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Modal operators on l-leyting algebras 

D. S. MACNAB 

w Background 

DEFINITION 0.1. Let L be a A-semi lattice. A modal operator on L is a 
function f:L--~L such that, Vx, y ~ L, 

(1) x <- f(x)  
(2) f f ( x ) = f ( x )  
(3) f (x  ^ y) = f (x)  ^ f(y)  

(f is inflationary) 
(f is idempotent) 
(f is A-preserving). 

T h e  purpose of this paper is to investigate aspects of the general algebraic 
theory of modal operators on Heyting algebras where the theory is particularly 
interesting. It is based on part of the author's Ph.D. thesis [8]. 

Historically, the notion of a modal operator as such has its main source in the 
theory of topoi and sheafification due to Grothendieck, Lawvere and Tierney; see 
[4], [6], [7], [11] for details. Modal operators are also referred to as j-operators 
because j was the symbol commonly used to denote them. The term modal is due 
to Lawvere. 

From a quite different starting point, Dowker and Papert [2] developed the 
concept of a frame and of a frame map. These were intended to mirror 
algebraically the notion of a topology and of maps which preserved the open set 
operat ions-f ini te  intersections and arbitrary unions. An examination of [2], 
however, shows that a frame map on a frame is simply a modal operator on a 
complete Heyting algebra. 

Modal operators have also occasionally appeared in general lattice theory 
under the name of multiplicative closure operators. 

The paper is organised as follows. w contains the elementary properties of 
modal operators including an alternative characterisation in terms of a single 
identity. w introduces the algebra M(H) of all modal operators on a Heyting 
algebra H, and the concepts of admissible filter and modal subalgebra. In w an 
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6 D, S. MACNAB ALGEBRA UNIV, 

important subclass of modal operators is investigated in detail. w analyses 
admissible filters and modal subalgebras in terms of a Galois connexion. The final 
two sections relate the structure of M ( H )  to separation properties on H. 

An elementary knowledge of lattice theory and in particular Heyting algebras 
is assumed. We use ~ to denote the implication or relative pseudocomplement  on 
a Heyting algebra. 

I should like to record my thanks to Dr Harry Simmons, for advice and 
encouragement.  

w Introduction 

We recall that a Heyting algebra ( H , n , v , 0 ,  1 , ~ )  is a lattice with least 
element 0 and greatest element 1 such that, for all a, b, x E H, x A a -- b if and only 
if x -- a ::> b. Equivalently, a ~ b is the greatest element of {x E H :  x n a ----- b}. A 
Heyting algebra is necessarily distributive. For an arbitrary 0,1-distributive lattice 
L the pseudocomplement  of b E L  is defined to be the greatest element  of 
{x E L : x A b = 0}, if it exists. If every element  of L has a pseudocomplement,  L is 
called a pseudocomplemented lattice. The  pseudocomplement  of b is denoted by 
b*. Every Heyting algebra is a pseudocomplemented lattice in which b * =  b f f  0. 
Lemma 1.1 lists the standard properties of Heyting algebras which we require. 

L E M M A  1.1. Let H be any Heyting algebra. Then the [ollowing hold, ]:or all 
elements a, b, c of H. 

(i) 
(ii) 

(iii) 
(iv) 
(v) 

(vi) 
(vii) 

(viii) 
(ix) 
(x) 
(xi) 

b < - a ~ b ,  
a A ( a ~ b ) = a A b ,  
a < _ b ~ c  if[ b < - a ~ c ,  
b <- c implies a ~ b <- a ~ c, 
a < - ( a ~ b ) ~ b ,  
a <- b implies b ~ c <- a ~ c, 
( a ~ b ) ~ ( a ~ c ) = a ~ ( b ~ c ) =  b ~ ( a ~ c ) = ( a A b ) ~ c ,  
( a ~ b ) A ( b ~ c ) < - a ~ c ,  
a<-b if[ a ~ b  = 1, 

a ~ ( b A c ) = ( a ~ b ) A ( a ~ c ) ,  
( a v b ) = > c = ( a ~ c ) A ( b ~ c ) .  

C O R O L L A R Y  1 
(i) a ~ b * = ( a A b ) * ,  

(iii) a <- b implies a** <- b**, 
(ii) a<_b implies b*-<a *, 

(iv) a -- a**, 
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(v) a * =  a***,  (vi) a ~ a * =  a*, 
(vii) a * ~  a = a**,  (viii) (a  v b)* = a*  A b*. 

(Properties (ii)-(v), (viii) of the Corollary hold in any pseudocomplemented lattice.) 

{ x e H : x = x * * }  is called the set  of  regular  e l ements  of H.  No te  tha t  an 
e l emen t  b ~ H  is called c o m p l e m e n t e d  iff b v b * =  1, in which case b* is its 
complemen t .  C o m p l e m e n t e d  e l emen t s  are somet imes  called boo lean .  If a e H is 
such that  a*  = 0, then  a is called a dense  e lement  of H. For  fu r ther  details ,  see [5] 

or [9]. 
Modal  ope ra to r s  were  defined in w T h e o r e m  1.2 gives their  basic algebraic  

proper t ies .  

T H E O R E M  1.2. Let f be a modal operator on a Heyting algebra H. Then the 
following hold, where x, y are any elements of H. 

(i) f(x v y) = f(x v f ( y ) )  = f(f(x) v f ( y ) ) ,  
(ii) f(x ~ y) <-- f(x) ~ f ( y )  = f(f(x) ~ f (y ) )  = x ~ f ( y )  = f(x ~ f ( y ) ) ,  

(iii) x v f(0)  -- f(x) <-- (x ~ f(0))  ~ f(0) ,  
(iv) ( x  v f (o ) )**  = f(x)**. 

Proof outline 

(i) f(x v y) <-f(x v f(y))  <-f(f(x)vf(y)) <-ff(x v y) = f(x v y) 
(ii) f(x) A f(x ~ y) = f(x A (X ~ y)) = f(x A y) --< f (y) .  

H e n c e  f(f(x) ~ f (y))  ~ if(x) ~ i f(y)  = f(x) ~ f (y)  

<_ x ~ f(y) <-- f ( x ~  f(y) ) <--f(x) ~ f(y). 

H e n c e  f(x ~ f (y))  = f(f(x) ~ f (y))  = f(x) ~ f (y )  = x ::> f (y) .  

(iii) Clearly,  x v f(0) ~f(x) .  

Also, f(x) < (f(x) ~ f(O)) :ff f(O) = (x ~ f(O)) =:> f(O), by (ii). 

(iv) x* -< x ~ f(0) = f ( x ) ~  f(O). 

H e n c e  f(x) A X* A f(0)* = 0. 
H e n c e  f(x) A (X V f(0))* = 0. 
H e n c e  f(x) <- (x vf (0 ) )** .  
W e  thus have (xvf(O))<-f(x)<--(xvf(O)) ** and hence  (xvf(O))**=f(x)**. 
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For any b e l l ,  the operator ub defined by Ub(X)= b v x  is easily shown to be 
modal. The following Corollary to Theorem 1.2 shows that for boolean algebras 
these are the only modal operators. 

C O R O L L A R Y  1. If  f is a modal operator on a boolean algebra B, then 

f = U1<o). 

Proof. Immediate from (iv) of the Theorem. 

We will denote by 0 and 1 the operators Uo and ux. 
For Heyting algebras there is a useful alternative characterisation of modal 

operators, (which improves a result of Freyd that a closure operator f on a 
Heyting algebra is modal iff it satisfies x ~ f ( y ) =  f ( x ) ~ f ( y ) ) .  

T H E O R E M  1.3. The following are equivalent for any function f on a Heyting 
algebra H. 

(1) f is a modal operator on 1-1. 
(2) For all x, y in H, x ~ f ( y ) = f ( x ) ~ f ( y ) .  

Proof. (1)--->(2). This is contained in (ii) of Theorem 1.2. 
(2)--->(1). On putting (i) y = x, (ii) x---y, (iii) x = f(y), it is easily seen that f is 

(i) inflationary, (ii) monotone, (iii) idempotent. To show that f preserves A, 
observe first that, since f is inflationary, x ^  y <--f(x ^ y). Hence 

y <~ x ~ f(x A y) = f (x)  ~ f (x  A y), 

so that 

y ^ f ( x )  <-f(x ^ y). 

Similarly, 

f(y)  ^ f(x) -< f (x  ^ y). 

Since f is monotone, it follows that f preserves A and is thus a modal operator on 
H. 

Using Theorem 1.3 we can introduce two further classes of modal operators 
on an arbitrary Heyting algebra H. 

L E M M A  1.4. For any a e H, let va, wa : H - o H  be defined by vo(x) = a ~ x, 
w ~ ( x ) = ( x ~ a ) ~ a .  Then v~, w~ are modal operators on H. 
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Proof. It is straightforward to verify that va, wa satisfy the criterion of 
Theorem 1.3. (A direct proof for w~ may be found in [10].) 

w The algebra og operators M(H) 

We denote by M(H) the set of all modal operators on a Heyting algebra H. 
For general H, M(H) is an A-semi lattice (with ^ defined pointwise), but need 
neither be pseudocomplemented nor a lattice. However, if H is complete, then, 
for any s e t / , / k  {fi~M(H) : i ~ I}, (again defined pointwise), exists and is modal, so 
that M(H) is a complete lattice. Because the meet in M(H)  is pointwise so also is 
the order so that f - g  if and only if f(x)<-g(x) for all x in H. We will denote the 
join in M(H) by U. It is almost never obtained pointwise. Since flf2, f2fi <- fl U f2, 
it follows that if fir2 is modal, then fif2 = f~ II f2 and similarly for f2fl. Also, if 
fff2<-f2fD then f2fi is modal. We thus obtain the next Lemma. 

L E M M A  2.1. Let H be a Heyting algebra and let f~  M(H). Then 
(i) u~ U f = fu~, 

(ii) v~ U f = v j ,  
(iii) if g ~ M(H) and g preserves ~ ,  then g U f = gf. 

Proof. (i) holds since uof<--fua. 
(ii) follows from (iii) since v~ preserves ~ ,  by Lemma 1.1(vii). 

(iii) may be verified by showing that gf satisfies the criterion of Theorem 1.3. 

We leave until w the behaviour of the w~ operators with respect of joins. 
Using Lemma 2.1, we can obtain more information about the structure of 

M(/-/) when H is complete. For fx, f2EM(H),  let f=A{v: , ( , ) l l  u, U f 2 : a ~ H } ;  
i.e., by Lemma 2.1, 

f(x) =/~ {fi(a) ~ f2(x v a) : a ~ H}. 

L E M M A  2.2. For g ~ M(H), g ^ fi <- f2 if and only if g <- f. 

Proof. For any x ~ H, 

(f A fl)(X) = f ( x )  A fl(x) 

<-- f i (X)  ^ (Vr,~, ) U u~ U fz)(x) 

= f t(x)  A (fl(x) ~ f2(x)) 

= fl(X) A f2(X) ~ f2(x) .  
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Hence fAf l<- f2;  i.e. g--<f implies gAfl--<f2 . Now suppose that gAll-----f2. We 
show that, Va ~ H, g --- vr,<~ ) L_.I u~ II  f2 which is equivalent to showing that, Vx ~ H, 
g ( x ) < - f l ( a ) ~ f 2 ( a v x ) .  Thus we have to show that, Va, x ~ H ,  g(x)Afl(a)<-- 
f z ( a v x ) .  Now, for x<-a, 

g(x) A f l (a)  <-- g(a) A f~(a) 

--f2(a), since gAfx--<f2 

= f2(a v x). 

Hence, for any x, a ~ H, 

g(x) A f l (a)  <-- g(x) A f l (a  v x) 

< - f ~ ( a v x v x )  

= f 2 ( a v x ) .  

(Lemma 2.2 is essentially the same as Lemma 2 in [2], but the proof is different.) 

T H E O R E M  2.3. I f  H is a complete Heyting algebra, then M ( H )  is also a 
complete Heyting algebra. 

If we denote the implication in M ( H )  also by i f ,  then f~ => fz is given by the 
formula of Lemma 2.2. Rarely is fl ~ f z  obtained pointwise. A description of how 
the implication in M ( H )  can be obtained from the pointwise function 

(fl + ]:2)(X) = fl(X) :=~ f2(x) 

is given in [8] and may also be found in [1]. Briefly, 

fl  ~ fz = A {wa : f l ( a ) ~  f2(a) = a}. 

By no means any complete Heyting algebra can occur as M ( H )  for suitable 
complete H as the next Theorem and Corollary show. 

T H E O R E M  2.4. If H is a complete Heyting algebra and f~  M(H), 
f = U {Uf(a)A V a : a ~ H}. 

Proof. Let g =1 l{urr 04 : a ~H}. 

then 

Then, for each x e H, g -> ut(x) A Vx SO that g(x) >- f(x) .  Hence g -> f. 
Also, for each a ~ H, 

v j ( x )  = a ~ f (x)  = f (a)  ::> f (x)  

= v:~o)f(x), 
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so that 

v d  = or~>f. 

Hence v~ --- vr = vr(~ ) U f, by Lemma 2.1. 
Hence u~(~) A va ----- f. 
It follows that g <---f and hence g = f. 

A zero-dimensional lattice is one in which every element is a supremum of 
complemented elements; i.e. the complemented elements form a base for the 
lattice. 

A regular lattice is a lattice L with 0 and 1 such that given any a, b ~ L with 
a < b, there exist x, y ~ L satisfying 

x*ea, b v y = l ,  x A y = 0 .  

C O R O L L A R Y  1. For any complete Heyting algebra H, 
(i) M(H) is a zero-dimensional lattice, 

(ii) M(H) is a regular lattice. 

Proof. (i) By Lemma 2.1, ua and v~ are complements. Hence every f ~ M ( H )  
is a supremum of complemented elements; i.e., M(H) is zero-dimensional. 

(ii) If L is a zero-dimension~ lattice and a < b then there exists a complemented 
element x such that x<-b, x ~ a .  Now put y = x * .  Then b v y =  1 and X A y = 0 .  
Hence L is a regular lattice. 

C O R O L L A R Y  2. If  H is finite, then M(H) is a boolean algebra. (There is a 
direct proof of this Corollary, giving additional information, in [8].) 

The characterisation of modal operators in Theorem 2.4 requires the algebra 
to be complete. It also requires the use of the awkward join operation II. There 
is, however, a more useful characterisation in terms of w~ operators which holds 
for any Heyting algebra and which requires only the simpler meet operation. 

T H E O R E M  2.5. Let H be any Heyting algebra and let f ~ M(H).  Then 
(i) for all a ~ H ,  f<-wa iff f (a )=a ,  
(ii) A {wa:f<-wa} exists and equals f. 

Proof. (i) That f-< w~ implies f(a) = a is straightforward. Conversely, for any 
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a~H,  

f(x) <- (f(x) ~ f(a)) ~ f(a) 
= (x ~ f(a))  ~ f (a )  

= ( x ~ a ) ~ a  

= wo (x), 

so that f ( a ) -  a implies f<--w~. 
(ii) This now follows on noting that, for any x e H, wi(,)(x)= f(x), so that the 

infimum exists at each point x and equals f(x) there. 
For f e M(H),  let H r = {x e H :  f(x) = x}. Since f is idempotent, H t is simply the 

image of H under f. Then Theorem 2.5 states that f = A  {wa: a e Ht}. Clearly H t 
uniquely determines f. It is called the fixed algebra of f. We now have the 
following Corollary to Theorem 2.5. 

C O R O L L A R Y  1. Let X by any (non-empty) subset of a complete Heyting 
algebra H, and set f = ]~ {w~ : a ~ 2(,}. Then H t is the least extension of X to the fixed 
algebra of a modal operator on H. 

Proof. It is clear from the proof of the Theorem that X c_ H r. Suppose now 
that g is a modal operator on H such that X_c H~. Then, by the Theorem, 

g =Alw~:aeHgI<-A(wo:aex}=f .  

Hence gf = f giving H r c_ Hg. 
(Note that for any modal operators f, g we have g _  f iff gf = f iff H t ~ Hg.) 
Theorem 1.2 shows that H t is a Heyting algebra whose meet and implication 

are those induced from H, f(0) being the zero of H r, but whose join I'1 is given by 
f(a) l'l f(b) = f ( f (a)v  f(b)). 

If X is a stfbset of H such that there exists f ~ M(H) with X = Hf, then we will 
call X a modal subalgebra of H. The following Lemma is proved in [8] and may 
also be found in [4], and in [2] for complete H. 

L E M M A  2.6. If  X c H, then X is a modal subalgebra of H if and only if 
(i) for each a e H ,  A {x~X:a<-x}  exists and lies in X, 

(ii) for all a ~ H  and b~X ,  a ~ b ~ X .  

For any f ~  M(H), the set Jr = f-x(1) is a filter on H. An arbitrary filter 3- on H 
will be called admissible provided there exists f ~ M ( H )  with J =  f-l(1).  For 
boolean algebras, it follows from Theorem 1.2, Corollary 1, that the only 
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admissible filters are principal filters. Since [a, 1]= vZa(1), principal filters are 
admissible for any Heyting algebra. From Theorem 2.5 it follows that every 
admissible filter is an infimum of filters of form W, = w~(1) .  

If f---g it is clear that Jr---Jg- The converse of this is, however, false. We do 
have the following result. 

L E M M A  2,7. Let Y~, J2 be two admissible filters such that Jx has a minimal 
associated modal operator j~. Let j2 be any modal operator whose filter is J2. Then 
J1 c .12 implies Jl <- j2. 

Proof. The modal operator  jx A j2 has filter J1 t')J2 = J1. Hence j~ A j2 = Jl since 
Jl is minimal. Hence J1--12. 

C O R O L L A R Y  1. If an admissible filter in a Heyting algebra has a minimal 
associated modal operator, then it has a least associated modal operator. 

Proof. Put Jx = J2 in the Lemma.  
An admissible filter J may have many associated modal operators.  The set 
= {f~ M(H)  :f-1(1) = J} will be called the block associated with Jr. If fx, fz ~ Mj, 

they are called companions. If MI is a singleton, the corresponding operator  is 
said to be alone. For a complete algebra H, each block in M ( H )  has a least 
element.  In general a block does not have a greatest element but for finite 
algebras we have the following result. 

L E M M A  2.8. Let J be an (admissible) filter in a finite algebra H. Let 
q~ = {c : c~ J, and if c < x, then x ~ J}. Then/~ {w, : a ~ ~} is the greatest element in 
Mj. 

Lemma 2.8 can be extended to those Heyting algebras for which the ascending 
chain condition holds. 

L E M M A  2.9. Let H be an arbitrary Heyting algebra and let f be a modal 
operator on H which preserves =>. Then f is the least operator in its block. 

Proof. Let g be any companion of f. Then, for all x ~ H, f ( f (x)  ~ x) = 1 so that 
g ( f ( x ) ~ x )  = 1. Thus by Theorem 1.2(ii), 1 = g ( f ( x ) ~ x ) < - g f ( x ) ~  g(x) so that 

gf(x)<~g(x). Hence g f = g  and so f - g .  

C O R O L L A R Y  1. v. is the least operator associated with [a, 1]. 

The converse of Lemma 2.9 is false for general algebras but does hold in 
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chains. We note that if H is complete then the least operator in Mj can be 
represented as II{va:a E J}. An alternative description will be given in w 

w The w~ operators 

We now look at the behaviour of these operators in detail. 

LEMMA 3.1. Let H be any Heyting algebra, let f E M(H) and let b be any 
element of H. 

Then wbf = wbtg(o) if and only if f (b)^  (f(0)::> b)= b. 

Proof. wbf = wbUr(o) 
iff wbu~(o)-- wbf 
iff wbut(o) --> f 
iff wb ~ f ^  vr(o), using Lemma 2.1, 
iff b =f(b)A(J(O)~b),  by Theorem 2.5(i) 
We now have the first main result of this section. 

THEOREM 3.2. Each w, operator is the greatest in its block. 

Proof. Suppose first that f, w, are companions with u, <-f. Then a - f (0 ) ,  so 
that a<-f(O)<-[(a), and hence f (a )A( f (O)~a)=a .  Hence, by Lemma 3.1, 
w, uc(o) = wj .  Hence 

w.ucco)(x)=l iff wf f (x )= l  iff w~(x)=l ,  

since wo and f are companions. Now 

woU.o)(/(0) f f  a) = ((f(0)ff  a)^ ((f(0)ff  a ) f f  a ) ) ~  a 
= a ~ a = l .  

Hence wa(f(O)~a)= 1 so that / ( 0 ) - a  and hence f (0)=a .  Then f ( a )= f f (0 )=  
f(0) = a, giving f--- wa, by Theorem 2.5(i). 

Now let / be any companion of w~. Then so also is f 1.2 u~ (=/u~) since if 
/ ( a v x ) =  1, we have w~(x)= w . ( a v x ) =  1 and conversely. 

Hence f-< f II u, ---< w,. 

COROLLARY 1. Wo (double-negation) is alone. 

Proof. w o preserves ~ and hence by Lemma 2.9 is the least in its block. 
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While in general w~ does not preserve ~ ,  it does possess a useful weaker 
property which we now derive with the aid of a preliminary Lemma.  

L E M M A  3.3. Let H be any Heyting algebra. Suppose b, c ~ H with b >- c. Then, 
for all a ~ H ,  ( a ~ b ) ~ c = ( ( a ~ c ) ~ c ) A ( b ~ c ) .  

Proof. Since b < _ a ~ b ,  we have ( a ~ b ) ~ c < - b ~ c .  
Since b>-c, a ~ c < _ a ~ b  and hence ( a ~ b ) ~ c < - ( a ~ c ) ~ c .  
Hence (a ~ b) ~ c -< ((a ~ c) ~ c) A (b ~ c). 
Also, 
( b ~  c ) ~ ( ( a ~  b ) ~  c) = ( ( a f t  b ) A ( b ~  c ) ) ~  c, by 1.1(vii) 

>- (a f f  c ) ~  c, by 1.1(viii) 
Hence (b ~ c) A ((a ~ c) ~ c) <-- (a ~ b) ~ c, 

T H E O R E M  3.4. Let H be any Heyting 
x, y E H  with b<-y, w b ( x ~ y ) =  Wb(X)~Wb(y).  

Proof. By Lemma 3.3, 

algebra. Let b ~ H. Then, for all 

w b ( x ~  y) = (((x :=), b)=> b) A (y =), b)) =), b 

= ((x =:~ b) =), b) =)' ((y ::), b) :=), b) 

= w b ( x ) ~  wb(y). 

We can now obtain a formula for w, U f. 

L E M M A  3.5. Let H be any Heyting algebra. Then, for all a ~ H and for all 
f e M(H) ,  w~ U f =  wofu, = w~uf(~ ). 

Proof. We use Theorem 1.3 to show that w~fu~ is modal. For all x, y ~ H, 

WafU.(X)~  W~u~(y) = w ~ ( f u . ( x ) ~ f u ~ ( y ) ) ,  by Theorem 3.4 

= w ~ ( u ~ ( x ) ~ f u ~ ( y ) )  

= w ~ ( x ~ f u ~ ( y ) )  

= w~(x)=), w~fu.(y) 

= x ~ w j u ~ ( y ) .  

The equality W a f U  a = WaldO(a) follows from Lemma 3.1 since if g = fu~ = f U u,, 
then g ~ M(H),  g(0) = f (a) ,  and g(a) ^ (g(0) ~ a) = a. 

Finally, w~ U f  = WafUa, since w~, f <- w~fu~ <_ w~ I l f l l u~ = w~ t_.l f. 
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L E M M A  3.6. Let H be any Heyting algebra. 

Ww~ ( b ) �9 

Proof. For all x e H, 

Then, for all a, b ~ H, w, ub = 

ww.r = (x ~ ((b ~ a) ~ a)) ~ ((b ~ a) ~ a) 

= ((b ~ a) ^ ((b ~ a) ~ (x ~ a))) ~ a 

= ((b => a) ^ (x ~ a)) ~ a 

= ((b v x ) ~  a ) ~  a 

= wou~(x). 

C O R O L L A R Y  1. w~ m f = ww.t(~) = ut(~) U w~ = (umo^ va) U w~. 

C O R O L L A R Y  2. The wa operators form a final section in M(H) .  Hence w. <-f 
implies f = Wlto) 

C O R O L L A R Y  3. f ~  w,, = vt(. ) U w. = wt( . ) . . .  

Proof. f ~  w, = (f U w,) ~ w~ = (ut(,) U w~) ~ w, = utt~)~ w~ = vr(, ) U w,. 

* m  * * - 1 ;  i.e., the w~ operators are Stone elements of C O R O L L A R Y  4. w~ w~ - 
M(H).  

Proof. By Lemma 1.1, Corollary (viii), * * -  * w~ - w a ~ w a = v k U w ~ , w h e r e  k =  
w*(a). 

�9 * m * * Then w~ w a = v k U w ,  U w ~ = o k U w ,  U u k = l .  

C O R O L L A R Y  5. (f:ff wa) ::> wa = (vt(.) U w.) :~  wa = v t ( . )~  w~ = f U  w.. 

Theorem 3.4 can also be used in another  direction. 

L E M M A  3.7. If f is a companion of wa, then f U u~ = wa. 

Proof. By Theorem 3.2, f U u~ -< w~. 
By Theorem 3.4, for all x ~ H ,  wa(x)~u, ,(x)~W~=w-~X(1).  Hence,  for a 

given x, there exists b ~ Wa such that w o ( x ) ~  u~(x)= b. 
Hence w ~ ( x ) < - b ~ u a ( x ) = ( v b l l  u~)(x)<_(fl lua)(x), since f ( b ) =  1 so that 

f U ub = 1 and hence vb --<f, since ub and vb are complements. 
Hence, for all x e H ,  w~(x)<-( fU u~)(x). 
Hence wa <<- f U u~ and so w~ = f U u~. 
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C O R O L L A R Y  1. I f  W~ is the principal filter [b, 1], then w, = vb II u,. 

Finally, Lemma 3.5 can be used to give a characterisation of those complete 
algebras H for which. M(H)  is a boolean algebra. 

L E M M A  3.8. I f  w, is complemented, then w*,(a) is the least element in 
W, O[a,  1]; i.e., W,  n [ a ,  1]= [w*(a),  1]. 

Proof. Since w, II  * -  1, we have * w ,  - w , w , u ,  = 1 so that w , w * ( a ) =  1 and hence 
w*.(a) w o n  [a, 1]. 

Also w~ ̂  w,* -- 0, so that if w,(x)  = 1, then w*~(x) = x. 
Hence w*,(a) <- x when a <-- x and x E W,. 

T H E O R E M  3.9. Let H be a complete Heyting algebra. Then M ( H )  is a 
boolean algebra if and only if for each a ~ H, W~ n [ a ,  1] has a least element, 
namely w*(a). 

Proof. If M ( H )  is a boolean algebra, then the result follows from Lemma 3.8. 
Suppose then that W, n [ a ,  1] has a least element da. 
Then w~ n [a, 1] = yd. by Theorem 3.4 and Lemma 2.9. 
Hence wa = w,~ua = re.u,, and hence w~ is complemented. 
Further w*(a) = (ud. ^ va)(a) = d,,va = da. 
Since [ =  A {w,,:[<-w,,} for any I s  M(H) ,  it follows that M ( H )  is a boolean 

algebra. 
(There is a different proof of the first half of Theorem 3.9 in [1].) 
The properties of wa operators given in Theorem 3.4 and Lemma 3.6, 

Corollary 1 can be generalised as follows. 
Let  H be any Heyting algebra. (i) A modal operator  [ on H will be called nice 

if ]'l[/(0), 1] preserves ~ .  
(ii) An element g of a Heyting algebra H will be called a gem if[, for each 

b ~/4, there exists a complemented element  c b such that b v g = cb v g and cb --< b. 
We then have the following Theorems.  

T H E O R E M  3.10. The following hold for any nice modal operator 1' on a 
Heyting algebra H. 

(i) Vx, y ~ H with f(O) <- y, f ( x  ::~ y) = f(x) ~ f(y). 
(ii) Vx -> [(0), ]'([(x) ~ x) = 1. 

(iii) I f  k is a companion of [ and k <_ f, then f = k IA ut~o ~. 
(iv) For any g ~ M(H) ,  [ II g = [gur~o). 
(v) I[ [ is maximal in its block, then f is the greatest in its block. 
(vi) [ is complemented iff {x >-[(O):[(x)= 1} has a least element. 
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[The concept of a nice operator and Theorem 3.10 were suggested to me by 
H. Simmons.] 

T H E O R E M  3.11. The following hold for any gem in a Heyting algebra H. 
(i) b=>g = c*vg,  

(ii) g* v g** = 1, 
(iii) (b ~ g) ~ g = b v g, 
(iv) b v ( b # g ) =  1, 
(v) (g=), b)v((g=), b ) ~  b)= 1, 

(vi) (bl ^ b2) ~ g = (bl ~ g) v (b2 ~ g) 
(vii) ( g ~ b ) f f b =  cg.bv* g v b  

It follows from Lemma 3.6, Corollary 1, and Theorem 2.5(ii) that M(H) is 
infimum-generated by a final section of gems. This implies zero-dimensionality. 

w Admissible filters and modal subalgebras 

The condition given in w for a filter to be admissible is not in practice easy to 
use. In this section we obtain, for complete algebras, a different criterion which is 
of a more intrinsic nature. This approach also reveals an unexpected connection 
between admissible filters and modal subalgebras. 

The key is the following relation R on a Heyting algebra H. 

DEFINITION 4.1. For all x, y ~ H, xRy if and only if w~(y) = 1; i.e. y ::> x = x. 
Given R we can construct the following operations on subsets of H. 
For X c_ H, set 

X* = {y ~ H :Vx ~ X, xRy} 

= { y e H : V x a X ,  w~(y) = 1}. 

For Y__q H, set 

Y ~  E Y, xRy) 

= { x e H : V y ~  Y, w~(y) = 1}. 

Then (R, X*, yO) is a Galois connection on H. 
Let X = X ~  = 1, u  such that for all y ~ H ,  wb(y) = 1}. 

LEMMA 4.1. For any X, Y ~ H ,  
(i) X c ~,  (ii) X = X, (iii) X c_ y implies fr c_ ~'. 
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L E M M A  4.2. For any X ~_ H, X is a filter on H. 

Proof. X =  N{W, : a e X  ~ and hence is a filter. 

19 

The next Theorem gives the relationship between the Galois connection and 
admissible filters. 

T H E O R E M  4.3. If X is a subset of a Heyting algebra H and if J is any 
admissible filter on H such that X c_ J, then $2 ~_ J. 

Proof. Let f be any modal operator in Mj and let b ~ H r, so that b = f(b). 
Then, for all x ~ X, 

x=:~ b= x ~  f(b) 

= f(x) ~ f(b) 

= 1=> f(b), since 

- b .  

X c _ J  

Hence b = / (b )  implies that, Vx ~ X, wb(x) = 1. 
Hence H t c_ X ~ 
By Theorem 2.5, J = { x ~ H : w b ( x )  = 1, VbeHt} .  
Since X = {x ~ H :  wb (x) = 1, V b ~ X~ it follows that X _  J. 

C O R O L L A R Y  1. I[ K is an admissible filter on a Heyting algebra H, then 
K=-~ .  

Proof. Set J = X = K in the Theorem. 

For complete algebras the converse of the above Corollary is also true. 

T H E O R E M  4.4. I[ J is a subset o[ a complete Heyting algebra such that J = ], 
then J is an admissible filter on H. 

Proof. Let f = A { w b : b ~ J ~  wb(y)= 1). 
Then f is modal, and x ~ J implies that f (x)  = 1. 
Also, if f (x )=  1, then wb(x)= 1, V b ~ J  ~ Hence x ~ ]  and so x ~ J .  
Hence J =  f-1(1) and is thus admissible. 

C O R O L L A R Y  1. If  X is any subset of a complete Heyting algebra H, then X is 
the least admissible filter containing X. 

Proof. Si is admissible by the Theorem and Lemma 4.1. 
It is the least admissible filter containing X by Theorem 4.3. 



2 0  D. S, MACNAB ALGEBRA UNIV. 

C O R O L L A R Y  2. The operator f defined in the Theorem is the least operator in 
M,. 

Proof. Let g sMj .  Then, as in the proof of Theorem 4.3, H g ~ J ~  Now 
f=  A {wb:beJ ~ and g= A {wb:baHg}. Hence f - g .  

If H is not complete, then J = ] is not sufficient to imply that J is an admissible 
filter. This may be seen by considering the boolean algebra of all finite or cofinite 
sets of integers, and taking J to be the filter of all cofinite sets containing the even 
integers. Then J = ~ but J is not principal and thus is not admissible. 

We now use the Galois connection to relate admissible filters to modal 
subalgebras. 

T H E O R E M  4.5. Let X by any non-empty subset of a complete Heyting 
algebra. Then, 

(i) X* is the filter of the modal operator associated with the least extension of X 
to a modal subalgebra of H, 

(ii) X ~ is the fixed algebra of the least modal operator associated with the filter 
which is the least extension of X to an admissible filter. 

Proof. (i) X* is the associated filter o f / ~  {w,:a ~ X} which, by Theorem 2.5, 
Corollary 1, is the modal operator of the least extension of X to a modal 
subalgebra of H. 

(ii) The proofs of Theorems 4.3 and 4.4, Corollary 2, show that /~  {w, : a ~ X ~ 
is the least modal operator associated with the least extension of X to an 
admissible filter. We thus have only to show that X ~ is a modal subalgebra of H. 
We verify the conditions of Lemmh 2.6. 

(1) X ~ is ^-complete since if I is any set, and q g = { q e H : ] ~ I } ,  then 
y ~ / k ~ = A r { y ~ c i : i ~ / } ,  for any y ~ H .  

(2) Suppose that x ~ H  and a ~ X  ~ Then, Vy~X,  y ~ ( x ~ a ) = x ~ ( y ~ a ) =  
x ~ a ,  so that x ~ a ~ X  ~ 

C O R O L L A R Y  1. If X is a subset of a complete Heyting algebra H, then 
X = X *~ iff X is the fixed algebra of a modal operator which is the least such 
operator associated with its filter. 

Proof. (a) Suppose X = X *~ Then the result follows from (ii) of the Theorem. 
(b) Suppose X is the fixed algebra of a least such operator. Then X = jo where 

J is the associated filter. But J = X* by (i) of the Theorem. Hence X = X *~ 

The Theorem and Corollary show that for those algebras in which each block 
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is a singleton there is a precise duality between admissible filters and modal 
subalgebras. Such algebras will be identified in the next section. 

w Separation properties of H and the block structure of M(H) 

It is well-known that certain separation properties of topological sp ace s - fo r  
example, regularity or n o r m a l i t y - a r e  equivalent to algebraic properties of their 
open set lattices. For regularity the property is that given before the proof of the 
Corollary to Theorem 2.4. For an arbitrary Heyting algebra H three properties of 
this type are closely related to the structure of the blocks in M ( H ) .  They are as 
follows. 

Sw. : Given a, b ~ H with a < b, there exists x ~ H such that 

w,(x )v  ~ 1, Ub(X) = 1. 

S~u : Given a, b ~ H with a < b, there exists x ~ H such that 

u . ( x ) ~  1, Ub(X) = 1. 

Sw,~ : Given a, b ~ H with a < b, there exists x e H such that 

wa(x)r 1, wb(x) = 1. 

It is easy to see that the property Sw~ implies each of the others and examples 
can be found to show that no other implications hold. 

Sw~ has the following equivalent formulations. 

L E M M A  5.1. The following are equivalent for any Heyting algebra H. 

(1) H has property Sw~. 

(2) For any a, b ~ H with a < b, there exists x ~ H such that 

x<_a and b v ( x ~ a ) = l .  

(3) For any a, b ~ H with a < b, there exists x, y ~ H such that 

x ~ a ,  b v y = l ,  x ^  y<-a. 

Version (3) shows that every regular lattice is an Swu lattice. 
The property S,u is the obvious lattice analogue of the 7"1 separation axiom 
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and appears as such (as the axiom T~) in (3). However, it is strictly weaker than 
T1. S,,  lattices are also called conjunctive lattices. 

As noted at the end of w if every block of operators is a singleton then the 
structure of M(H) has a simplicity not present in the general case. It turns out 
that the algebras with this property are exactly those with property Swu. 

T H E O R E M  5.2. The following are equivalent for any Heyting algebra H. 
(1) H has property Sw~. 
(2) Every modal operator on H is alone. 
(3) Every operator of the form ua is the least in its block. 

Proof. (1)--~(2). We show first that if L g are modal operators such that there 
exists x ~ H with f (x)< g(x), then f and g belong to different blocks, i.e. have 
different filters. 

Suppose then that f, g are as described above. Then, since H has property Sw~, 
there exists y e l l  such that y ~ f ( x ) ~  1, g ( x ) v ( y ~ f ( x ) ) =  1, using Lemma 5.1. 

Let z = y ~ f ( x ) .  Then f(z) = z, by Theorem 1.2, and hence f ( z )~  1. 
Also, 

1 = g(g(x)v z) 

= g(x v z), by Theorem 1.2, 

= g(z) since x-< z. 

Hence f, g are in different blocks. 
Now suppose that J is any admissible filter and that j, k e Mj. Then j ^ k ~ Mj 

and hence, by the above, j ^ k = j and j ^ k = k. Hence j = k. Hence every block is 
a singleton. 

(2)---> (3). Trivial. 
(3)-->(1). Suppose a, b ~ H  with a <b .  Then w~(0)< ub(0). But ub is the least 

in its block. Hence wa, ub belong to different blocks J~ and Jb. By Lemma 2.7, 
Jb~L. 

Hence there exists x ~ H  such that w~(x)v~ 1, ub(x)= 1. 
Hence H has property Sw~. 
Thus if H is the open set lattice of a T3 topological space, then all modal 

operators on H are alone. 

We now turn to the S~ or conjunctive algebras. 

T H E O R E M  5.3. The following are equivalent for any Heyting algebra H. 
(1) H is conjunctive. 
(2) Every ua operator is maximal in its block. 
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(3) The identity operator is alone. 
(4) If  a modal operator f has a pseudocomplement f*, then f* is the greatest in 

its block. 
(5) Every ua operator is the greatest in its block. 
(6) Every va operator is alone. 
(7) If  [, g are companions and f*, g* exist, then f* = g*. 

Proof. We establish the equivalences as follows. 

(1)--~(2)--*(3)--~(4)--~(5)--~(1). (4)--->(6)-->(3). (3)*-~(7). 

(1)--->(2). Let  a ~ H  and let f b e a n y  modal operator on H such that there 
exists x ~ H  with u~,(x)<f(x). Then, since H is conjunctive, there exists y ~ H  
such that u a ( x ) v y ~ l ,  f ( x ) v y = l .  Set z = x v y .  Then u ~ ( z ) ~ l ,  but f ( z ) =  
f(f(x) v y) = 1. Hence f, ua belong to different blocks. Hence u~ is maximal in its 
block. 

(2)-->(3). Since Uo preserves ~ ,  it is the least in its block and hence is alone. 
(3)---~(4). Let f have filter J and let J1 be any filter such that Jr f3 J1 = {1}. Then 

if fl ~ Mj, we have f ^  fl = 0 and hence fl <--f*- Since J fq J * =  {1}, where J* is the 
filter of f*, i t  follows that f* is the greatest in its block. 

(4)--~ (5). For any a ~ H, ua - v4. 
(5)-->(1). Let a, b ~ H with a < b. Let ua, ub have filters J~, Jb- Then J~ c Yb but 

J ~ J b .  Hence 3 x ~ H  such that u~(x)~ 1, ub(x)= 1. Hence H is a conjunctive 
algebra. 

(4)--~(6). For any a ~H,  v~ = u~* and hence each v, is the greatest in its block. 
Hence by Lemma 2.9, Corollary 1, each va is alone. 

(6)---~(3). Since Vl is the identity operator: this is trivial. 
(3)-->(7). Suppose f, g ~ M j  and that f*, g* exist. Let J~ be any admissible 

filter such that Jf ' ) /~={1} and let j~Mj~. 
Then j ^ f = j A g = 0 SO that j--<f*, j <--g*. By taking J] to be either the filter of 

f* or the filter of g* we obtain f*-----g* and g*-----f*. Hence f * =  g*. 
(7)--->(3). Let f be a companion of 0. Then f * =  0 " =  1. 
Hence f**= 0 and thus f = 0. Hence the identity operator is alone. 
We note that in a complete conjunctive algebra, if f s M j ,  then 

f * = A ( u o : a ~ J } .  

From Theorems 5.2, 5.3 we see that the Sw, and S~ algebras may be 
characterised as those for which(i) all u~ operators, (ii) all v~ operators are alone. 
Our third class of algebras is that for which all wa operators are alone. 

T H E O R E M  5.4. The following are equivalent for a Heyting algebra H. 
(1) H has property Sw~. 
(2) Every w~ operator is alone. 
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Proo[. (1)---~(2). By Theorem 3.2, every w~ operator  is the greatest in its 
block. We have thus to show that the w~ operators are the least in their blocks. 

Let  a be any element of H and let f be any modal operator  on H such that 
[<w~. Then there exists x e H  such that [ ( x ) <  wa(x). 

Hence there exists y ~ H  such that wt(~)(y)~ 1, ww.(~)(y) = 1. 
By Lemma 3.6, ww.c~)(y) = w~u~(y)= w , ( x v y ) .  
Set z = x v y .  Then w~(z)= 1. 
Also, 

/(z) =/(x v y) =/u~(y)-  w:..(o)(y) 

= w t ( , , ) ( b ) ~  1. 

Hence [ and wa are in different b locks .  
Hence wa is minimal in its block. Hence by Lemma 2.7, Corollary 1, wa is the 

least in its block. 
(2)---~(1). Let  a,b be any elements of H with a<b.  Then wo(0)<wb(0).  If 

Ja, Jb are the filters of w~, wb, then by Lemma 2.7, Jb~ J~. 
Hence there exists x ~ H such that w~(x)v ~ 1, wb(x) = 1. Hence H has property 

Sww. 
The following table summarises some of the above information. 

Max. Min. Alone 

u~ S,, S~. s~. 
oo $,, all S.. 
wo all S, ,  S,,,, 

w Modal operators on open set lattices 

When H is the open set lattice O(S) of a topological space S (and is thus a 
complete Heyting algebra in which U=> V = ( U ' U  V) ~ where o is the interior 
operation), we can define a fourth class of modal operators as follows. For any 
A c S, X ~ O(S), set IA (X) = (A U X) ~ Then IA is a modal operator  on O(S). For 
A open, IA = uA, and for A closed, I A = OA,. 

Our first result shows the importance of the IA operators. 

L E M M A  6.1. Every regular modal operator in the open set lattice O(S) o]' a 
topological space S is o[ the [orm IK for some subset K o[ S. 

Proo[. Let [ be any modal opera tor  on O(S). 
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By L e m m a  2.2, if X e O(S),  then 

f*(X) = A {f(A ) ~ (A U X)  : A ~ O(S)}. 

Now, for any A, X e  O(S), f ( A ) ~  (A U X) = (B U X) ~ where B = f ( A ) ' U  A. Let  
qg = {B : B = f (A) '  U A for some A e O(S)}. Then, for all X e O(S), 

f*(X) =/~ {(BU X)~ : B e qg}. 

= (N{(B U X)~ B e cr 

= ( N { ( B  u X):B  ~ qg})o 

= ( X  U N ( B  : B e r 

= (K U X) ~ where K = I-I{B : B e r162 

Hence f* = Ir. 

It is not in general the case that every IA operator  on an open set lattice is 
regular, nor is it in general the case that for an operator  IA, we have I *  = IA,. 

To investigate the IA operators  further, we introduce an auxiliary topology for 
a given topological space. 

D E F I N I T I O N .  For a given topological space S, let [ 3 = { U N V : U e O ( S ) ,  
V e  C(S)}, where C(S) is the set of closed sets of S. Then we define S* to be the 
space with the same points as S and with /3 as a basis for the open sets. 

The connection between this * topology and the IA operators  is described in 
the next Lemma.  

L E M M A  6.2. For a given topological space S and subset A of S, let A * =  
N{(A O V)~ V:  V e  O(S)}, so that I*a = IA.. Let rt denote the interior operation in 
S*. Then A* = A ~'. 

Proof. For any point p e S, 

p ~ A *  

iff 3 V e  O(S) such that  p d ( A  U V)~ V 

iff 3 V e O ( S )  such that p e ( A U  V) ~ and p ~  V' 
iff 3 U, V ~ O(S) such that  p e U _  A U V and p ~ V' 
iff 3 U e O(S), C ~ C(S) such that p ~ U _  A U C' and p e C 
iff 3 U e O(S), C e C(S) such that p e U n C c_ a 
itt p e A  ~. 
Hence A * ' =  A ~ and hence A * =  A ~'. 
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L E M M A  6.3. If  S* is a discrete space, then, for any subset A of S, I* = IA, and 
IA is a regular operator. 

Proof. S* is discrete if and only if A ~--- A for all subsets A of S. Clearly, 
i , , .  

It is easy to see that S* is a discrete space if and only if every point of S is an 
intersection of an open set and a closed set, which is one of the definitions of a To 
space. Other definitions are that {p}--{p} is closed for any point p, or that 
{p} LI {p},O is open for any point p. 

LEMMA 6.4. The following are equivalent for any topological space S. 
(1) S is a To space. 
(2) S* is a discrete space. 

We now have the main result on Ia  operators. 

T H E O R E M  6.5. The following are equivalent for a topological space S. 
(1) S is a TD space. 
(2) For any subset A of S, I* = IA,. 
(3) If f is the map P(S)--~M(O(S)) defined by f ( A ) =  IA, A ~P(S), then f 

preserves pseudocomplements. 
(4) f is one-to-one. 
(5) f is a boolean isomorphism between the boolean power set algebra P(S) and 

the boolean algebra of regular elements of M(O(S)). 

Proof. (1)-->(2). This follows from Lemmas 6.3 and 6.4. (3) is a restatement of 
(2). We show that (2)-->(4) and (4)--->(1). 
(2)--->(4). Suppose Ia = IB. Then I,~ = I* and hence IA' = IB,. 

NOW Ic ^ Io = Icno for any sets C, D. 
Hence /Ann' = Ia ^ IB, = IA ^ IA, = 0. 
Hence IA'U8 = 1. It follows that A ' U B  = S and hence A ~ B .  Similarly, 

B ___ A. Hence A = B. 
Hence f is one-to-one. 
(4)-->(1). Let p be any point of S. Since f is one-to-one, 3 X a  O(S) such that 

({p} U X)~ (~b LI X)~ X. Hence 3 X  ~ O(S) such that p~ X and X t.){p} is open. 
Hence X~_ (S-{p}) ~ and XU{p} is open. 
Hence ( S -  {p})O U {p} is open. 
Hence S is a TD space. 
(2)-->(5). By Lemma 6.1, f is onto the regular algebra of M(O(S)). Since f 
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preserves pseudocomplements and intersections, it preserves unions. Hence f is 
the required boolean isomorphism. 

(5)--* (4). Trivial. 

We collect without proof some additional facts in the next Lemma.  

L E M M A  6.6. Let S be a topological space and let A, B be any subsets of S. 
~en, 

(i) A ~ is the least member of {X~ P(S) :Ix = I A } ,  

(ii) IA = IB iff A== B ~, 
(iii) If p ~ S and I{p}~ O, then I~} = Is-{p}, 
(iv) * = Ip, where Is-M p ={p}-N(p) ,  and (p )=  f"l{X~ O (S) :p~X } ,  
(v) if S is a T O space, then, Vp ~ S, I{p} is a regular operator, 

(vi) S is a conjunctive space if and only if for any f~M(O(S) )  with filter 
J , f*= IB, where B = Q { A : A  ~J}. 

While all IA operators are regular in TD spaces, the converse of this is 
f a l se -  consider, for example, any space with a finite topology. We now determine 
necessary and sufficient conditions on a space S in order that all its IA operators 
are regular. We first look at the associated space S*. 

L E M M A  6.7. The following are equivalent for a topological space S. 
(1) Every IA operator on S is regular. 
(2) O(S*) is a boolean algebra. 

Proof. (1)--*(2). By Lemma 6.6(ii), I** = IA iff A ='*''* = A =. 
Hence if A is open in S*, then A = A ca, where c denotes closure in S*, so that 

A is regular. Hence all open sets in S* are regular and hence O(S*) is a boolean 
algebra. 

(2)-~(1). If O(S*) is a boolean algebra then every closed set is open in S* and 
hence A ~'~'~ = A ~ '~= A ~ for any set A, so that I'A* =/A- 

We are thus left with the task of finding an elementary condition on S 
equivalent to the booleanness of O(S*). 

L E M M A  6.8. For any subset of a topological space S, 

I~ = A {I~_~}: p~ A}. 

Proof 

V X  �9 O(S), I~ (X) = (/-I{S - {p}: p~ A} U X) ~ 

= (n{ (S-{p})  U X :  pd A}) ~ 

= (f ' ){((S- {p}) O X) ~ : po~ A}) ~ 

= A {Is_{p}(X):p~ A}. 
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C O R O L L A R Y  1. In a topological space S, all IA operators are regular if and 
only if all operators of the form Is-tpI are regular. 

T H E O R E M  6.9. The following are equivalent for a topological space S. 
(1) For every subset A of S, IA is a regular operator. 
(2) For all p e S ,  pe(p}=, where ( p > = n { x e o ( S ) : p ~ X } .  

Proof. By Lemma 6.6(ii), (iv), Is_lp~ is regular ilt 

( s -  {p}) ~ --- p~'~. 

Now 

~'~ = (<p> n {p}-)"'~ 

= (<p>~ n {p}-)'~ 

= (<p>=' u (s- {p})O)~ = (s- {p})=. 

(1)--*(2). From the above, Vp e S, (<p}=' U (S-{p})O)~ = (S-{p})n. 
Hence (p>='=O(S-{p})==(S-{p}) = so that (p>n'~_(S-{p})=. Hence 

p~.<p>='=. 

By Lemma 6.7, all closed sets in S* are open. 
Hence (p)~'== (p)='. Hence pel(p} ~' and so p e (p>=. 
(2)--~(1). If p~(p)~', then p~ ((p>='U (S-{p})~ 
Hence ((p)=' U (S - {p})O)= c_ (S - {p})= and thus (<p}=' U (S - {p})O)= = (S - {p})~. 
Hence Is_tp~ is regular. 
Hence, Vp e S, Is-~p~ is regular. 
It now follows from Lemma 6.8 that all IA operators are regular. 

If p~(p)=, then there exists open U and closed C in S such that p e  UAC~_ 
(p) and clearly we may take C = {p}-. Hence the condition p e (p>= is equivalent 
to the following. 

There exists Ue O(S), p e  V such that, for any W e  O(S) with p e  W, we have 
VO{p}'c_ W. 

DEFINITION. A topological space S will be called a TM space if and only if 
for any point p ~ S, there exists an open neighbourhood V of p such that for any 
open neighbourhood W of p, we have VO{p}-_q W. 

T H E O R E M  6.10. The following are equivalent for a topological space S. 
(1) S is a TM space. 
(2) Every IA operator on S is regular. 



Vol. 12, 1981 Modal operators on Heyting algebra 29 

TM would appear  to be new. I t  is weaker  than ei ther  T o o r  Ro and is 

unre la ted  to To. Since any finite topo logy  is TM it is not  really appropr ia te  to call 

TM a separat ion axiom. 

Final remarks 

A ma jo r  p rob lem is the de terminat ion  of the structure of M ( H )  in terms of the 

structure of H. For  example,  when  is M ( H )  compact?  If M ( M ( H ) )  is compact ,  

then M ( H ) ,  (and hence  M ( M ( H ) ) ) ,  are finite boolean  algebras which suggests that 

M ( M ( H ) )  has a yet  t ighter s t ructure than M ( H ) .  If we define M n + l ( n )  = 

M ( M " ( H ) )  and M ~  = H, when is M ~ ( H )  a boolean  algebra? O t h e r  related 

quest ions obviously suggest themselves.  It is our  view that  their solut ion should 

lead to a bet ter  unders tand ing  of the structure of Heyt ing  algebras in general.  
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