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Embedding modular lattices into relation algebras 

ROGER MADDUX 

In [4], J6nsson asked whether  every modular  lattice is isomorphic to a lattice of 
commuting equivalence elements  of some relation algebra. This note provides an 
affirmative answer. 

A relation algebra is an algebra 9 2 = ( A , + , . , - , 0 ,  1 , ; , ~ ,  1') where 
(A, +, -, - ,  0, 1) is a Boolean algebra, ; is a binary associative operat ion on A, 1' is 
an identity e lement  for ;, and for all x, y, z ~ A the following conditions are 
equivalent; x �9 (y; z) = 0, y �9 (x; z~) = 0, and z �9 (y~; x) = 0. An important  exam- 

ple of a relation algebra is the algebra of subrelations 6e~E of an equivalence 
relation E, where fi"~E = (SHE, t_J, N, ~ ,  0, E, I, -x, Id), ~ is complementat ion 
with respect to E, I is relative product, - '  is conversion, and Id is the identity 
relation on the field of E. (E must be an equivalence relation to insure that ShE 
is closed under  I and -~.) A relation algebra is representable if it is isomorphic to a 
subalgebra of some SerE. 

Let 92 be a relation algebra. An element  x E A is an equivalence element of 92 if 
x ; x <-- x = x~. Eq 92 is the set of equivalence elements of 92. Notice that R 

Eq 5e~E iff R ~ E and R is an equivalence relation. We will be concerned only 
with equivalence elements  which contain 1', so we define Eq § 
{ x ~ A : x ; x < _ x = x - > - l ' } .  It  was noted in [1], p. 383, and [4], p. 463, that if 
B___Eq§ B is closed under ; a n d . ,  and x ; y =  y ; x  for all x, y ~ B ,  then (B, ; , . )  
is a modular  lattice w i t h ,  as join and �9 as meet .  J6nsson called (B, ;, -> a lattice of 
commuting equivalence elements, and asked ([4], p. 463) whether  every modular  
lattice is isomorphic to such a lattice. It  is easy to see that if 92 is representable,  
then (B, ;, .) is isomorphic to a lattice of commuting equivalence relations, i.e. 
(B, ;, .) has a representat ion of type 1 (see [3], p. 97). J6nsson proved in [4] that a 
lattice has a representat ion of type 1 itt it satisfies a certain infinite set of 
implications, and some modular  lattices (such as the lattice of subspaces of a 

non-Desarguesian projective plane) have no such representation. On the other 
hand, there are non-representable  relation algebras (first proved in [5]), so it was 
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reasonab le  to ask whe the r  every  m o d u l a r  lattice is i somorph ic  to a latt ice of 
c o m m u t i n g  equ iva lence  e lements .  

A re la t ion  a lgebra  92 is symmetric if x ' - ' =  x for  all x ~ A.  I t  is easy  to show (see 
[1], T h e o r e m  2.2) tha t  an a lgebra  9 2 = ( A ,  + , . , - ,  0, 1, ; , " ,  1') is a symmet r i c  
relat ion a lgebra  iff the fol lowing condi t ions  hold: 

(a) (A,  + , . ,  - ,  0, 1) is a Boo l ean  algebra,  
(b) ; is c o m m u t a t i v e  and  associat ive,  

(c) x;  l ' = x = l ' ; x f o r a l l x ~ A ,  
(d) for  all x, y, z ~ A ,  if x . ( y ; z ) = 0  then y .  (x; z ) = 0 ,  
(e) x - =  x for  all x ~ A. 

If 92 is a symmet r i c  re la t ion  a lgebra ,  then  E q  § 92 = {x ~ A : x ; x ---- x >- 1'}, and 
(B, ;, ") is a m o d u l a r  latt ice wheneve r  B c E q  § 92, and B is closed unde r  ; and .. 

Le t  Sg= (L, v ,  ^ )  be  a lattice with m i n i m u m  e lemen t  e ~ L. T h e n  92(L) is the 
a lgebra  

(Sb L, U ,  n ,  ~ ,  O, L, ; ,~ ,  {e}) 

where  Sb L is the set  of subsets  of L, - is c o m p l e m e n t a t i o n  with respec t  to L, 
X -  = X for  all X ~ L, and  

X ; Y = { z e L : z v x = z v y = x v y  for  some  x e X ,  y ~ Y }  

for  all X, Y ~_ L. F u r t h e r m o r e ,  let  I be  the funct ion def ined by  

I(x) = {y ~ L : y ----- x} 

for  every  x E L. 

L E M M A .  Let .fg be a lattice with minimum element e. T h e n  E q  + 92(&?) is the set 
of non-empty ideals of ~. 

Proof. Le t  X be  a n o n - e m p t y  ideal of ~ .  Then  e ~ X, so {e} _ X. L e t  y ~ X ;  X. 
Then  y v x =  y v x ' = x v x '  for  some  x, x '~X .  But  then y<--xvx '~X,  so X ; X ~ _ X .  
Thus  X ~ Eq*  92(.Le). 

Now suppose  X ~  E q  + 92(Se). T h e n  {e} _ X, so X ~  0. If y <-- x ~ X, then  y v x = 
y v x = x v x ,  so y ~ X ; X c _ X .  If x, y ~ X ,  then ( x v y ) v x = ( x v y ) v y = x v y ,  so 
x v y ~ X ;  X ~ X. Thus  X is an ideal.  

T H E O R E M .  Let ~ be a modular lattice with minimum element. Then 
(1) 92(.Lr is a symmetric relation algebra, 
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(2) I is an embedding of .~ into (Eq + 9.I(L), ;, fq ), 

(3) (Eq + 9.I(~), ;, f'l ) is the lattice of non-empty ideals of ~. 

Proof. (1). It  obviously suffices to verify that  91(~) satisfies (b), (c), and (d). But  
; is clearly commuta t ive ,  and (c) and (d) are easy to check, so we only p rove  ; is 
associative. 

Le t  X, Y, Z ~_ L and u e (X;  Y) ; Z. T h e n  there are v e X ;  Y and z e Z such 
that 

(i) u v o = u v z = v v z .  

Since v e X ;  Y, there  are x e X and y e Y such that  

(ii) v v x = v v y = x v y .  
Let  m = u v z v v v x v y. Then  by (i) and (ii), 

u v x v y = u v v v x v y = u v z v v v x v y =  m, 

m 

u v z ~ x v y  

u z v x y 

and we see, similarly, that  the join of any three e lements  in {u, z, v, x, y}, o ther  

than u v z v v  and v v x v y ,  is m. Let  W=(UVX)A(yvz ) .  By modular i ty ,  w r y =  

( U V X V y ) A ( y V z ) = m A ( y V z ) = y v z ,  and W V Z = ( U V X V Z ) A ( y V Z ) =  
m A ( y V z ) =  yVZ,  SO We Y ; Z .  Similarly, u v x =  u v w = x v w ,  so u e X ; ( Y ; Z ) .  
Thus (X ; Y) ; Z g X ;  ( Y ;  Z)  for  all X, Y, Z ~ L. Since ; is commuta t ive ,  it follows 
that ; is associative. 

(2) For  every  x e L ,  I(x) is a n o n - e m p t y  ideal, so I ( x ) eEq  § 9.t(~) by the 

Lemma .  It is easy to prove  that  I is o n e - t o - o n e  and I(x A y) = I(x) f'l I (y ) ,  SO we 
only show I(x v y) = I(x) ; I (y )  for  all x, y e L. 

Let  u e I ( x v y ) .  Set V = X A ( U V y ) e I ( x )  and w = y A ( u v x ) e I ( y ) .  By m o d u -  

larity, u v v = (u v x) A (u v y) = u v W. Using  this, modular i ty ,  and u <-- x v y, we get 

u v v  = ( x v  v ) ^ ( u  v o )=  (x v y)A(U VX)A(U v y ) =  ( x v [ y A ( u V x ) ] ) ^  (u v y) = [x ^ 
(u v y)] v [y A (U V x)] = V v W. H e n c e  u e I(x) ; I (y) .  

On  the o ther  hand,  if u e I(x);I(y), then there  are v e I(x) and w e I (y) ,  such 
that  u<--uvv = u v w =  v v w < - x v y ,  so u e I ( x v y ) .  

(3). Since, by the L e m m a ,  Eq  § 9..l(~) is the set of n o n - e m p t y  ideals of  ~ ,  and 

the mee t  of  any two ideals is merely  their intersection, it suffices to show that  

X ; Y  is the join of any two ideals X and Y, that  is, X ; Y  = {z e L : z - - x  v y for 

x e X  and y e Y } .  
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One inclusion is easy, for if z ~ X ; Y, then z _< z v x = z v y = x v y for some 
x ~ X and y ~ Y. For the other inclusion, suppose z --< x v y, x ~ X, and y ~ Y. Then 
z ~ I ( x v y ) = I ( x ) ; I ( y )  by (2), and I ( x ) _ X  and I ( y ) _ _ Y  since X and Y are 
ideals, so z ~ I ( x ) ; I ( y ) ~ _ X ;  Y. 

This theorem solves J6nsson's problem, for if Le is a modular  lattice with no 
minimum element,  then the theorem may be applied instead to the lattice ~ '  
obtained by adding a minimffm element  to ~ .  

If 92(~) is representable,  then there is an embedding F of 92(~) into some 
b~ and F o I  is a representat ion of type 1 for ~ .  However ,  F o I  has some 

strong additional properties.  For  example,  F o I  fails to preserve joins 
of chains. To  see this, let Xo<__Xl<__'''<y=Y~k<o, Xk where x k ~ y  for all 
k < to. Then FI(xo) ~_ FI(xl) ~_" �9 ~_ I,.J k<,,, FI(xk) ~_ FI(y) .  But  y s I (y) ,  so F({y}) _~ 
FI(y) ,  and F({y})AFI(xk)=O for every k < t o  since yg~I(Xk). Consequently 
(.Jk<,,FI(xk) ~ F I ( y ) .  Further  differences appear  even for simple finite lattices. 
The  two-element  chain 2 has a representat ion of type 1 over  a two-e lement  set, 

but if 92(2) can be embedded  in S~ E, then the field of E must have at least three 
elements.  

P R O B L E M .  Is 92(.LP) representable  whenever ~ has a representat ion of 
type 1? 

If ~ is the lattice of subspaces of a non-Desarguesian projective plane, then 
9,1(~) is not representable.  This is a somewhat  roundabout  way of constructing 
non-representable  relation algebras. For more direct constructions see [2], [7], 
[8], [9], and [6]. The latter paper  is of particular interest here. In it, Lyndon 
constructs a relation algebra using an arbitrary projective geometry ,  and proves 
that the resulting algebra is representable  if[ the geometry  can be embedded  as a 
hyperplane in a geometry with one more dimension. He  consequently obtains 
non-representable  relation algebras f rom lines which cannot be embedded  in a 
projective plane. Lyndon uses the points of the geometry  as atoms, and adds one 
extraneous element to serve as the a tom 1'. The construction presented here uses 
all the subspaces of the geometry as atoms, with {0} as the a tom 1'. In particular, 
if Lr is the lattice of subspaces of a line, then 92[(~) has one more  a tom than 

Lyndon 's  algebra for that line, namely an a tom for the line itself. It  turns out that 
92(~) is representable,  although Lyndon ' s  algebra may not be. 
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