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Modal operators on Heyting algebras

D. S. Macnas

§0. Background

DEFINITION 0.1. Let L be a A-semi lattice. A modal operator on L is a
function f:L—L such that, Vx,yeL,

(1) x=f(x) (f is inflationary)
(2) ff(x)=f(x) (f is idempotent)
(3) flxay)=f(x)Arf(y)  (f is A-preserving).

The purpose of this paper is to investigate aspects of the general algebraic
theory of modal operators on Heyting algebras where the theory is particularly
interesting. It is based on part of the author’s Ph.D. thesis [8].

Historically, the notion of a modal operator as such has its main source in the
theory of topoi and sheafification due to Grothendieck, Lawvere and Tierney; see
{43, [6], [7], [11] for details. Modal operators are also referred to as j-operators
because j was the symbol commonly used to denote them. The term modal is due
to Lawvere.

From a quite different starting point, Dowker and Papert [2] developed the
concept of a frame and of a frame map. These were intended to mirror
algebraically the notion of a topology and of maps which preserved the open set
operations - finite intersections and arbitrary unions. An examination of [2],
however, shows that a frame map on a frame is simply a modal operator on a
complete Heyting algebra.

Modal operators have also occasionally appeared in general lattice theory
under the name of multiplicative closure operators.

The paper is organised as follows. §1 contains the elementary properties of
modal operators including an alternative characterisation in terms of a single
identity. §2 introduces the algebra M(H) of all modal operators on a Heyting
algebra H, and the concepts of admissible filter and modal subalgebra. In §3 an
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6 D. S. MACNAB ALGEBRA UNIV.,

important subclass of modal operators is investigated in detail. §4 analyses
admissible filters and modal subalgebras in terms of a Galois connexion. The final
two sections relate the structure of M(H) to separation properties on H.

An elementary knowledge of lattice theory and in particular Heyting algebras
is assumed. We use = to denote the implication or relative pseudocomplement on
a Heyting algebra.

I should like to record my thanks to Dr Harry Simmons, for advice and
encouragement.

§1. Introduction

We recall that a Heyting algebra (H, A,v,0,1,2) is a lattice with least
element O and greatest element 1 such that, for all a, b, xe H, x Aa<b if and only
if x=<a=b. Equivalently, a=> b is the greatest element of {xe H:xAa=<b}. A
Heyting algebra is necessarily distributive. For an arbitrary 0,1-distributive lattice
L the pseudocomplement of beL is defined to be the greatest element of
{xeL:xAb=0},if it exists. If every element of L has a pseudocomplement, L is
called a pseudocomplemented lattice. The pseudocomplement of b is denoted by
b*. Every Heyting algebra is a pseudocomplemented lattice in which b*=b=0.
Lemma 1.1 lists the standard properties of Heyting aigebras which we require.

LEMMA 1.1. Let H be any Heyting algebra. Then the following hold, for all
elements a, b, ¢ of H.

() b=a=>b,

(ii) an(a=>b)=anb,

(i) a<=b>ciff b=a>c,

(iv) b=c implies a>b=a>c,

(v) a=(a=>b)=>b,

(vi) a=b implies b>c=a>>c,

(vii) (azb)z (@2 c)=azbc)=b(ac)=(arb)>c,
(viii) (a>b)a(b>c)=a>c,

(ix) a<biff amb=1,

(x) a(bac)=(a>b)a(a>c),

i) (avb)Dc=(a>c)ab>c).

COROLLARY 1
(i) a>b*=(anb)*, (i) a=b implies b*=a*,
(ili) a=>b implies a** <b**, (iv) a=a™**,
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(v) a*=a***, (vi) a=>a*=a*,
(vil) a*=>a=a**, (viii) (avb)*=a*Ab*.
(Properties (ii)—(v), (viii) of the Corollary hold in any pseudocomplemented lattice.)

{xe H:x=x™*} is called the set of regular elements of H. Note that an
element be H is called complemented iff bvb*=1, in which case b* is its
complement. Complemented elements are sometimes called boolean. If ae H is
such that a*=0, then q is called a dense element of H. For further details, see [5]
or [91.

Modal operators were defined in §0. Theorem 1.2 gives their basic algebraic
properties.

THEOREM 1.2. Let f be a modal operator on a Heyting algebra H. Then the
following hold, where x, y are any elements of H.

@) flxvy)=flxvfy))=f(f(x)vf(y)),

(i) fx=>y)=f(x)=f(y) = f(f(x)> f(y) = x=> f(y) = f(x=> f(y)),
(i) xvf(0)=f(x)=(x= f(0))= f(0),
(iv) (xvfO)** = f(x)**.

Proof outline

@) fGevy)=sfxvi)=ffXviy)=sflxvy)=flxvy)
(i) fOAf(x2y)=fxAa(x>y)=flxAy)=f(y).

Hence f(f(x)= f(y)) = ff(x)> ff(y) = f(x)> f(y)
= x> f(y)=fx=>f(y)) =f(x)=> f(y).

Hence f(x= f(y)) = f(f(x)= f(y)) = f(x)= f(y) = x> f(y).
(ifi) Clearly, x v f(0)=f(x).

Also, f(x)=(f(x)=> f(0))= f(0) = (x> f(0))=> f(0), by (ii).
(iv) x*=x= f(0) = f(x)=> f(0).
Hence f(x)Ax*Af(0)* =0.
Hence f(x)A(x v f(0))* =0.

Hence f(x)=(xv f(0))**.
We thus have (xvf(0)) = f(x)=<(x v f(0))** and hence (x v f(0))** = f(x)**.
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For any b€ H, the operator u, defined by u,(x)=bvx is easily shown to be
modal. The following Corollary to Theorem 1.2 shows that for boolean algebras
these are the only modal operators.

COROLLARY 1. If f is a modal operator on a boolean algebra B, then
f= -
Proof. Immediate from (iv) of the Theorem.

We will denote by 0 and 1 the operators u, and u;.

For Heyting algebras there is a useful alternative characterisation of modal
operators, (which improves a result of Freyd that a closure operator f on a
Heyting algebra is modat iff it satisfies x> f(y) = f(x)=> f(y)).

THEOREM 1.3. The following are equivalent for any function f on a Heyting
algebra H.
(1) fis a modal operator on H.

(2) For all x,y in H, x> f(y) = f(x)=> f(y).

Proof. (1)—>(2). This is contained in (ii) of Theorem 1.2.

(2)—(1). On putting (i) y =x, (ii) x =<y, (iii) x = f(y), it is easily seen that f is
(i) inflationary, (ii) monotone, (iii) idempotent. To show that f preserves A,
observe first that, since f is inflationary, xAy <f(xAy). Hence

y=x>fxay)=f(x)=>f(xny),
so that

yAf(x)=f(xAy).
Similarly,

fIAfx)=flxny).

Since f is monotone, it follows that f preserves A and is thus a modal operator on
H.

Using Theorem 1.3 we can introduce two further classes of modal operators
on an arbitrary Heyting algebra H.

LEMMA 1.4. For any ac€H, let v,, w,: H—>H be defined by v,(x)=a>x,
w,(x)=(x>a)=>a. Then v,, w, are modal operators on H.



Vol. 12, 1981 Modal operators on Heyting algebras 9

Proof. It is straightforward to verify that v,, w, satisfy the criterion of
Theorem 1.3. (A direct proof for w, may be found in [10].)

§2. The algebra of operators M(H)

We denote by M(H) the set of all modal operators on a Heyting algebra H.
For general H, M(H) is an A-semi lattice (with A defined pointwise), but need
neither be pseudocomplemented nor a lattice. However, if H is complete, then,
for any set I, A {f,e M(H):ie I}, (again defined pointwise), exists and is modal, so
that M(H) is a complete lattice. Because the meet in M(H) is pointwise so also is
the order so that f=< g if and only if f(x) = g(x) for all x in H. We will denote the
join in M(H) by L. It is almost never obtained pointwise. Since f,f,, fofi=fi U fa,
it follows that if f,f, is modal, then f,f,=f, Ll f, and similarly for f,f,. Also, if
fif2=f>f1, then f,of; is modal. We thus obtain the next Lemma.

LEMMA 2.1. Let H be a Heyting algebra and let fe M(H). Then
(@) u, U f=fu,

(i) v, LIf=v.f,

(iii) if ge M(H) and g preserves =, then gLIf = gf.

Proof. (i) holds since u,f=fu,.
(ii) follows from (iii) since v, preserves =, by Lemma 1.1(vii).
(iii) may be verified by showing that gf satisfies the criterion of Theorem 1.3.

We leave until §3 the behaviour of the w, operators with respect of joins.

Using Lemma 2.1, we can obtain more information about the structure of
M(H) when H is complete. For f;, f,€ M(H), let f=A{vjUu,Uf,:acH};
i.e., by Lemma 2.1,

fX)=A{fila)> flxva):aec H}.

LEMMA 2.2. For ge M(H), gnf,=f, if and only if g=f.
Proof. For any x € H,

(fAf)(x) = f(x) A fi(x)
= f1(x) A (U U 1, L1F5)(x)
= f1(x) A (fy(x) = fa(x))
= f1(x) A fo(x) = fo(x).
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Hence fAf,=f,;i.e. g=f implies gA f; =f,. Now suppose that gaf, <f, We
show that, Va € H, g < v;,(,, Ll u, U f, which is equivalent to showing that, Vx € H,
g(x)=f(a)=>f.(avx). Thus we have to show that, Va,xe H, g(x)Afi(a)=
f(avx). Now, for x=<a,

g(x)Afi(a)=g(a)Afi(a)

=f,(a), since gafi=f,

= fala v x).
Hence, for any x, a € H,

g(x)Afila)=g(x)Anfi(avx)
=flavxvx)

=fx(avx).

(Lemma 2.2 is essentially the same as Lemma 2 in [2), but the proof is different.)

THEOREM 2.3. If H is a complete Heyting algebra, then M(H) is also a
complete Heyting algebra.

If we denote the implication in M(H) also by =, then f, = f, is given by the
formula of Lemma 2.2. Rarely is f, > f, obtained pointwise. A description of how
the implication in M(H) can be obtained from the pointwise function

(1> f2)(0) = (0> f-(%)
is given in [8] and may also be found in [1]. Briefly,

fizfa=A{w.:fi(a)=>fa)=a}.

By no means any complete Heyting algebra can occur as M(H) for suitable
complete H as the next Theorem and Corollary show.

THEOREM 24. If H is a complete Heyting algebra and fe M(H), then
f=LHuyaAv, :a € H}

Proof. Let g =Ul{ug,Av,:aecH}.

Then, for each x€ H, g = u;,,A v, so that g(x)=f(x). Hence g=f.
Also, for each a€ H,

vaf(x)=a> f(x) = f(a)> f(x)

= Uf(a)f(x)y
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so that

vaf: vf(a)f'

Hence v, =< v;,)f = v,y LI f, by Lemma 2.1.
Hence w,Av, =f.
It follows that g=f and hence g=f.

A zero-dimensional lattice is one in which every element is a supremum of
complemented elements; i.e. the complemented elements form a base for the
lattice.

A regular lattice is a lattice L with 0 and 1 such that given any g, b€ L with
a <b, there exist x, y € L satisfying

xZ£a, bvy=1, xAy=0.

COROLLARY 1. For any complete Heyting algebra H,
(i) M(H) is a zero-dimensional lattice,
(it) M(H) is a regular lattice.

Proof. (i) By Lemma 2.1, u, and v, are complements. Hence every fe M(H)
is a supremum of complemented elements; i.e., M(H) is zero-dimensional.

(i) If L is a zero-dimensional lattice and a < b then there exists a complemented
element x such that x<b, x2a. Now put y=x* Then bvy=1 and xAy=0.
Hence L is a regular lattice.

COROLLARY 2. If H is finite, then M(H) is a boolean algebra. (There is a
direct proof of this Corollary, giving additional information, in {8].)

The characterisation of modal operators in Theorem 2.4 requires the algebra
to be complete. It also requires the use of the awkward join operation LI There
is, however, a more useful characterisation in terms of w, operators which holds
for any Heyting algebra and which requires only the simpler meet operation.

THEOREM 2.5. Let H be any Heyting algebra and let f € M(H). Then
() forallaeH, f=w, iff fla)=a,
(1) A{w.:f=w,} exists and equals f.

Proof. (i) That f=w, implies f(a)= a is straightforward. Conversely, for any
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acH,

fx)=(f(x)=>f(a))=> f(a)
=(x>f(a))=> f(a)
=(x>a)>a

= w,(x),

so that f(a) = a implies f=w,.

(ii) This now follows on noting that, for any x € H, wy,,(x) = f(x), so that the
infimum exists at each point x and equals f(x) there.

For fe M(H), let H;={x e H:f(x) = x}. Since f is idempotent, H; is simply the
image of H under f. Then Theorem 2.5 states that f= A {w,:a € H;}. Clearly H;
uniquely determines f. It is called the fixed algebra of f. We now have the
following Corollary to Theorem 2.5.

COROLLARY 1. Let X by any (non-empty) subset of a complete Heyting
algebra H, and set f= A\ {w,:a € X}. Then H; is the least extension of X to the fixed
algebra of a modal operator on H.

Proof. 1t is clear from the proof of the Theorem that X < H;. Suppose now
that g is a modal operator on H such that X< H,. Then, by the Theorem,

g=N{w.caeH}=A{w,:aeX}=F

Hence gf =f giving H; < H,.

(Note that for any modal operators f, g we have g=<f iff gf=f iff Hy< H,.)

Theorem 1.2 shows that H; is a Heyting algebra whose meet and implication
are those induced from H, f(0) being the zero of H,, but whose join Ll is given by
f@) LI f(B) = f(f(a) v f(B)).

If X is a subset of H such that there exists f e M(H) with X = H}, then we will
call X a modal subalgebra of H. The following Lemma is proved in [8] and may
also be found in {4], and in {2] for complete H.

LEMMA 2.6. If X< H, then X is a modal subalgebra of H if and only if
(i) for each ae H, A\ {xeX:a=x} exists and lies in X,
(ii) forallacHand beX, abeX

For any fe M(H), the set J;=f"*(1) is a filter on H. An arbitrary filter J on H
will be called admissible provided there exists fe M(H) with J=f"'(1). For
boolean algebras, it follows from Theorem 1.2, Corollary 1, that the only
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admissible filters are principal filters. Since [a, 1]=v;'(1), principal filters are
admissible for any Heyting algebra. From Theorem 2.5 it follows that every
admissible filter is an infimum of filters of form W, = w;(1).

If f<g it is clear that J; < J,. The converse of this is, however, false. We do
have the following result.

LEMMA 2.7. Let J,,J, be two admissible filters such that J, has a minimal
associated modal operator j,. Let j, be any modal operator whose filter is J,. Then
JicJ, implies j;<j,.

Proof. The modal operator j; A j, has fiiter J, NJ,=J;. Hence j; Aj,=j, since
j1 is minimal. Hence j; <j,.

COROLLARY 1. If an admissible filter in a Heyting algebra has a minimal
associated modal operator, then it has a least associated modal operator.

Proof. Put J;=J, in the Lemma.

An admissible filter J may have many associated modal operators. The set
M;={fe M(H):f~'(1) = J} will be called the block associated with J. If f,, f,e M,,
they are called companions. If M is a singleton, the corresponding operator is
said to be alone. For a complete algebra H, each block in M(H) has a least
element. In general a block does not have a greatest element but for finite
algebras we have the following result.

LEMMA 2.8. Let J be an (admissible) filter in a finite algebra H. Let
€ ={c:céJ, and if c<x, then x€ J}. Then \ {w,:a € €} is the greatest element in
MJ'

Lemma 2.8 can be extended to those Heyting algebras for which the ascending
chain condition holds.

LEMMA 2.9. Let H be an arbitrary Heyting algebra and let f be a modal
operator on H which preserves =>. Then f is the least operator in its block.

Proof. Let g be any companion of f. Then, for all x € H, f(f(x)=> x) =1 so that
g(f(x)=>x)=1. Thus by Theorem 1.2(ii), 1= g(f(x)=> x)=gf(x)=> g(x) so that
gf(x)=g(x). Hence gf=g and so f=g.

COROLLARY 1. v, is the least operator associated with [a, 1].

The converse of Lemma 2.9 is false for general algebras but does hold in
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chains. We note that if H is complete then the least operator in M, can be
represented as L1{v,:a € J}. An alternative description will be given in §4.

§3. The w, operators
We now look at the behaviour of these operators in detail.

LEMMA 3.1. Let H be any Heyting algebra, let fe M(H) and let b be any

element of H.
Then w,f = wylsqy if and only if f(b)A(f(0)=>b)=b.

Proof. wyf = wyliq)

iff wylipo) = Wif

iff wyuo=f

iff wy =fA vy, using Lemma 2.1,

iff b=f(b)A(f(0)> b), by Theorem 2.5(i)

We now have the first main result of this section.

THEOREM 3.2. Each w, operator is the greatest in its block.

Proof. Suppose first that f, w, are companions with u, <f. Then a =<f(0), so
that a=<f(0)=f(a), and hence f(a)A(f(0)=>a)=a. Hence, by Lemma 3.1,
Wauf(o) = Wuf. Hence

Wk =1 iff wf(x)=1 iff w,(x)=1,
since w, and f are companions. Now

Wi o(f(0)=> a) = (f(0)=> a) A ((f(0)=> a)> a))=>a
=ap>a=1.

Hence w,(f(0)=>>a)=1 so that f(0)=a and hence f(0)=a. Then f(a)=ff(0)=
f(0) = a, giving f=w,, by Theorem 2.5(i).

Now let f be any companion of w,. Then so also is flJu, (=fu,) since if
flavx)=1, we have w,(x)=w,(avx)=1 and conversely.

Hence f=fllu,=w,.

COROLLARY 1. w, (double-negation) is alone.

Proof. w, preserves => and hence by Lemma 2.9 is the least in its block.
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While in general w, does not preserve =, it does possess a useful weaker
property which we now derive with the aid of a preliminary Lemma.

LEMMA 3.3. Let H be any Heyting algebra. Suppose b, c € H with b=c. Then,
forallaeH, (a2 by c=((a>c)>c)A(b>c).

Proof. Since b=a=b, we have (a>b)>c=b>c

Since b=c¢, a>c=a=>b and hence (a=>b)>c=(a>c)>c.

Hence (a>b)Dc=((a>c)=>c)a(b> ).

Also,

(b>c)>(a=zb)>c)=((a>b)A(b=>c))>c, by 1.1(vii)
=(a=>c)=>c, by 1.1(viii)

Hence (b c)al{la>c)Dc)=(a=>b)>c.

THEOREM 3.4. Let H be any Heyting algebra. Let be H. Then, for all
x,y€H with b=y, w,(x>y)=w,(x)> w,(y).

Proof. By Lemma 3.3,

wy(x2y)= (x> D) b)A(y=>b)>b
=(x=>b)=>b)=>((y>b)=>b)
= w, (x) = w, (y).

We can now obtain a formula for w, LIf.

LEMMA 3.5. Let H be any Heyting algebra. Then, for all ae H and for all
fe M(H), w, LIf = w,fu, = w,li,).

Proof. We use Theorem 1.3 to show that w,fu, is modal. For all x, ye H,

Wafua (x) > Wafu, (y) = wa(fu, (x) > fu,(y)), by Theorem 3.4
= W, (Ug (%) fu, (y))
= wa (x> fu,(y))
= W, (%)= wafu,(y)
=X Wofu,(y).

The equality w.fu, = w, U, follows from Lemma 3.1 since if g = fu, = f U u,,
then ge M(H), g(0)=f(a), and g(a)A(g(0)>a)=a.
Finally, w, L f = w,fu,, since w,, f=w,fu,=w, LUfllu,=w,LIf.
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LEMMA 3.6. Let H be any Heyting algebra. Then, for all a,be H, w,u, =
W)

Proof. For all xe H,

W) (X)=(x=> (b a)z>a))> (b a)>a)
=((b>a)a((b>a)> (x> a)))>a
=((b>a)r(x>a))>a
=((bvx)>a)>a

= Waub(x)'
COROLLARY 1. W, Uf= ww.f(a) = uf(a) l_] w, = (uf(u)/\ va) U W,.

COROLLARY 2. The w, operators form a final section in M(H). Hence w, =f
implies f = wy(,

COROLLARY 3. f2>w, = vy U w, = wig)sa.
Proof. f=> w; = FU w2 w, = (o) L W) D W, = U0 > W, = 50 L W

COROLLARY 4. w¥w¥*=1; ie., the w, operators are Stone elements of

Proof. By Lemma 1.1, Corollary (viii), w**=w¥*=>w, = v, Llw,, where k=
w¥(a).
Then wi*Uw*=0 Uw,Uw¥=0, Uw, Uy =1.

COROLLARY 5. (f2w,)2w, = (v U w)2>w, = v > w,=fU w,.
Theorem 3.4 can also be used in another direction.

LEMMA 3.7. If f is a companion of w,, then f.LJ U, = w,.

Proof. By Theorem 3.2, fUu, <w,.

By Theorem 3.4, for all xe H, w,(x)> u,(x)e W,=w_*(1). Hence, for a
given x, there exists be W, such that w,(x)=> u,(x)=b.

Hence w,(x)=b>u(x)= (v, U u)x)=(fUlu,)(x), since f(b)=1 so that
fUwu, =1 and hence v, =f, since u, and v, are complements.

Hence, for all xe H, w,(x)=(f U u,)(x).

Hence w,=flJu, and so w, =fllu,.
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COROLLARY 1. If W, is the principal filter [b, 1], then w, = v, Ll u,.

Finally, Lemma 3.5 can be used to give a characterisation of those complete
algebras H for which M(H) is a boolean algebra.

LEMMA 3.8. If w, is complemented, then w¥(a) is the least element in
W.N[a, 1]; i.e, W, N[a, 1]={wi(a), 1].

Proof. Since w, L1w¥=1, we have w,w¥u, =1 so that ww*(a)=1 and hence
w¥a)e W, N[a, 1].

Also w, Aw¥=0, so that if w,(x)=1, then w¥(x)=x.

Hence w*(a)<x when a=<x and xe W,.

THEOREM 3.9. Let H be a complete Heyting algebra. Then M(H) is a
boolean algebra if and only if for each ac H, W,N[a, 1] has a least element,
namely w¥(a).

Proof. If M(H) is a boolean algebra, then the result follows from Lemma 3.8.

Suppose then that W, N[a, 1] has a least element d,.

Then w, N[a, 1]=1v,, by Theorem 3.4 and Lemma 2.9.

Hence w, = w,u, = v, u, and hence w, is complemented.

Further w(a) = (uy, Av,)(a) = d,va = d,.

Since f=A{w,:f=w,} for any fe M(H), it follows that M(H) is a boolean
algebra.

(There is a different proof of the first half of Theorem 3.9 in [1}.)

The properties of w, operators given in Theorem 3.4 and Lemma 3.6,
Corollary 1 can be generalised as follows.

Let H be any Heyting algebra. (i) A modal operator f on H will be called nice
if f|[f(0), 1] preserves =.

(i) An element g of a Heyting algebra H will be called a gem iff, for each
b € H, there exists a complemented element ¢, such that bvg=c¢,vg and ¢, <b.

We then have the following Theorems.

THEOREM 3.10. The following hold for any nice modal operator f on a
Heyting algebra H.

(i) Vx, ye H with f(0)=y, f(x=>y)=f(x)=> f(y).

(i) Vx=f(0), f(f(x)=>x)=1.

(iii) If k is a companion of f and k<f, then f=k |l us,.

(iv) For any ge M(H), f g = fgusq,.

(v) If f is maximal in its block, then f is the greatest in its block.

(vi) f is complemented iff {x=f(0): f(x) =1} has a least element.
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[The concept of a nice operator and Theorem 3.10 were suggested to me by
H. Simmons.]

THEOREM 3.11. The following hold for any gem in a Heyting algebra H.
D b>g=civg

(i) g*vg**=1,

(i) (b>g)>g=bvg,

(iv) bv(b>g)=1,

v) (g=b)vig=b)>b)=1,

(vi) (byabr)=>g=(b1>g)v(b>§)

(vii) (§>b)>b=crs,vgvd

It follows from Lemma 3.6, Corollary 1, and Theorem 2.5(ii) that M(H) is
infimum-generated by a final section of gems. This implies zero-dimensionality.

§4. Admissible filters and modal subalgebras

The condition given in §2 for a filter to be admissible is not in practice easy to
use. In this section we obtain, for complete algebras, a different criterion which is
of a more intrinsic nature. This approach also reveals an unexpected connection
between admissible filters and modal subalgebras.

The key is the following relation R on a Heyting algebra H.

DEFINITION 4.1. For all x, y€ H, xRy if and only if w,(y)=1;ie. y>x=x.
Given R we can construct the following operations on subsets of H.
For X< H, set

X*={ye H:Vxe X, xRy}
={ye H:Yxe X, w(y)=1}.
For YS H, set

Y°={xeH:Vye Y, xRy}
={xeH:Yye Y, w,(y)=1}.

Then (R, X*, Y°) is a Galois connection on H.
Let X=X"*={xe H:w,(x)=1, Vb such that for all ye H, w,(y)=1}.

LEMMA 4.1. For any X, Y< H,
() XX, (i) X=X, (i) X< implies X< Y.
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LEMMA 4.2. For any X< H, X is a filter on H.
Proof. X={{W,:a € X" and hence is a filter.

The next Theorem gives the relationship between the Galois connection and
admissible filters.

THEOREM 4.3. If X is a subset of a Heyting algebra H and if J is any
admissible filter on H such that X< J, then X< J.

Proof. Let f be any modal operator in M, and let b € H;, so that b= f(b).
Then, for all xe X,

x>b=x>f(b)
= f(x)> ()
=1>f(b), since XclJ
= b,

Hence b= f(b) implies that, Vxe X, w,(x)=1.

Hence H; < X°.

By Theorem 2.5, J={xe H:w,(x)=1, Vbe H;}.

Since X ={xe H:w,(x)=1, Vbe X°, it follows that X< J.

COROLLARY 1. If K is an admissible filter on a Heyting algebra H, then
K=K
Proof. Set J=X =K in the Theorem.

For complete algebras the converse of the above Corollary is also true.

THEOREM 4.4. If J is a subset of a complete Heyting algebra such that J=1J,
then J is an admissible filter on H.

Proof. Let f=A{w,:beI%=A{w,:Vyel, w,(y)=1}.

Then f is modal, and x € J implies that f(x)=1.

Also, if f(x)=1, then wy(x)=1, Vbe J°. Hence xeJ and so xeJ.
Hence J=f"(1) and is thus admissible.

COROLLARY 1. If X is any subset of a complete Heyting algebra H, then X is
the least admissible filter containing X.

Proof. X is admissible by the Theorem and Lemma 4.1.
It is the least admissible filter containing X by Theorem 4.3.
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COROLLARY 2. The operator f defined in the Theorem is the least operator in
MJ-

Proof. Let geM,. Then, as in the proof of Theorem 4.3, H,<J°. Now
f=A{w,:beJ% and g= A{w,:be H,}. Hence f=g.

If H is not complete, then J =J is not sufficient to imply that J is an admissible
filter. This may be seen by considering the boolean algebra of all finite or cofinite
sets of integers, and taking J to be the filter of all cofinite sets containing the even
integers. Then J=17J, but J is not principal and thus is not admissible.

We now use the Galois connection to relate admissible filters to modal
subalgebras.

THEOREM 4.5. Let X by any non-empty subset of a complete Heyting
algebra. Then,

(i) X* is the filter of the modal operator associated with the least extension of X
to a modal subalgebra of H,

(ii) X° is the fixed algebra of the least modal operator associated with the filter
which is the least extension of X to an admissible filter.

Proof. (i) X* is the associated filter of A {w,:a e X} which, by Theorem 2.5,
Corollary 1, is the modal operator of the least extension of X to a modal
subalgebra of H.

(ii) The proofs of Theorems 4.3 and 4.4, Corollary 2, show that A {w,:a € X"}
is the least modal operator associated with the least extension of X to an
admissible filter. We thus have only to show that X° is a modal subalgebra of H.
We verify the conditions of Lemma 2.6.

(1) X° is A-complete since if I is any set, and 4 ={c, e H:jel}, then
y2 A1 é=A\{y>c:iel}, for any ye H.

(2) Suppose that xe H and a€ X°. Then, Vye X, y=> (x> a)=x>(y>a)=
x> a, so that x> a e X°.

COROLLARY 1. If X is a subset of a complete Heyting algebra H, then
X =X*® iff X is the fixed algebra of a modal operator which is the least such
operator associated with its filter.

Proof. (a) Suppose X = X™*°. Then the result follows from (ii) of the Theorem.
(b) Suppose X is the fixed algebra of a least such operator. Then X = J° where
J is the associated filter. But J= X™ by (i) of the Theorem. Hence X = X™*°.

The Theorem and Corollary show that for those algebras in which each block
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is a singleton there is a precise duality between admissible filters and modal
subalgebras. Such algebras will be identified in the next section.

§5. Separation properties of H and the block structure of M(H)

It is well-known that certain separation properties of topological spaces — for
example, regularity or normality ~ are equivalent to algebraic properties of their
open set lattices. For regularity the property is that given before the proof of the
Corollary to Theorem 2.4. For an arbitrary Heyting algebra H three properties of

this type are closely related to the structure of the blocks in M(H). They are as
follows.

S..: Given a, be H with a <b, there exists x € H such that

w(x)#1,  u(x)=1.

S..: Given a, be H with a <b, there exists x€ H such that

u, (x)# 1, uy(x)=1.

S..: Given a, be H with a <b, there exists x € H such that

w,(x)# 1, w,(x) = 1.

It is easy to see that the property S,,, implies each of the others and examples
can be found to show that no other implications hold.

S.. has the following equivalent formulations.

LEMMA 5.1. The following are equivalent for any Heyting algebra H.

(1) H has property S,

(2) For any a, be H with a <b, there exists x € H such that

x<a and bv(x=>a)=1.

(3) For any a, be H with a<b, there exists x, y € H such that

x%a, bvy=1, XAy=aq.

Version (3) shows that every regular lattice is an S, lattice.
The property S,, is the obvious lattice analogue of the T, separation axiom



22 D. S. MACNAB ALGEBRA UNIV.

and appears as such (as the axiom T%) in (3). However, it is strictly weaker than
T,. S,, lattices are also called conjunctive lattices.

As noted at the end of §4 if every block of operators is a singleton then the
structure of M(H) has a simplicity not present in the general case. It turns out
that the algebras with this property are exactly those with property S.,..

THEOREM 5.2. The following are equivalent for any Heyting algebra H.
(1) H has property S,,..

(2) Every modal operator on H is alone.

(3) Every operator of the form u, is the least in its block.

Proof. (1)—>(2). We show first that if f, g are modal operators such that there
exists x € H with f(x)<g(x), then f and g belong to different blocks, i.e. have
different filters.

Suppose then that f, g are as described above. Then, since H has property S,
there exists y€ H such that y= f(x)# 1, g(x)v(y=>f(x)) =1, using Lemma 5.1.

Let z=y=> f(x). Then f(z) =z, by Theorem 1.2, and hence f(z)# 1.

Also,

1=g(g(x)vz)
= g(xv z), by Theorem 1.2,

= g(z) since x=z.

Hence f, g are in different blocks.

Now suppose that J is any admissible filter and that j, k € M;. Then jake M,
and hence, by the above, jak =j and jA k = k. Hence j= k. Hence every block is
a singleton.

(2)—(3). Trivial.

(3)—(1). Suppose a, b€ H with a <b. Then w,(0) <u,(0). But u, is the least
in its block. Hence w,, u, belong to different blocks J, and J,. By Lemma 2.7,
L,

Hence there exists x € H such that w,(x)# 1, u,(x)=1.

Hence H has property S,

Thus if H is the open set lattice of a T, topological space, then all modal
operators on H are alone.

We now turn to the S,, or conjunctive algebras.

THEOREM 5.3. The following are equivalent for any Heyting algebra H.
(1) H is conjunctive.
(2) Every u, operator is maximal in its block.
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(3) The identity operator is alone.

(4) If a modal operator f has a pseudocomplement f*, then f* is the greatest in
its block.

(5) Every u, operator is the greatest in its block.

(6) Every v, operator is alone.

(7) If f, g are companions and f*, g* exist, then f*=g*.

Proof. We establish the equivalences as follows.

(D)—=>@2)=>3)—=>@—=06)—=(1). W)—=(6)—>(3). 3)=(D).

(1)=(2). Let ae H and let f be any modal operator on H such that there
exists x € H with u,(x)<f(x). Then, since H is conjunctive, there exists ye H
such that u,(x)vy#1, f(x)vy=1. Set z=xvy. Then u,(z)#1, but f(z)=
f(f(x)vy)=1. Hence f, u, belong to different blocks. Hence u, is maximal in its
block.

(2)—(3). Since u, preserves =, it is the least in its block and hence is alone.

(3)—(4). Let f have filter J and let J; be any filter such that JNJ, ={1}. Then
if f, e M,, we have fAf, =0 and hence f,=f*. Since JNJ*={1}, where J* is the
filter of f*, it follows that f* is the greatest in its block.

(4)~—>(5). For any ae H, u, =v*.

(5)—(1). Let a, be H with a <b. Let u,, u, have filters J,, J,. Then J, = J, but
J,# J,. Hence 3xe H such that u,(x)# 1, u,(x)=1. Hence H is a conjunctive
algebra.

(4)~>(6). For any a € H, v, = u¥ and hence each v, is the greatest in its block.
Hence by Lemma 2.9, Corollary 1, each v, is alone.

(6)—(3). Since v, is the identity operator, this is trivial.

(3)—(7). Suppose f, g€ M; and that f* g* exist. Let J, be any admissible
filter such that JNJ, ={1} and let je M;.

Then jAf=jAg=0so that j<f* j=g* By taking J, to be either the filter of
f* or the filter of g* we obtain f*=<g* and g*=f*. Hence f*=g*.

(7)=(3). Let f be a companion of 0. Then f*=0%=1.

Hence f**=0 and thus f=0. Hence the identity operator is alone.

We note that in a complete conjunctive algebra, if feM,, then

f*=A{u,:aet}.

From Theorems 5.2, 5.3 we see that the S,, and S,, algebras may be
characterised as those for which (i) all u, operators, (ii) all v, operators are alone.
Our third class of algebras is that for which all w, operators are alone.

THEOREM 5.4. The following are equivalent for a Heyting algebra H.

(1) H has property S,,,.
(2) Every w, operator is alone.
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Proof. (1)—(2). By Theorem 3.2, every w, operator is the greatest in its
block. We have thus to show that the w, operators are the least in their blocks.

Let a be any element of H and let f be any modal operator on H such that
f<w,. Then there exists x € H such that f(x) <w,(x).

Hence there exists y € H such that wy,(y)# 1, w, )(y)=1.

By Lemma 3.6, w,, ,(y)= wau,(y) = w,(xvy).

Set z=xvy. Then w,(z)=1.

Also,

f(z) = f(x vy) = fu(y) = wp, ()
= Wye(b)# 1.

Hence f and w, are in different blocks.

Hence w, is minimal in its block. Hence by Lemma 2.7, Corollary 1, w, is the
least in its block.

(2)—(1). Let a,b be any elements of H with a <b. Then w,(0)<w,(0). If
J., J, are the filters of w,, w,, then by Lemma 2.7, J, 2 J,.

Hence there exists x € H such that w,(x)# 1, w,(x) = 1. Hence H has property
S

The following table summarises some of the above information.

Max. Min. Alone

uﬂ suu Swu swu
v, S, all Suu
w, al S, S,

§6. Modal operators on open set lattices

When H is the open set lattice O(S) of a topological space S (and is thus a
complete Heyting algebra in which U= V=(U'U V)°, where ° is the interior
operation), we can define a fourth class of modal operators as follows. For any
AcS, XeO(S), set I,(X)=(AUX)°. Then I, is a modal operator on O(S). For
A open, I, = u,, and for A closed, I, = v4..

Our first result shows the importance of the I, operators.

LEMMA 6.1. Every regular modal operator in the open set lattice O(S) of a
topological space S is of the form Iy for some subset K of S.

Proof. Let f be any modal operator on O(S).
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By Lemma 2.2, if X € O(S), then
X =A{A)>(AUX):Ae O(S)}.

Now, for any A, X e O(S), f(A)> (AU X)=(BU X)°, where B=f(A)'UA. Let
é={B:B=f(A)U A for some A e O(S)}. Then, for all X O(S),

F(X)=A{BUX)":Be %}
=(N{BUX)°:Be%})°
=(N{(BUX):Be €})°
= (XU{B:Be®)°
=(KU X)°, where K={B:Be4¥}.

Hence f*= I.

It is not in general the case that every I, operator on an open set lattice is
regular, nor is it in general the case that for an operator I,, we have E=1,.

To investigate the I, operators further, we introduce an auxiliary topology for
a given topological space.

DEFINITION. For a given topological space S, let B={UNV:Ue O(S),
Ve C(S)}, where C(S) is the set of closed sets of S. Then we define S* to be the
space with the same points as S and with B8 as a basis for the open sets.

The connection between this * topology and the I, operators is described in
the next Lemma.

LEMMA 6.2. For a given topological space S and subset A of S, let A*=
M{AUWVYUV:VeO(S)}, sothat I, = I,.. Let X denote the interior operation in
S*. Then A*= A"

Proof. For any point pe€ S,
p£A*

iff 3V e O(S) such that pg(AUV)'UV

iff 3V e O(S) such that pe (AU V)° and pe V'

iff AU, Ve O(S) such that pe US AUV and pe V'

iff AU e O(S), Ce C(S) such that pe Uc AUC and pe C
iff AU e O(S), Ce C(S) such that pe UNCgca

iff pe A™.

Hence A* = A® and hence A*= A™,
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LEMMA 6.3. If S* is a discrete space, then, for any subset A of S, I = 1. and
I, is a regular operator.

Proof. S* is discrete if and only if A®=A for all subsets A of S. Clearly,
X=1% =1,

It is easy to see that S* is a discrete space if and only if every point of S is an
intersection of an open set and a closed set, which is one of the definitions of a T,
space. Other definitions are that {p}”—{p} is closed for any point p, or that
{p}U{p}”° is open for any point p.

LEMMA 6.4. The following are equivalent for any topological space S.
(1) Sis a Tp space.
(2) S* is a discrete space.

We now have the main result on I, operators.

THEOREM 6.5. The following are equivalent for a topological space S.

(1) Sis a Ty space.

(2) For any subset A of S, Ii=1,..

(3) If f is the map P(S)— M(O(S)) defined by f(A)=1,, AcP(S), then f
preserves pseudocomplements.

(4) f is one-to-one.

(5) fis a boolean isomorphism between the boolean power set algebra P(S) and
the boolean algebra of regular elements of M(O(S)).

Proof. (1)—(2). This follows from Lemmas 6.3 and 6.4. (3) is a restatemnent of
(2). We show that (2)—(4) and (4)—(1).
(2)—>(4). Suppose I, =Ig. Then I =1I% and hence I, = Iy

Now IoAIp = I-np for any sets C, D.

Hence I = I AIg =1, Al,.=0.

Hence I,.,g=1. It follows that A'UB =S and hence A< B. Similarly,
B< A. Hence A=B.

Hence f is one-to-one.

(4)->(1). Let p be any point of S. Since f is one-to-one, 3X € O(S) such that
({p}U X)°# (¢ U X)° = X. Hence 3X € O(S) such that p& X and X U{p} is open.

Hence X< (S—{p}°® and XU{p} is open.

Hence (S—-{p})°U{p} is open.

Hence S is a T, space.

(2)—(5). By Lemma 6.1, f is onto the regular algebra of M(O(S)). Since f
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preserves pseudocomplements and intersections, it preserves unions. Hence f is
the required boolean isomorphism.
(5)->(4). Trivial.

We collect without proof some additional facts in the next Lemma.

LEMMA 6.6. Let S be a topological space and let A, B be any subsets of S.
Then,

(i) A™ is the least member of {X e P(S): Iy =1,},

@iy I, =I iff A®= B~

(iii) If peS and I, #0, then Iy =I5_y,),

(iv) I5_y =1, where p={p} N(p), and (p)=N{Xe O(S):pe X},

(v) if Sis a T, space, then, Vpe S, I, is a regular operator,

(vi) S is a conjunctive space if and only if for any fe M(O(S)) with filter
J, f*=1Ig, where B=N{A:Ael}.

While all I, operators are regular in T, spaces, the converse of this is
false ~ consider, for example, any space with a finite topology. We now determine
necessary and sufficient conditions on a space S in order that all its I, operators
are regular. We first look at the associated space S*.

LEMMA 6.7. The following are equivalent for a topological space S.

(1) Every I, operator on S is regular.

(2) O(S*) is a boolean algebra.

Proof. (1)—(2). By Lemma 6.6(ii), I%*= I, iff A" = A=,

Hence if A is open in $*, then A = A°™ where ¢ denotes closure in S*, so that
A is regular. Hence all open sets in $* are regular and hence O(S™) is a boolean
algebra.

(2)—(1). If O(S*) is a boolean algebra then every closed set is open in $* and
hence A™™ = A™™ = A™ for any set A, so that IX*=1,.

We are thus left with the task of finding an elementary condition on S
equivalent to the booleanness of O(S*).

LEMMA 6.8. For any subset of a topological space S,
I, = A{Ls-p:pE AL
Proof
VX e O(S), L(X)=({S—-{p}:pe A}UX)°
=(M{(S-{phu X:pe A}°
=(H(S-{phu X)°: pe A})°
= A{Ls_)(X): p& A}.
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COROLLARY 1. In a topological space S, all 1, operators are regular if and
only if all operators of the form Is_,, are regular.

THEOREM 6.9. The following are equivalent for a topological space S.
(1) For every subset A of S, I, is a regular operator.
(2) For all pe S, pe(p)”, where {p)={{Xe O(S):pe X}.

Proof. By Lemma 6.6(ii), (iv), Is_y, is regular iff
(S—{ph™=p™™.

Now

" =(p)N{p} )™
=(p*n{p})™
=P U(S—{ph°)*2(S-{ph™

(1)=(2). From the above, Vpe S, (p)™U(S—{pD")™* =(S—{p}*.

Hence (py™ U(S—{ph*=(S—{ph™ so that (py™™<=(S—{ph™ Hence
pE <p>ﬂ’ﬁ‘

By Lemma 6.7, all closed sets in S* are open.

Hence (p)*"™ = (p)™. Hence p£(p)™ and so pe{p)~.

(2)—(1). 1t p£(p)*, then p&(pY~' U (S—{p)")™

Hence ((p)™ U (S —{p})*)* = (S—{p})™ and thus ({p)y*' U (S~ {p)°)* = (S—{ph™.

Hence I_g, is regular.

Hence, Vpe S, Is_y, is regular.

It now follows from Lemma 6.8 that all I, operators are regular.

If pe(p), then there exists open U and closed C in S such that pc UNCg
{(p) and clearly we may take C={p}". Hence the condition p €(p)* is equivalent
to the following.

There exists U e O(S), pe V such that, for any We O(S) with pe W, we have
vVn{p}cW.

DEFINITION. A topological space S will be called a T, space if and only if
for any point p € S, there exists an open neighbourhood V of p such that for any
open neighbourhood W of p, we have VN{p} = W.

THEOREM 6.10. The following are equivalent for a topological space S.
(1) S is a Ty space.
(2) Every I, operator on S is regular.
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T, would appear to be new. It is weaker than either T, or R, and is
unrelated to T,. Since any finite topology is T, it is not really appropriate to call
T\ a separation axiom.

Final remarks

A major problem is the determination of the structure of M(H) in terms of the
structure of H. For example, when is M(H) compact? If M(M(H)) is compact,
then M(H), (and hence M(M(H))), are finite boolean algebras which suggests that
M(M(H)) has a yet tighter structure than M(H). If we define M"*"'(H)=
M(M"(H)) and M°(H)= H, when is M"(H) a boolean algebra? Other related
questions obviously suggest themselves. It is our view that their solution should
lead to a better understanding of the structure of Heyting algebras in general.
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