an arbitrary algebra and ~ a Boolean algebra. The Boolean power 
91 [ ~ ]  has as its universe the set of all ~ B  ~t such that 

(i) if ao, al cA, go ~ al, then r (a0) ^ r (al) = 0, 
and 

(ii) V.~A r  I, 

3) Recently Werner and the author have shown that the theory of the countable models of any 
variety generated by a weakly independent family or quasi-primal algebras with quantification over 
congruences is decidable. 
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and the fundamental operations f r  are defined by 

f7(r . . . .  , r 1) (a )=  V [r (ao) ^ ... ^ ~.~-t (any-l)] �9 
f ~, (ao . . . . .  a .  v -  ~)  =a 

I f  A is infinite we always require that ~B be a complete Boolean algebra. A straightfor- 
ward consequence of these definitions is that ifp(xo, ..., x,) is a polynomial on 9/, then 
on 9 / [ ~ ]  

P (r . . . .  ,4,)  (a) = V [40 (ao) A... ^ 4, (a , ) ] .  
p ( a o ,  . . . ,  an)=a 

The bounded Boolean power 9/[~]* has as its universe the set of  ~eB a satisfying (i) 
and (ii) above and also 

(iii) {aeA:~(a)~O} is finite. 
The fundamental operations f~ are defined as in Boolean powers. 

w 2. Some basic properties 

Let 2 denote a two-element Boolean algebra, and throughout the paper the letter 
~B will denote a Boolean algebra. 

PROPOSITION 2.1. For any algebra 9/ we have 
(i) 9 / [ ~ ] = 9 / [ ~ 5 ] * / f 9 / i s f i n i t e  or fB is finite, 

(ii) 9/[2] = 9/[2]* - 9,I, 
(iii) 9/[I-L,1 ~ ]  ~I-[~,1 9 / [ ~ ] ,  (where the ~ i  are complete (/[9/1 is infinite), 
(iv) 9/[~3o x. . -  x ~B,]* ~ 9/[too]* x-.- x 9/[m,]*,  

and 
(v) 

Proof. Part (i) is Obvious. For (ii) define r by r176 1 and ~ , (x)=0  if 
xv~a. Then the mapping a ~  ~, is the desired isomorphism. For (iii) it is enough to 
show that the map 

i r  i r  

defined by 

2(r  for i e I ,  a~A and r 

is an isomorphism. The proof of (iv) is similar. For (v) the map 2 from 12 [~]1 to I~[ 
defined by 2(4)--~ ( l)  is the desired isomorphism. 



Vol 5, 1975 Boolean powers 345 

COROLLARY 2.2. For any algebra 91, 

91 [2 z] ~ 91I for any I. 

PROPOSITION 2.3. If fSo is a subalgebra of~81 then 
(i) 91 [~o] is a subalgebra of 91 [~1] (provided ~3o is a complete subalgebra of ~31 

/f 1911 is infinite), 
and 

(ii) 91 [~30]* is a subalgebra of 91 [~l]*. 
If ~ is a Boolean algebra, F a filter on ~ and 9.t an algebra define the relations 0F 

and 0~ by 
0s={(~,~)el91[~]lZ: V ~(a)^~t(a)~F}, 

a ~ A  

and 03 is Or restricted to 91 [~3]*. 

PROPOSITION 2.4. (a) 0v is a congruence on 91 [~] ,  and the mapping F ~  Ov 
embeds the lattice of  filters of ~ into Con91 [~ ]  as a complete sublattice if91 is non- 
trivial; 

(b) 0~ is a congruence on 91 [~3]*, and the mapping F ~  O~ embeds the lattice of 
f l ters  of  ~B into Con91 [~]*  as a complete sublattice if91 is non-trivial. 

Both 0v and 0 3 will be called filter congruences. We write 9.I [f~]/F for 91 [~]/0v 
and 91 [~]*/F  for 91 [~]*/0~. 

PROPOSITION 2.5. I f  F is a filter on ~ and 91 & any algebra then 

91 [m]*lF  91 

Proof. Let ~s91[~]* and let [~]F denote the equivalence class of ~ with respect 
to 0"(9i), and if b s ~  let ['b]v denote the equivalence class of b with respect to the 
congruence on ~3 determined by F. Then it is routine to show that the map 
2:191 [~3]*/FI--, 191 [~3/F]*I defined by 2([~]v) (a)= [~(a)]v is the desired isomorph- 
ism. 

PROPOSITION 2.6. 4) I f  91 is finite then for any I and filter F on the subsets of  I 
we have 

[(1-I ~ , ) /F ]  ~ ( r191 [~ , ] ) /F  �9 
i ~ l  i ~ l  

Proof. This follows from Proposition 2.1 (iii) and Proposition 2.5. 

4) This proposition was stated by Bacsich [1] for the case Fis an ultrafilter. 
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Now we turn our attention to iterated bounded Boolean powers, and show that for 
a given algebra 91 the class of 9.I [@31" is, up to isomorphism, closed under bounded 
Boolean powers. First we consider the f id/  algebra q)=  <p, .~>, meaning that every 
finitary function is a fundamental operation. By a bounded subdirect power of ~ we 
mean a subalgebra ~3o of some ~ r  which is a subdirect power and such that each func- 
tion in the subdirect power has a finite range. By embedding a given Boolean algebra 
~3 in a suitable 2 t we can easily show, for any 2~, that 91 [ '~]* is isomorphic to a 
bounded subdirect power of 91. Also, if ~]-'~o is a bounded subdirect power of a full 
then {l~-1(p):peP, #m[~3o[} is a field of sets and this gives the desired Boolean 
algebra to show ~o  is isomorphic to a bounded Boolean power of ~ .  Since bounded 
subdirect powers of bounded subdirect powers are isomorphic to bounded sub- 
direct powers it follows that ( ~  [~3o1") [@31]* is isomorphic to some ~3 [~21"- If  ~3 
is non-trivial then by taking a two-element relativized reduct isomorphic to 2 
we have (2 [@30]*) [@3,1" ~2 [@3z]*, hence ~o [@31]*-@32, so (~ [mo]*) [@31]*- 

[@30 [~t ]* l* .  Now we can easily prove the following. 

THEOREM 2.7. Let 91 be any algebra. Then 

(91 [@3oi*) [@31]*  -91 [@30 [m, ] * ] * .  

Proof. For any 9i we can find a full ~3 such that 91 is a reduct of ~ .  
Quackenbush [381 has shown that ~o  [@3t]* is isomorphic to the ~r 

~o  * @31, where . .~d is the class of Boolean algebras. 

COROLLARY 2.8. For any algebra 91, 

[@3o]*) [@3,]* (91 [@3,]*) [@30]* [too �9 @3,]*. 

Proof. Combine Theorem 2.7 and Quackenbush's result. 

COROLLARY 2.9. I f  @3o, @31 and @32 are Boolean algebras and n is a positive 
integer then 

(i) @3o* (~3! x @32)~(@3o* ~ )  x (~3o* @32), 
(ii) @30* ~3~---(@3o* @3,)", 

and 
(iii) @3o,2"--- @3~. 
Let &dx/1 denote the isomorphism types of Boolean algebras with cardinality 

less than x, where x is infinite. Then the algebra <.~dJL x ,  .>, where x and �9 are 
defined in the obvious manner, is a commutative semi-ring with unity, i.e. x and �9 are 
both commutative and associative binary operations, �9 distributes over x ,  and 2 is the 
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unity since 2 .  ~ 3 ~ .  Indeed (~ r  x ,  . )  is isomorphic to (co, + ,  .>, the non- 
negative integers under addition and multiplication. 

w B-separating algebras 

The applications of Boolean powers by J6nsson and Tarski mentioned in the in- 
troduction were based on finding algebras 92 such that if ~ o ~ l  then 92['~o']* 
~92['~1-]*. Such an algebra 92 will henceforth be called B-separating. Clearly such 
an 92 must have at least two elements in its universe. However the problem of charac- 
terizing B-separating algebras is open. We are motivated to examine this question by 
the thesis that a class JY" of algebras closed under bounded Boolean powers and con- 
taining a B-separating algebra is, in many ways, at least as 'complex' as the class of 
Boolean algebras. The following theorem contains the two basic applications of B- 
separating algebras. 

THEOREM 3.1. Let X be a class of algebras closed under bounded Boolean powers 
and containing a B-separating algebra 92. Then one has 

(a) there are algebras 920, 921 e ~ such that ~,o =- - i  ~rz "~ ~r2 but 920 ~ 92i, as well as obvious 
translations of other direct product phenomena in Boolean algebras; 

(b) ~ has at least 2 ~ isomorphism types of algebras of power 2, where 2 >~ Card 1921. 
Proof. For (a) simply note that 92['~o x ~B1,]*~9,I[~o,]* • 92 [ '~i]* and use the 

direct product results of Boolean algebras. For (b) note that Boolean algebras have 
2 i isomorphism types of power 2, 2>~o9 (see [,31-1). 

THEOREM 3.2. (Tarski [-48-]). The additive semigroup (co, + > of non-negative 
integers is B-separating. 

This result was generalized by J6nsson to a large class of algebras. 

THEOREM 3.3. (J6nsson [,,21]). Let 92=<A,~'> be a countable algebra with 
two polynomials +, 0 such that <A, +,  0> is an indecomposable centerless algebra. 
(It is assumed that x + O = x = O +  x.) Then 92 is B-separating i f  1921 has at least two 
elements. 

For example the symmetric group on three elements is B-separating by this theorem. 
(And furthermore any group of smaller cardinality is not B-separating.) [-The defini- 
tion of an indecomposable centerless algebra <A, + ,  0>, where x + O = x = O + x ,  is 
somewhat technical, but for the flavour of this approach we will say what it means 
given that + is associative. In this case a direct factor of <A, + ,  0> is a subalgebra 
<A', + ,  0> such that there is another subalgebra <A", + ,  0> with every element aeA 
having a unique representation in the form a ' +  a", a'  cA'  and a"e A", and furthermore 
a'+a"=a"+a' .  <A, +, 0> is indecomposable if the only direct factors are <A, + ,  0> 
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and ({0}, + ,  0). (A, + ,  0)  is centerless if {0} is the only subuniverse A' of  (A, + ,  0)  
such that (i) for every a ' e A '  there is an a"r ' such ttlat a ' + a " = 0 ,  and (ii) a + a ' =  
a' + a for every aeA,  a' cA ' .  J6nsson and Tarski proved that the universes of  the direct 
factors o fa  centerless algebra form a Boolean algebra (under _~).] The basic idea of 
J6nsson's proof is to show that the universes of subalgebras of 9 / [ ~ ] *  which are direct 
factors form a Boolean algebra (under ~ )  isomorphic to ~3. Our first sufficiency 
theorem is based on polynomial definability, and our second on a study of congruence 
lattices. Either of these sets of conditions will lead to B-separating algebras not covered 
by J6nsson's result above, but at present we are nowhere near necessary and sufficient 
conditions. 

T H E O R E M  3.4. Let 9/be an algebra such that we can find an equation p (x)= q (x) 
and polynomials p v (x, y), p ^ (x, y) and p'  (x) such that exactly two elements ao, at e 19/I 
satisfy p (x) = q (x) and such that ( {40, a t }, P ~, P ̂ , P', ao, a t )  is a Boolean algebra. Then 
up to isomorphism ~B is first-order definable in 9/[~]*,  hence 9i is B-separating. 

Proof. Let ~ = ( { ~ e l g / [ ~ ] * l :  p ( ~ ) = q ( ~ ) } , p ~ , p ^ , p  ', Go, ~t> where ~o(ao)=l ,  
Go (x) = 0 otherwise, and ix (al) = 1, ~1 (x) = 0 otherwise. It is reasonably straight-for- 
ward to show that ~ is a Boolean algebra, and that the mapping 2:1~31 ~ I~ldefined 
by 

i if X#ao and x#a~  
(2(b))(x)= ' if X=ao 

if x = a  t 

is an isomorphism. Since ~ is first-order definable in 9/[~'1" the theorem is proved. 
An algebra 9/ is  simple if it is non-trivial and has only two congruences. 

T H E O R E M  3.5. Let ~ = (S, ~3-) be a simple algebra such that 
(i) Con (~n) is modular for n < co, 

and 
(ii) Con (~2 )~  (Con~)  2. 

Then ~ is B-separating. Indeed 0 ~ C o n ~  [~ ]*  implies O=O~ for some filter F of  ~3. 
Proof. First we will show that the principal congruences 0(~, 17) of ~ [~3]* are 

filter congruences. Let F be the principal filter on ~ generated by b = V ~, s ~ (s) ^ q (s). 
Clearly 0 (~, q)~< 03. If ~o is any finite subalgebra of ~ let V o = I~o] 2. From a previous 
result of ours [3] every congruence of  ~ [~o]  is a filter congruence. Clearly 

0 ~ n V o = { ( ~ , r ~ ) e V o :  V ~(s)^~(s)>...b} if b e B  o. 

Let us suppose for the rest of the proof  that b e Bo and ~ (s) ^ q (t) ~ B o for s, t e S. Then 
0(~ , r / )nVo={(~ ,  f~>eVo: Vs~s~(S)^~(s)>.--bo} for some boeBo. Since (4, t/> 
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~0(r r/)nVo and 0(r r/)___0~ it follows that b=bo, so 0(4, r / )nVo=0~nV0.  But 
then 0(4, r/)=0~, so every congruence of ~[~3]* is a filter congruence, hence 
C o n ~  [~3]*---Con~3. Since non-isomorphic Boolean algebras have non-isomorphic 
congruence lattices it follows that ~ is B-separating. 

Using Theorem 3.5 we can easily show that the following are examples of B-sep- 
arating algebras: (a) ~ = (S, + , . ,  0, 1,. . .) ,  a simple algebra with two binary opera- 
tions + ,  �9 and two nullary operations 0, 1 such that x. 1 = x + 0  = 0 + x =  x and 
x . 0 = 0  hold in ~ (see Fraser and Horn [14]); (b) any simple algebra ~ in a con- 
gruence distributive variety (Magari [30] proved that in a non-trivial variety (i.e. a 
variety with a non-trivial algebra) one can always find a simple algebra ~ with Cardl~l 
no greater than the power of the language); (c) the seven-element Steiner quasigroup 
(see [56]). 

COROLLARY 3.6. Let 9.I be a non-trivial algebra. Then Cong.I [~3]* = {O~:F is 
a filter on ~3} for all Boolean algebras ~3 iff 

(i) 9.I is simple, 
(ii) Con(W/I ") is modular, n<co, 

and 
(iii) Con (9.I 2) ~ (Cong.I) 2. 
Proof. The conditions (i)-(iii) are certainly sufficient by Theorem 3.5. Clearly 

condition (i) is necessary, and if ~ =2" then from Proposition 2.5 we would have 
Con (9.I") ~ Cong.I [ ~ ]  --- Con ~ ~ 2", so (ii) and (iii) are also necessary. 

As Neumann and Yamamuro [33] pointed out for the case o fa  non-abelian simple 
finite group, if 9.I satisfies (i)-(iii) and is finite then 9.I ~ has no denumerable quotients 
for any L 

w Elementary properties 

In [57] Wojciechowska showed how to adapt the Feferman-Vaught methods [11] 
to handle generalized limit powers, and hence as a special case bounded Boolean 
powers. We will outline this plus an adaptation to cover Boolean powers. In the fol- 
lowing s is the language of 9.i with parameters from 19~1. 

Let ~ be a Boolean algebra and F a  filter on ~ .  Let Ibe  an index set and ~.~ a copy 
of ~ embedded by 2 into the algebra of subsets o f / ,  with 2F the corresponding filter 
on 2~3. For a given algebra 9.[ let 9.I(2~35" denote the subalgebra of 9.I t with universe 
{f~19.IxI:f-l(a)~[2~3[ for a~A, and f-l(a)---~b for all but finitely many a}. Note 
that 9.I(2~5"--9.I [~]*.  Let 2~3F be the structure ([2~31, w, c~, ', ~b,/, hE) .  Let O*(F) 
be the congruence defined on 9.I<2~3>* by <f,g>~O*(F) iff { i~I: f ( i )=g( i )}~2F,  
and let [ f ] *  denote the equivalence class on fwi th  respect to this congruence. We will 
define a translation T* from .s to sequences <~, 0o ... . .  0,>, where 
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~ &a (2~ F) and 0,~ La (9.[ ( 2~ )* ) ,  0 ~< i ~< n, such that the following lemma, our desired 
analogue of the Fundamental Lemma of Feferman-Vaught, holds. If  0 is a sentence 
in s  with parameters fo ..... fk, let Ind(0)= {i~I:9.I~ O(fo(i) ..... fk(i))}. 

L E M M A  4.1. Let a( fo ..... fk) be a sentence in ~ r  with parameters 
fo .... ,fk. Then 

9.I <2m>*/0* (F) ~ a ([ fo]* ..... [ fk]*) 
iff 

~.~e ~ r ..... Ind(0,)), 

where T * ( a ) = ( # ;  0o,..., 0,). 
For brevity in defining T* we will assume that our formulas involve only atomic 

formulas, the ShelTer stroke [, and the existential quantifier 3. 
(i) (Atomic formulas) If p and q are polynomials, 2 a sequence of  variables 

x, o ..... x,,,, a n d f  a sequence of elements of 9d(2~)* ,  then 

T * ( p ( s  ) = q ( s  ) )=(  2F(Xo); p ( s  ) = q ( s  )) .  

(ii) (Sheffer stroke) If r * ( a ) = ( ~ ( X  o ..... Xm); 0o .... , 0m) and T*(a ' )=  
( ~ ' ( X o  .... , )i'm,); 0~ ..... 0~.) then 

T*(a ] a ' ) = ( ~ ( X o  ..... Xm)] (~t (Xm+l , . . . ,  Xm+m,4-1); 0o . . . . .  0m, 0~) . . . . .  0~n, > . 

(iii) (3 Quantifier) If  T * ( c 0 = < # ( X  o ..... Xm); O0 .... , Ore> let m '=2m+t- -1 ,  let 
Ao .... ,Am, be the subsets of {0 ..... m}, and let S,={i:O<~i<~m', l~A,},O<~l<<.m. 
Then define 

~' (Xo, . . . ,  X ' ) = ~ ( U  X,, . . . ,  U X,) ,  
i~So ir 

and for O<~i<<.m', define 
o; = ( & o j) , ,  ( & o j).  

jcA~ jCAi  

Let Part(Y o .... , Ym') be the predicate 

Then 

( & (r, nYj=0)) ( U Y,=0. 
O~*<j<~m" O~i<~m" 

T*(3xka)=(3Yo. . .  3Y~,[Vart(Yo,..., Y~,) & (  & Y~_X,) & 
O<~i<<ra" 

& O' (Yo, ..., Win') 3x,O'o .. . .  ,3xkO'm.>. 
This completes our definition of  T*. 

The proof  of Lemma 4.1 is parallel to the inductive Feferman-Vaught proof, where 
the crucial step is to show, in part (iii), that from Uo.<i<.m, Ind(3xk8',)=I we can 
construct an element g~lg~(X~)*l such that ifjelnd(3xkO;) then 9 ~  O'i( .... g ( j )  .... ). 
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This follows easily from the observation that there is a finite number of subsets 
Co, ..., Ct in 12~3] which parti t ion/,  and which have the property that all parameters 
of the various 0's are constant on each C i, thus ensuring that we can select g. 

Next we modify the previous work to study 9.I ['~], i f ~  is complete, using the same 
notation except that F will now designate a filter on the subsets of L Let 9.I <2~> de- 
note the subalgebra of 9.I ~ consisting of allf~lg~tl such that there is a partition {b~}~s 
of unity in ~3 with the property that for a n y j ~ J  there is an a~[9.1l with 2bj~_f -1 (a). 
Note that 9~ <2~>* is a subalgebra of 9~ <~.~>. Let ~ r ( I )  denote the modified algebra 
of sets <P(I), •, n,  ', O, I, F, Partgn))n~,~_l (Partg n) is defined below). Let O(F) be the 
congruence defined on 9.I<d.~ > by < f ,  g)  ~ 0 (F) iff {i:f(i)  = g (i)} e F. F o r f e  [9.I <2~ )[ 
let I -f]  denote the equivalence class with respect to this congruence. We will define a 
translation T from ~c~a(~<2~3>) to sequences <4;  0o ... . .  0n>, where ~E~c#(~F(I)) 
and 0is.LP(9.I <;t~> ), 0 ~ i  ~<n, with the following property. 

LEMMA 4.2. Let a(fo,...,fk) be a sentence in La(9.I<2~)) with parameters 
fo ..... fk. Then 

93[ <)1.m >/0 (F) ~ a(r fo ] ..... [A ] )  
i f f  

~F(I)  ~ ~(Ind(0o) ..... Ind(0n)), 

where T(a)=< q~; 0o,..., On>. 
T is defined as follows: 

(i) (Atomic formulas) If p and q are polynomials, # a sequence of variables 
xio ... . .  xi,, and f a sequence of elements from 9.I <2~> then 

T(p(~, f  )=q(~, f  ))=<F(Xo); P(~,fl)=q(~,fl)>. 

(ii) (Sheffer stroke) Just repeat the part (ii) for T*. 
(iii) (3 Quantifier) Repeat part (iii) of T* with one modification, namely replace 

Part (Yo,..., Ym,) by Partg m') (Yo, --., Ym,), the latter defined to mean 'Part (Yo,..., Ym,) 
and there is a partition {bj}j~j of unity in ~3 such that for eachj~ J, 2bj ~ Y~ for some i'. 

If  ~ is a class of algebras of a given similarity type then Th(JC) will designate the 
first-order theory of Jr, i.e. the set of first-order sentences in the language of o,~ which 
are true of every algebra in ~". If og" is a singleton {9~} then we write simply Th(9~). 
Two algebras 9~ o and 9.I~ are elementarily equivalent if Th(9~o)=Th(9~), and we ab- 
breviate this by r 9.I~ is an elementary extension of 9~ o, written 9~o-<9~ t, if ~o 
is a subalgebra of 9~ and every first-order sentence in the language of 9.Io, with para- 
meters from 19/ol, is true in 9/o iff it is true in 9.I~. 

In the following theorem parts (i) and (ii), for 9~ o =9~t, were stated by Wojcie- 
chowska [,57], and parts (v)-(ix) are essentially in Waszkiewicz and W~glorz's [,,51] 
work on generalized limit powers. 
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T H E O R E M  4.3. For any algebras 9.I, 9-Io, and 9.I1 we have 
(i) 9.{ o =9.I~, ~ o  - - -~  implies 9~ o [~o]*  =9.I~ [ ~ ] * ,  

(ii) r ~0"~1 implies 9.1o [~0]*'~1 [~I]*, 
(iii) 5) / f ~  is complete then 9~ o --9~ (~o.<9~) implies 9I o [ ~ ]  =9~ 1 [ ~ ]  

(iv) /f  .,~ is a class of  Boolean algebras with Th(YF) decidable, and i f  Th(9.1) is 
decidable, then Th ({9.I [ ~ ] * :  ~ ~ 3(('}) is decidable, 

(v) 9.i [2t/F] * is isomorphic to an elementary substructure of  9~Z/F, for  any I and 
F, 

(vi) every bounded Boolean power of  9.I is elementarily equivalent to a reduced 
power of  9.I, and vice-versa, 

(vii) a first-order sentence is preserved under bounded Boolean powers iff  it is equiv- 
alent to a disjunction of  Horn sentences, 

(viii) an elementary class . ~  is closed under bounded Boolean powers iff  it is closed 
under reduced powers iff it is definable by a set of  sentences, each o f  which is 
a disjunction of  Horn sentences, 

(ix) /f Th(9.I) and Th(~)  are m-categorical then Th(9~ [ ~ ] * )  is m-categorical, 
and 

(x) /f 9.I is finite and B-separating then 9.I [fBo] =9-I [~1]  implies 23o = ~1. 
Proof. (i), (ii) and (iv) are immediate from Lemma 4.1. In Lemma 4.2, if we set 

F={K~_I :  for some partition {bj}j, s of unity in ~ ,  [..,I 2bj~_K}, 
jeJ 

then 9.I<SB>/O(F)~9~ [~ ] ,  hence (iii) follows. If we let ~ = 2 ~  = <P(I), w, c~, ', O, 1> 
then Part~m')(Yo, ..., Y,,,) in part (iii) of the definition of T is the same as Part(Yo ..... 
Y,,,), hence (v) holds. For (vi) we use Ershov's result that every Boolean algebra is 
elementarily equivalent to a reduced power of 2, and then (vii) and (viii) follow from 
well-known preservation theorems for reduced powers (see [6]), (ix) can be easily 
proved using the methods of Baldwin and Lachlan [2], p. 105. For (x) note that by 
Shelah [42] there is an index set I and an ultrafilter U on 21 such that (~  [~o] ) t /U  
---(9.I [~31])'/U. From Proposition 2.6 we have ~ [ ~ / U ] ~ - 9 ~ [ ~ [ / U ] ,  hence ~ g / U  
~-~3[/U, so ~ o - ~ l -  

Recently Olin [35] has shown that elementary equivalence need not be preserved 
by free products of semigroups, and J6nsson and Olin [23] have shown the same for 
any non-trivial variety of lattices. We know that ~o*  ~ l  -~ ~ o  [~1]*,  hence Theorem 
4.3 guarantees the foUowing6). 

s) Banaschewski and Nelson have recently proved that ~ [~B] preserves elementary equivalence 
and elementary substructure in both arguments ~ and ~;  also they have shown ~ [~B]*~9./I~B]. 

e Olin has informed the author that he has proved 4.40) using the Tarski invariants for Boolean 
algebras, and Sabbagh has 4.4 as a special case of results on A-associative algebras. Also Sabbagh 
pointed out that an operation preserving elementary substructure will preserve elementary equivalence. 
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COROLLARY 4.4. (i) (Wcglorz [55] 1974) I f  f i o=~o  and f i l - f ~ ,  then 
A A 

fio * fi~ =-fio *fi~, and (ii) z f f i o ~ f i  o and f i ~ - ~  then fio * fi~ ~ o  * ~ .  
Next we show that any two bounded Boolean powers of  a given 9,1[ have isomorphic 

reduced powers. 

COROLLARY 4.5. For any ~, fio and fil  (the Boolean algebras being non- 
trivial) there is an index set I and filter F such that 

(9.I [ f io]*) ' /F  ~- (~ [fi~ ]*)t /F. 

oJ __  a) Proof. First let D denote the filter of cofinite subsets of o9. Then fio/D =f i l /D 
since they are both atomless. Thus, by Shelah [421, there is an index set J and ultra- 
filter U such that (fi~/D)~/U ~-(fiT/D)S/U, hence for suitable K and E, fi~/E ~-fi~/E. 
Now, using Theorems 2.7 and 4.3, we have f i ~ / E - f i t  [2r/E] *, i =0,  1, hence 

[f i~/E]* --93[ [f i ,  [2r/e1*] * ~-(92[ [fi ,]*) [2K/E1 * -----(9~ [fi,]*)r/E, i = O, 1, 
and this gives (92[ [fio]*)X/E--(9.I[fill*)K/E. Again, using Shelah [42] we have, for 
some I and F, (91 [fio]*)I/F_---(92[ [fil]*)I/F. 

Using similar techniques we can show any two reduced powers of 9.I have iso- 
morphic reduced powers. 

COROLLARY 4.6. For any 9I, Io, Fo, I,, and Fx, there is an I and F such that 

(~~  o)x/F ~- (~h/Fx)'IF. 

Ershov made the basic observation that if 2[ is a finite algebra then there is an 
unusually transparent technique for translating assertions about 9I [ f i ]  into assertions 
about fiB, namely he gives an effective translation t from .LP(N [ f i ] )  into La(fi) such 
that the following is true. 

T H E O R E M  4.7. (Ershov [101) Let a be a sentence in .Z'(9~[fil), where 9.[ is a 
finite algebra. Then 9.I [ f i  I bo" iff fi  b t(a). 

To describe t suppose that the universe ofg~ is {0, 1 .... , n -  1}. Let Part (Xo ..... x,-1) 
be the predicate in .W(fi) defined by 

Part (Xo, ..., x , _ l ) ~  (Xo v ... v x , _ l  = 1) & & (X, hxj=O).  
i < j  

The following procedure suffices to define t recursively (if o" is first put into a suit- 
able form): 

(i) t ( f~(x ,y  .... ) = z ) =  • [ , V ~ (XioAyilA...)=Zf], 
i < ~ n - - 1  f y ( ' o  . . . . .  i n - t ) = i  
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where the x, y, ..., z are either variables or members of 19.I [~] l .  I f x  is a variable, then 
Xo ..... x , - t  are n new variables, and if xe192[~]l, then x i=x( i ) ,  etc.; 

(ii) t(a I I where [is the Sheffer stroke; 
and 

(iii) t (3xa)=3xo . .3x ,_ l  (Part(xo ..... x,-1) & t(o')). 
An algebra 92 is K-saturated [27] if every set of formulas {a~(Xo): i~1}, in the 

language of 92, with fewer than x parameters from [gAI, which is finitely satisfiable in 
92 is also satisfiable in 92 

C O R O L L A R Y  4.8. IfgA is a finite algebra and ~ is a K-saturated Boolean algebra, 
x >1 oJ, then 9.I [ ~ ]  is x-saturated. 

Proof. Let {a,(Xo): ieI}  have fewer than x parameters from 192[~]1 and suppose 
it is finitely satisfiable in 92[~] .  Then {t(al): ieI}  has (at most) n=Card]921 free 
variables appearing and fewer than x parameters from ~ ,  hence it is satisfiable in ~ ,  
and from a solution bo,..., b , - i  in ]~t we can construct a solution r  of 

i I}. 
Thus if 92 is finite and ~3 is saturated it follows that 9A [~3] is saturated. Pacholski 

has shown (see [52]) that 9.I and ~ are both countably saturated need not imply that 
9A [~3]* is countably saturated. 

An algebra 9.[ is equationally compact [53] if any set of  atomic formulas in the 
language of  92, with parameters from 192[, which is finitely satisfiable in 92 is also 
satisfiable in 9.[. 

C O R O L L A R Y  4.9. I f  9A is a finite algebra and ~ is a complete Boolean algebra 
then 92 [~3] is equationally compact. 

Proof. I f p = q  is an atomic formula in the language of 9.I with parameters from 
192 [~] [  then t(p =q)  is equivalent to a conjunction of atomic formulas in the language 
of Boolean algebras with parameters from 1~1- With this we only need to note that 

is equationally compact iff it is complete [53]. 
Remark. One might hope to extend Corollary 4.9 by replacing '92 is finite' by '2[ 

is equationaUy compact';  however Mansfield [29] points out that if ~ 0  and ~ l  are 
two complete Boolean algebras then ~ o  [ ~ i ]  need not be complete, hence not equa- 
tionally compact. Also 2 ~ [20"]* is not a complete Boolean algebra, so we cannot 
extend Corollary 4.9 using bounded Boolean powers. 

w 5. A theorem of M.O. Rabin generalized to m-rings 

In 1967 Rabin [38] proved that the theory of countable Boolean rings with quanti- 
fication over ideals is decidable. Comer [8] combined this with a sheaf-theoretic 
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generalization of the Feferman-Vaught results and known representation theorems 
for m-rings (see below) to show that the first-order theory of m-rings (where m is 
fixed) is decidable. In this section we will substitute the direct techniques of Ershov 
(see w 4) for the Feferman-Vaught methods to show that, for a given m, the theory of 
countable m-rings with quantification over ideals is decidable. 

An m-ring (m~>2) 51=(R, + , - )  is a (commutative) ring with unity satisfying 
xm_--X. 

Let ~r  and --o,~'@(m) denote the class of countable Boolean algebras, respectively 
m-rings. Let La~.~ and Z,e~ denote the first-order language of Boolean algebras, re- 
spectively rings, augmented by quantification over ideals. (We use capital letters for 
ideals.) 

THEOREM 5.1. (Rabin) {a~.L#~: ~d~,,  ~a} is decidable. 
Remarks. It is interesting to note that Theorem 5.1 is equivalent to the statement: 

Th {Con (~): ~ ~ d o , , }  is decidable. Comer recently pointed out to the author that 
~3o-~31 does not lead to Con(~3o)-Con(~l).  

The remainder of this section is devoted to proving the following. 

THEOREM 5.2. {tr~Z#~'~(m) ~ a} is decidable. �9 tO 1 

First we need the two ring representation results used by Comer. 

LEMMA 5.3. I f  9~ is an m-ring then 5t is isomorphic to a product of  p~'-rings 51i, 
where (p~'-  1) I ( m -  1). 

LEMMA 5.4. (Pierce [37]) Let p be a prime number, e a positive integer, and 
suppose ~ is a countable p~-ring. Let ~1, ..., ~ be the subfields of (5~(pe), where ~1 
is the prime subfield. Then there exists a countable Boolean algebra fB and ideals I 1 ..... 
I,, with 11 = I~1, such that ~ is isomorphic to the subalgebra 9~ of ~J~(p~) [ ~ ]  where 

IX~l={~el(~ (p e) [~]1: ~(a)~ V (!j: a ~l~jl}}. (5.5) 

Furthermore these ideals satisfy 

Fj ~_ F k implies l j  ~ I k. (5.6) 

First let it be noted that if I is an ideal of ~ then 

{~e~: V ~(a)eI} (5.7) 
a # O  

is an ideal of 7j~, and furthermore every ideal of xJ~ is of this form. Also if/1 .... , Ie 
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are ideals satisfying (5.6) and 11 = 1~31, then the set of elements determined by the 
right-hand side of (5.5) is a subuniverse of (5~(p ~) [ ~ ] .  Let 0=ao, . . . ,  ap , - i  be the 
elements of l(5~(p0[. It is straight-forward to write out a predicate D(x ,y , . . . ;  
X1 .. . . .  Are) in ~ d  such that ~ is in the right side of (5.5) iff ~3 ~ D (~ (ao), ..., ~ (ap,_ :); 
11 .. . . .  1,), so let us proceed to define a translation z from Za~ to La~ ,  as follows, 
where the variables X~ .... .  Are appear only as introduced in the fourth line below: 

and 

z ( f r ( x ,  y, . . . )=z )= t ( f r ( x ,  y, ...) =z) ,  (see w 
�9 ( x ~ X ' )  = x~  v ... vx~o_leX, 
�9 I 1) = i 
"r(3xa)=::lXo ... 3xp._l(D(x o ..... Xp.-1; Xl .... , X,) & z(o')), 

With this translation it is routine to verify the following, where [Xd lJ  means that X~ 
is to be replaced by Ii, 1 ~ i <<, e. 

LEMMA 5.8. Let tr be a sentence in - f~  and let ~3 be a Boolean algebra with ideals 
11 .... , I~ satisfying (5.6) and [1 = 1~31. Let ~l be the ring determined by the right side of 
(5.5). Then 

Let ID (-'gl .. . . .  Xe) be a predicate in . f f ' ~  expressing 'F  i__ Fk im plies Xj  ~_ X,, and 

x l - - - I ~ l ' .  

LEMMA 5.9. Let ~ be a sentence in .LP~. Then 

etOt iff edo, t vxl.., vx . (m(x , . . . ,  

Now to prove Theorem 5.2 it suffices to note that every countable m-ring ~ can 
be written as a product ~tl • ..- x 9tt, where ~tli is a p~'-ring, and any ideal I of ~tll 
x ... x ~tlz can be expressed as a product I1 x ... x It, where l j  is an ideal of ~tlj, 
1 ~<j ~< l, for with these observations it is routine to reduce the question of -_to~.~.('~ ~ a to 

the decision procedures for ~(P'") 1 <-Ni ~<1, and then via Lemma 5.9 to ~ r  Also, tO t , 

exactly as Rabin did we can establish the next corollary. 

COROLLARY 5.10. The theory of m-rings with a sequence of  distinguished ideals 
is decidable. 
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w 6. Boolean extensions of primal algebras 

A primal algebra 9.[ is a non-trivial finite algebra such that for any function 
f:lg~l"~lgAI there is a polynomial p such that p(ao ..... a , _ l ) = f ( a o  .... ,a ._l) ,  
ao,..., a,_l~lg.I[. As stated in the introduction Foster noted that every algebra in 
the variety generated by a primal 93[ is isomorphic to 9.I 11@3] for some Boolean algebra 
@3. We will choose for our primal algebra with an n-element universe, n >/2, the algebra 
~ , = < P , ,  v ,  ^ ,  0, a I ..... a,_2, 1, • ,) ,  where P . =  {0, al , . . . ,  a,-2, 1}, the operations 
v ,  ^ are lattice operations with 0 < a 1 < . . .  < a,_ 2 < 1, ~ ~ (x, y) = 1 iff x-~ y, Z ~ (x, y) 
= 0 if x = y. Referring to Theorem 3.4 with p (x) = x, q (x) = Z ~ (0, x), p v = v ,  p ^ = A, 

p'(X)=X~ (1, X), we can use first order formulas to recapture @3from ~3n [-@3]- But this, 
along with the fact that ~ .  satisfies the conditions of Theorem 3.5, immediately leads 
to a strengthening of the results in w and w for r  the variety generated by ~ , .  

THEOREM 6.1. (i) We can replace the words 'Boolean algebra" by 'a member of  
:l/'(~3.) ' in Hanf" s direct product results, 

(ii) ~/F(~,) has 24 isomorphism types of  algebras of  power 2, 2~o9, 
(iii) /f,~e" is a class of  Boolean algebras then Th(o,f) is dec idab le / f fTh({~ ,  [@3]: 

@3 ~ ~,'~#}) is decidable (one direction of  this was stated by Ershov [10]), 
(iv) ~ ,  [@30] - - ~ .  [@31]/ff@3o ------@31, (similarly for -<) 
(v) ~3, [@3] is x-saturated i f f  @3 is x-saturated, x >I o9, 

(vi) ~3, [@3] is equationally compact iff @3 is complete, 
(vii) every congruence of  ~3, [@3] is o f  the form Of, r a filter on @3. 
It is straight-forward to verify that free products in ~/'(~3,) are given by 

[too]* [m,] [too, ml], 

and thus using Theorem 6.1 (iv) and Corollary 4.4 we have the following. 

THEOREM 6.3. Free products preserve elementary equivalence and elementary sub- 
structure in 3r 

w 7. Concluding remarks and problems 

The reader will no doubt have recognized that many of the results make sense for 
the more general class of first-order structures, and a detailed study of the impact of 
Boolean powers on Horn classes of structures would be of interest. Steve Schmidt has 
informed us that the full three-graph is B-separating. 

PROBLEM 1. For which finite algebras 9.I is the variety generated by 9.i just the 
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Boolean powers of 9/, up to isomorphism? (This is closely related to Taylor's [49] 
work on the fine spectrum of a variety.) 

In 1957 J6nsson [22] published examples of Abelian groups displaying some of 
the Hanf phenomena. 

PROBLEM 2. Is there a B-separating Abelian group? 

PROBLEM 3. Find conditions on 9 / [~ ]  such that Con 9 / [ ~ ]  = {OF: F a filter 
on ~}. (See Burris and Jeffers [4] for partial results.) 

PROBLEM 4. If 9/ is a finite B-separating algebra and 9 / [ ~ ]  is equationally 
compact, is ~ complete? If 9 / [~ ]  is x-saturated (x >I co), is ~ x-saturated? 

PROBLEM 5. If 9/ is  B-separating and 9 / [ ~ o ] * - 9 / [ ~ 1 ] * ,  does it follow that 

Olin [34] has an effective procedure for computing the Tarski invariants of 
~o* ~1 given those of ~0 and ~3~. (In 1973 Omarov [36] calculated the invariants of 
~t/F given those of ~3 and 2t/F. Olin informed the author that Omarov's calculations 
agreed with his own, which is not surprising in view of ~ .2I/F~-~ [2X/F] * =fB~/F, 
as we have shown.) From this it follows that the predicate 'a is preserved under free 
products of Boolean algebras' is arithmetical. From our previous considerations, if cr 
is preserved under reduced powers of Boolean algebras then it preserved under free 
products. However the sentence 'there is a unique atom' is preserved under free 
products of Boolean algebras but not under direct powers. 

PROBLEM 6. Characterize those sentences preserved under free products "of 
Boolean algebras. 

Higgs kindly communicated the construction used for 9 / [ ~ ]  in Theorem 4.3 (iii), 
pointing out that the basic ideas are partly contained in [40]. Not only does this 
explicitly give 9/[~]~HSP(9/) ,  but upon closer inspection, 9/[~]6SPR(9/),  where 
H, S, P and PR are the operators homomorphism, subalgebra, product and reduced 
product (see [16]). 

PROBLEM 7. Characterize those sentences preserved under Boolean powers 7). 

PROBLEM 8. Characterize those Horn theories which contain B-separating al- 
gebras. 

7) It follows from the results of Banaschewski and Nelson - see footnote (5) - that disjuncts of 
Horn sentences are preserved. 
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