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Embedding modular lattices into relation algebras

ROGER MADDUX

In [4], J6nsson asked whether every modular lattice is isomorphic to a lattice of
commuting equivalence elements of some relation algebra. This note provides an
affirmative answer.

A relation algebra is an algebra UA=(A,+,:,—,0,1,;,~,1) where
(A, +,-,—-,0, 1) is a Boolean algebra, ; is a binary associative operation on A, 1’ is
an identity element for ;, and for all x, y, ze A the following conditions are
equivalent; x - (y;2)=0, y - (x; z7)=0, and z - (y~; x) =0. An important exam-
ple of a relation algebra is the algebra of subrelations $6E of an equivalence
relation E, where $6E=(SbE, U, N, ~, @, E, |, %, Id), ~ is complementation
with respect to E, | is relative product, ~' is conversion, and Id is the identity
relation on the field of E. (E must be an equivalence relation to insure that SbE
is closed under | and ~'.) A relation algebra is representable if it is isomorphic to a
subalgebra of some F4E.

Let % be a relation algebra. An element x € A is an equivalence element of 2 if
x;x=x=x" Eq % is the set of equivalence elements of A. Notice that Re
Eq $4E iff R E and R is an equivalence relation. We will be concerned only
with equivalence elements which contain 1, so we define Eq U=
{xeA:x;x=x=x—=1%. It was noted in [1], p. 383, and [4], p. 463, that if
B<Eq" %, B is closed under ; and -, and x;y =y;x for all x, ye B, then (B, ;, ")
is a modular lattice with ; as join and - as meet. Jonsson called (B, ;, -) a lattice of
commuting equivalence elements, and asked ([4], p. 463) whether every modular
lattice is isomorphic to such a lattice. It is easy to see that if U is representable,
then (B, ;,-) is isomorphic to a lattice of commuting equivalence relations, i.e.
(B, ;, -) has a representation of type 1 (see [3], p. 97). J6nsson proved in [4] that a
lattice has a representation of type 1 iff it satisfies a certain infinite set of
implications, and some modular lattices (such as the lattice of subspaces of a
non-Desarguesian projective plane) have no such representation. On the other
hand, there are non-representable relation algebras (first proved in [5]), so it was
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reasonable to ask whether every modular lattice is isomorphic to a lattice of
commuting equivalence elements.

A relation algebra is symmetric if x—= x for all x € A. It is easy to show (see
[1], Theorem 2.2) that an algebra A=(A,+,-, —,0,1,;,~,1") is a symmetric
relation algebra iff the following conditions hold:

(a) (A, +,-,—,0,1) is a Boolean algebra,

(b) ; is commutative and associative,

(©) x; ’=x=1"; x for all xe A,

(d) forall x, y, ze A, if x-(y;2z)=0 then y- (x;2)=0,
(e) x—=x for all xe A.

If A is a symmetric relation algebra, then Eq*A={xe A:x;x=x=1"}, and
(B, ;,*) is a modular lattice whenever B< Eq* ¥, and B is closed under ; and -.

Let £={L, v, A) be a lattice with minimum element e L. Then (L) is the
algebra

<Sb L’ U’ n’ ~’¢’ L’ ;7v’ {e}>

where Sh L is the set of subsets of L, ~ is complementation with respect to L,
X~=Xfor all XcL, and

X;Y={zeL:zvx=zvy=xvy for some xeX, yeY}

for all X, Y < L. Furthermore, let I be the function defined by

Ix)={yeL:y=x}
for every xe L.

LEMMA. Let ¥ be a lattice with minimum element e. Then Eq* (%) is the set
of non-empty ideals of £.

Proof. Let X be a non-empty ideal of £. Then ec X, so {e}= X. Let ye X;X.
Then yvx=yvx'=xvx' for some x, x’€ X. Butthen y=xvx'e X;s0 X;Xc X
Thus X e Eq* A(L).

Now suppose X € Eq* A(&). Then {e}< X, so X#0. If y=xeX, then yvx=
yvx=xvx so yeX;XcX. If x, yeX, then (xvy)vx={(xvy)vy=xvy, so
xvyeX; X< X Thus X is an ideal.

THEOREM. Let & be a modular lattice with minimum element. Then
(1) W) is a symmetric relation algebra,
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(2) Iis an embedding of & into (Eq* (L), ;, N),
(3) (Eq” AW(L), ;, N) is the lattice of non-empty ideals of &L.

Proof. (1). It obviously suffices to verify that (%) satisfies (b), (c), and (d). But
; is clearly commutative, and (c) and (d) are easy to check, so we only prove ; is
associative.

Let X, Y, Z<L and ue(X; Y);Z Then there are ve X;Y and z€ Z such
that

() uvv=uvz=ovvz

Since ve X; Y, there are x€ X and ye Y such that
(iiy vvx=vvy=xVvy.

Let m=uvzvvovxvy Then by (i) and (ii),

UVXVY=UVUVIVY=UVIVOVIVY=m,

m

uvzvoy VVXIVY

and we see, similarly, that the join of any three elements in {y, z, v, x, y}, other
than uvzvo and vvxvy,is m. Let w=(uvx)A(yvz). By modularity, wvy=
(uvxvyla(yvz)=ma(yvz)=yvz and wvz=(uvxvz)a(yvz)=
ma(yvz)=yvz so weY;Z Similarly, uvx=uvw=xvw, so ueX;(Y;2Z).
Thus (X;Y); Z< X;(Y;Z) for all X, Y, Z< L. Since ; is commutative, it follows
that ; is associative. .

(2) For every xeL, I(x) is a non-empty ideal, so I(x)eEq” A(¥L) by the
Lemma. It is easy to prove that I is one-to-one and I(x A y)=I(x)NI(y), so we
only show I(xvy)=1I(x);I(y) for all x, ye L.

Let ueI(xvy). Set v=xA(uvy)el(x) and w=ya(uvx)el(y). By modu-
larity, uvv = (uvx)A(uvy)=uvw. Using this, modularity, and u=xvy, we get
uvo=(xvyv)a(uvo)=xvy)aluv)a(uvy)=xviyruv)haluvy)=[xa
(uvy)Ylviya(uvx)l=vvw. Hence ueI(x);I(y).

On the other hand, if u € I(x); I(y), then there are v e I(x) and we I(y), such
that usuvov=uvw=vvw=xvy so ucl(xvy).

(3). Since, by the Lemma, Eq* (%) is the set of non-empty ideals of &%, and
the meet of any two ideals is merely their intersection, it suffices to show that
X ;Y is the join of any two ideals X and Y, thatis, X;Y={zeL:z=xvy for
xeX and yeY}.
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One inclusion is easy, for if zeX;Y, then z=szvx=zvy=xvy for some
x€ X and y e Y. For the other inclusion, suppose z=xvy, x€ X, and y e Y. Then
zel(xvy)=I(x);I(y) by (2}, and I{x)= X and I(y)= Y since X and Y are
ideals, so zeI(x);I(y) = X;Y.

This theorem solves Jonsson’s problem, for if & is a modular lattice with no
minimum element, then the theorem may be applied instead to the lattice £’
obtained by adding a minimum element to &.

If A(Z) is representable, then there is an embedding F of () into some
$4E, and Fel is a representation of type 1 for . However, FoI has some
strong additional properties. For example, FoI fails to preserve joins
of chains. To see this, let xo<x;<:'-<y=Y,.,% Wwhere x #y for all
k <w. Then FI(xg) = FI(x)) <= - - € U, FI(x.) = FI(y). But ye I(y), so F{yh<
FI(y), and F{yPDNFI(x)=0 for every k<w since y¢I(x,). Consequently
Uk <o FI(x,) # FI(y). Further differences appear even for simple finite lattices.
The two-element chain 2 has a representation of type 1 over a two-element set,
but if A(2) can be embedded in ¥4 E, then the field of E must have at least three
elements.

PROBLEM. Is A(¥) representable whenever & has a representation of
type 1?

If £ is the lattice of subspaces of a non-Desarguesian projective plane, then
A(L) is not representable. This is a somewhat roundabout way of constructing
non-representable relation algebras. For more direct constructions see [2], [7],
[8], [9). and [6]. The latter paper is of particular interest here. In it, Lyndon
constructs a relation algebra using an arbitrary projective geometry, and proves
that the resulting algebra is representable iff the geometry can be embedded as a
hyperplane in a geometry with one more dimension. He consequently obtains
non-representable relation algebras from lines which cannot be embedded in a
projective plane. Lyndon uses the points of the geometry as atoms, and adds one
extraneous element to serve as the atom 1°. The construction presented here uses
all the subspaces of the geometry as atoms, with {#} as the atom 1’. In particular,
if & is the lattice of subspaces of a line, then A(¥) has one more atom than
Lyndon’s algebra for that line, namely an atom for the line itself. It turns out that
A(Z) is representable, although Lyndon’s algebra may not be.
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