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Residually small varieties of semigroups

RaLp McKenzie®”

Although much is known about the residual character of varieties of algebras,
interesting unsolved questions can still be formulated. A question posed by
Robert Quackenbush in 1971 (in [7]) has received more attention with each
passing year. Quackenbush asked whether there exists any finite universal algebra
A such that the variety it generates, V(A), is residually finite but not residually
<n for any positive integer n. In this paper, a hypothetical algebra with these
properties will be called a Quackenbush algebra. Instead of writing “for some
positive integer n the variety ¥ is residually <n’'we shall write “¥" is residually
«w.” All the concepts used in this introduction will be defined in Section 0.

Our paper is a response to Quackenbush’s question, as are the papers [1], [2],
[4], and [9]. We prove here that no Quackenbush algebra is to be found in the
variety of semigroups. That it cannot be a group was proved in [9]. That in fact it
cannot belong to any variety all of whose algebras have modular congruence
lattices will be proved in [4]. (Taylor [9] proved a slightly weaker result earlier.)

Quackenbush’s question has now been answered in two extreme cases. In the
one extreme we have varieties with very well-behaved (modular) congurence
lattices, for example, the variety of groups and the variety of rings. At the other
extreme lies the variety of semigroups. It is crucial to our arguments in this paper
that if a semigroup is not a group, and in fact is not very close to being a rather
well-structured union of groups, then it generates a variety in which the congru-
ence relations are so ill-behaved that large subdirectly irreducible algebras' are
easily constructed. (The generated variety is not even residually small.)

To be much more precise, our main result, whose proof occupies the bulk of
the paper, can be formulated as follows (a condensation of Theorems 1, 4, and 5).
Any subdirectly irreducible semigroup that generates a residually small variety
and has more than three elements either (1) is a group of finite exponent; or (2) is
obtained from such a group by adding a zero element; or (3) can be constructed as
the disjoint union of a subgroup G of finite exponent and a zero sub-semigroup
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U, where, (say) G - U= U and U - G = (0) (or reversely), and the products G - U
are :defined by a faithful representation of G as a group of permutations of
U —(0). From this we achieve a reduction of any question concerning the residual
character of a residually small semigroup variety ¥ to two questions regarding a
certain variety G(¥) of groups of bounded exponent. The one question concerns
the subdirectly irreducible groups in G(¥), while the other has to do with the
groups G € G(¥) whose lattice of subgroups has a proper strictly meet irreducible
member H which contains no non-trivial normal subgroup of G.

The question whether V(A) is residually small (A is an arbitrary semigroup) is
similarly reduced, in Theorem 29 of Section 4, to questiors about the variety
generated by a certain group correlated with A.

Two final remarks to finish the introduction: The results for groups and rings
(and more widely, algebras in any congruence modular variety) which were
obtained in response to Quackenbush’s question are theoretically stronger than
what we have been able to prove about semigroups. Any congruence modular
variety V(A) generated by a finite algebra A must be residually « e if it is even
residually small. (If A is a group, this happens just in case all the Sylow subgroups
of A are abelian—see [4].) We have so far only been able to prove that any
variety V(S) generated by a finite semigroup S, which is not residually € w must
contain at least one infinite subdirectly irreducible semigroup. (See the open
questions in §6, particularly question 2.)

The second remark is that Quackenbush’s original question is still open. There
is only one published example of a locally finite, residually finite variety of
universal algebras that is not residually < w. This is in Baldwin—-Berman [2]; the
variety has infinitely many basic operations and, of course, is not generated by any
single finite algebra.

Added in April 1980

This manuscript was written in April 1979. The author was blissfully unaware
at that time that anyone else was working on the same problems. The referee has
now brought to my attention the work of Golubov-Sapir (‘“Varieties of finitely
approximable semigroups”; see Soviet Math. Doklady 20 (1979), no 6, pp.
828-832). Detailed proofs of their results have not yet appeared. From their
abstract, however, I draw the following conclusions. They have obtained a
characterization of residually small, finitely generated semigroup varieties, in
terms of identities, and also of generators. It looks as though one can make a
direct translation between their results and those of this paper, in the finitely
generated case. The difference between our work and theirs apparently is that we
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concentrate on the subdirectly irreducible semigroups and do not require the
varieties to be finitely generated.

§0. Orientation

An algebra is a system consisting of a non-empty set and a list of finitary
operations over that set. A variety is a class of similar algebras closed under the
formation of subalgebras, homomorphic images, and direct products (of any
number of factors). For more detail on these basic concepts and any others used
in this paper we refer the reader to Gritzer’s book [5], especially its appendix on
varieties written by Walter Taylor.

A semigroup is an algebra with just one basic operation, a binary operation
which satisfies the associative identity.

According to a fundamental result of Garrett Birkhofl, a class of algebras is a
variety iff it can be defined, like the class of groups and the class of semigroups, as
the class of all algebras (similar in type of operations to a given algebra) satisfying
a certain set of identities.

A congruence relation of an algebra A is a subalgebra of ?A that is also an
equivalence relation over A. The congruence relations of A form a lattice Con A.
With any ReCon A we can form the factor algebra A/R and the natural
homomorphism mx from A onto A/R. Here R={(x,y)e?A:mx(x)=mr(y)};
moreover, any set R =?A is a congruence relation of A iff it is the kernel, in this
sense, of some homomorphism with domain A.

An algebra A is called subdirectly irreducible (s.i. for short) if its congruence
lattice has an atom which is a subset of every congruence relation except the
identity relation. The importance of subdirectly irreducible algebras hinges on a
fact observed by Birkhoff: every algebra A is isomorphic to a subalgebra of a
direct product of s.i. homomorphic images of A (which belong to any variety to
which A belongs). Thus if a variety possesses only a few s.i. algebras, then all of
its members can be found as subalgebras of products of those few.

We use small Greek letters like «, A, p to denote cardinal numbers, and
Roman letters like i, j, k,...,n to denote nonnegative integers (finite cardinal
numbers). The least infinite cardinal number is @ ={0,1,2,3,...}.

A variety is called residually <« (here « is any cardinal, possibly finite) if
every s.i. algebra in it is of cardinality less than x. We shall use in this paper the
abbreviation “res<<k” for this concept. Then “res <«k” is the equivalent of
“res <« where k" is the cardinal successor of k. A variety ¥ is called res. small
if ¥ is res <« for some «. ¥ is called res. finite if it is res <w, and called res « k if
¥ is res <A for some A < k. ¥ is locally finite iff every finitely generated algebra in
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¥ is finite. The smallest variety containing an algebra A is V(A)=HSP (A), the
class of homomorphic images of subalgebras of direct powers of A.

A direct power of A will be denoted ‘A, or A - the universe of this algebra is
the set of all functions from the set I (or, respectively, the set «) into the universe
of A. Exponents on the right will be used notationally for other purposes. For
instance, as |A| will denote the cardinality of the universe of the algebra A, we
will write |<A|=|A|“ implicitly determining A* as notation for cardinal exponenti-
ation. (Take the above as definition of A*.) Also we use B™, where B is a subset
of a semigroup, to denote the set of all m-fold products of members of B.

§1. Definitions and main results

The central results stated in this section, and proved in Sections 2 and 3, are
Theorems 1, 4, and 5.

The operation of a semigroup will be written as multiplication. Thus x - y, and
sometimes xy, stand for the product of x and y, and x" denotes the n-th power of
x. A semigroup will be called a group of exponent n(n>1) if it satisfies the laws
x"*t=x, x"=y"; a semigroup A =(A, -) satisfying these laws becomes a group
(A,-,”1) if we define x'=x""'. A semigroup will be called a semigroup of
exponent n if it satisfies the law x" ~x?".

My search for the properties of a semigroup which would force it to generate a
residually small variety led me to progressively stronger necessary conditions in
the form of identities. Finally it became possible to combine these conditions into
a simple statement. For each integer n> 1, I define three varieties ¥{"(j =1, 2, 3).

DEFINITION E. (1) ¥{" is the class of all semigroups satisfying the laws (i)
Yy l=xy, (il) x"yz =x"yx"z, and (iii) xyz" =xz"yz".
(2) ¥4 is the class of all semigroups satisfying the laws (i) x"*'y=~xy, and (ii)
x"y*z=y"x"z.

(3) ¥V is the class of all semigroups satisfying the laws (i) xy"*'=xy, and (ii)
xy"z" =xz"y"

(xy

THEOREM 1. Every residually small semigroup variety is contained in some
one of the varieties V™.

Notice that ¥'{™ is self-dual, that is if A =(A, -Ye ¥\ then A°=(A, e V{?
where x -’y=y-x. Also ¥{" is the dual of ¥{”. Notice also that each of the
varieties %™ consists of exponent n semigroups. In fact
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PROPOSITION P. The following laws hold identically in ¥{" (j=1,2,3):
(1) xn zx2n

(2) x*=x"*?

(3) x" -yt =(x"-y")?

(4) x" - y"*(x"” . yn+1)n

(5) (xn+1 . yn+1)n+1:xn+l . yn-+-1

(6) xnynznun zxnznynuﬂ

(7) x"yz=x"yx"z

(8) xyz" =xz"yz".

This proposition, which is hardly obvious, will be proved at the end of this
section after we first describe the subdirectly irreducible semigroups in the
varieties ¥{".

By Z, we denote the 2-element semigroup consisting of the integers 0, 1 and
actual multiplication. A zero semigroup is one in which all products are equal. Z,
is a 2-element zero semigroup. A left(right) zero semigroup is one satisfying the
law x-y=x (or x-y=y, respectively). L,, R, denote 2-element left zero
(respectively, right zero) semigroups. The semigroup resulting from adding a
(new) zero element 0 to a given semigroup A is denoted AY. Thus the universe
of AW is A U{0} (it is assumed that 0¢ A) and in A, x - y=0if either of x and y
is 0, and otherwide x -y is the product of x and y in A.

A further construction is needed.

DEFINITION 2. Let G be a group and « be a representation of G over a
non-void set U, such that G, U, and {0} are disjoint sets. (A representation is a
group homomorphism of G into the group of permutations of U.) We define
R(G, U, a) to be the semigroup with universe G U UU{0} and operation defined
as follows (g, he G; u, ve U):

g u=a,lu),
g - h =the product in G,

all other products are 0.

We define L(G, U, a) analogously, except that « has to be representation of
G? over U (i.e. ag.,(u) = a,(a,(u))), and we put u- g=a,(u) and g-u=u-v=
0.

When the representation « is obvious or implicit we simplify our notation to
R(G, U) and L(G, U). This is the case if G or U has only one element.
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PROPOSITION 3. R(1, m) is subdirectly irreducible iff m =1. When |G|=2
the following conditions are jointly necessary and sufficient for R(G, U, a) to be
subdirectly irreducible.

(1) « is faithful (g# h implies a,# a,).

(2) a(G) acts transitively on U.

(3) For some uc U (equivalently, by (1), (2) for every ueU), Stab(u)=

{ge G: a,(u)=u} is a completely meet irreducible member of the lattice
of all subgroups of G.

This proposition is proved at the end of this section.

The next two theorems show the power of Theorem 1. The varieties ¥{” are
not mentioned as they are dual to the ¥3*. For the correct statement of the results
for ¥{, replace R(G, U,a) by L(G’ U, @) and dualize all other mentioned
semigroups.

THEOREM 4. (1) ¥4 is generated as a variety by the semigroups
Z,, LY, R and by the subvariety 4™ consisting of all groups of exponent n.

(2) The s.i. members of V" are the following: G and G© where G € 4™ is s.i.,
ZZa ZZ> L2’ R27 L(20)’ R(ZO)'

(3) A variety V=¥ is residually small iff ¥ N 4™ is residually small.

THEOREM 5. (1) %% is generated as a wvariety by the semigroups
RS, R(1, 1), and the subvariety §' of exponent n groups. (2) The s.i. members of
Y are the following: G and G where G € 4™ iss.i.; R(G, U, o) where G € 4™
and the conditions of Proposition 3 hold; Z,, Z,, R,, RY". (3) A variety V< V' is
residually small iff: ¥V N4"™ is residually small and, further, if V& V(™ then the
groups G € ¥V N4 which admit a representation with the properties Prop. 3(1-3)
are bounded in cardinality.

Proof of Proposition P. This proof and the next one are not crucial to
understanding the later arguments, and may be skipped over.

First, assume that identities El (of definition E) hold in a semigroup A.
Substitute x for y, z in E1(j, ii) to obtain x*"*?=x2 and x"*2~x2"*2 from which
P1, P2 follow directly. Then by El(ii) and P1, x"y"x"y" = x"y"y" = x"y", which is
P3. P5 is a substitution instance of (i) and P7, P8 are just (ii), (iii). Noting that P3
yields x™ - y" = (x" - y™)", we derive P6 from P1-P3, P7, P8 (abbreviating e = x",
f=y" g=z", h=u"): efgh = efghefgh, and from the latter expression, using P7,
P8, one removes in turn the first f, the first A, the second e, the second g, to obtain
egfh.
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We now show that P4 follows from P1-P3 and P5-P8. Again denote x" by
e,y by f(x"T'-y*™Y)" by g We have e?=e f?’=f g?’=g Now
(fyn—lexn—lf) . (xn+lyn+l)2 — (fyn—leyn+1)(xn+1yn+l) — (fyn—leyn+1)(exn+lyn+l) -
fy*exntly*tt=fx"+ly"*! using P7, P8. Thus if wu=(fy" lex""!'f)""!, then
u-g=f-x""'-y"" and ex" 'ug=ex""'fx"*': fy=e3fy =ey"*'. Taking n-th
powers, we get ef =ey™ "+ P =(ey"*")" (by P7)=1v - g for a certain v. Therefore
ef = ef - g = efgf = egf = g. The equality ef = g is just P4.

Now assume that the identities E2 defining ¥4 hold in a semigroup A. That
P2 holds in A, and therefore Pl as well, follows by substitution of y for x in E2(i).
P3 follows immediately from P1 and E2(ii). For PS5, x""'y"* ! = (x"*'y"") - y" =
("t eynthyr iy = (xm oyttt gsing P1oand  E2(1). For P7, x“yz=
(x"y)"* 'z = (x"y)x"(x"y)"z = (x"y)(x"y)"x"z = x"yx"z using P1 and E2(, ii). For
P8, zu"=(zu™)""'-u"=(zu™)" - u"zu"=u"(zu™)" - z - u" = u"(zu™)"*' - u" =
u"zu". Now P6, P4 follow as in the argument for ¥{. [

Proof of Proposition 3. The correctness of the proposition when |G|= 1 being
trivial, we consider the case |G|>1. Assume that R{G, U, «)=S is subdirectly
irreducible.” A block of U is a set B ={«a,(u): ge G} where uec U. We define some
relations over S (x, y range over S).

x0,y >x=yvix,yeGra,=a,)
x0yy <> x=yv(x,yeU)
x0gy <> x=yv(x, ye BU{0}

where B is a block of U. It is clear that each of these relations is a congruence of
S. Since 6;>A (the identity relation on S) and 8 A 6-.=A for distinct (and
therefore disjoint) blocks B, C, it follows from the s.i. character of S that there is
only one block B =U -i.e. a(G) is transitive over U. Since 8,70, =4 (U is a
block), then 6, = A —i.e. « is faithful. Then since G has more than one element,
so does U, and it follows that the unique smallest congruence >4 of S is a
subset of 6y,

Let u,cU, g,eG be such that o, (uy)# u, Define F=Stab (u,)=
{ge G: a,(u,) = u,}. We conclude the proof that s.i.= (1-3) and also establish
that (1-3) = s.i., by proving the following claim.

CLAIM. Assuming that (1), (2) hold, the pair (u, o (uo)) belongs to every
congruence of § except A iff g, belongs to every subgroup of G that properly

includes F.
To prove it suppose first that u,0g, - u, whenever 6> A4 is a congruence. If H
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is a subgroup of G properly extending F, then
AU{(g - up, 8 h-uy):heH geG}=46

is a congruence relation on S, bigger than A. Hence (uy, gy uy) =
(g - uo, g - h - uy) for some (g, h)e GX H. Here g, g;'-g- heF hence g,e H.

Conversely, suppose that g, does belong to every subgroup properly extending
F. Then, given 6> A, we can define H ={ge G:u,8g - u,}. It is clearly a group
and H2F. We must investigate 9. If 6 N*G4¢ A then, where (g, h)€ 68— A, we
have (g - u, h-u)e 8N*U—A for some u, by faithfulness of a. If ghu for some
geG,ucUthen g-ubu-u=0and U=G - g-u<0/0 hence U < 0. The same
conclusion follows if 06x for some x# 0. Putting all this together, we conclude
that there exists (y,v)e@8—-A4, u,veU. By transitivity of a{G) we have
u,0g - uy ¥ u, for some g. Consequently, H>F, and so g,€ H. So, finally,
uyOgouo. U '

§2. Proving Theorems 4 and 5

We begin by introducing a few concepts and items of notation used in the
remainder of the paper. The least element of the lattice of congruences, Con A,
will always be denoted by A —it is the identity relation over A. The least element
0> A of Con A, where A is subdirectly irreducible, will be called the monolith of
A, and will usually be denoted by 8.

An algebra A is s.i. iff it is (a, b)-irreducible for some a# b in A - that is, iff
the following are equivalent for any congruence 6 Con A: 6> A4, (a, b)€6. A is
(a, b)-irreducible iff a# b and (a, b) € B, the monolith.

An ideal in A is a non-empty set JS A suchthat J- AUA -JcJie. x-yelJ
if either of x,y is in J. With any ideal J we can form the ideal congruence
AU%J={(x,y)e*A: x=y or x,yeJ}. The factor semigroup may be denoted
simply A/J.

In general, the least congruence 6 of A that includes a given set of ordered
pairs (¢, d;),i=1,...,n, will be denoted C,((c;, d;), 1<i=<n); a pair (x, y) is in
this congruence iff x =y or there is a finite path of elements x,,..., x, with
X =Xg, ¥y =X, and for each j<k there are elements r,s; and some i=1,...,n
such that {x,x.,} equals one of {c,d}, {rc,rd}, {c.-s,di s}, or
{ri-ci-s,r-di-s}

Now we make a few remarks on what has to be proved. It is easy to check that
all of the semigroups mentioned in Theorem 4 belong to ¥{* (i.e. satisfy the laws
El); that Z,, L, R, are subalgebras of LS or of RY’; and that G® is a
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homomorphic image of G X Z, for any group G. In other words, the semigroups
listed in 4(2) generate the same variety as those listed in 4(1), and it is a
subvariety of ¥{". Thereby, 4(1) and 4(2) are reduced to the assertion that every
s.. member of ¥{¥ is listed in 4(2). We also observe that 4(3) is an easy
consequence of 4(1) and 4(2).

The situation as regards Theorem 5 is similar. It boils down to showing that
every s.i. semigroup in %3 has been listed in Statement 5(2).

With these preliminaries out of the way we begin the arguments. For the
remainder of this section n denotes a fixed integer larger than 1. We define ¥ to
be the variety of semigroups defined by the identities (1-8) of Proposition P, thus
ym sy Uy,

DEFINITION 6. Given a semigroup A we denote by I(A) the set of
idempotent elements of A (that is x € I(A) iff x>*=x). For ee I(A), A, denotes
the largest subgroup of A containing e (thus x€ A, iffe-x-e=xand y-x=e=
x -z for some y,z€ A). We put Ag = U{A,:ecI(A)}.

LEMMA 7. (Let A e¥™)

(1) I(A)={x":xe A}.

(2) A, ={x""1:x"=e} for ec I(A).

() Ag={x"":xeA}={x:x""'=x}2{x*:xcA}.
(4) I(A) and Ag are subalgebras of A.

(5) A, - A;S A, for e, feI(A).

This lemma is an obvious reformulation of the significance of identities P1-P5.

LEMMA 8. Let A € V™ be (a, b)-irreducible where a, be A, and e = e*. Then
A=G or A=GO for some s.i. group Ge4™.

Proof. Recall that the concept of (a, b)-irreducibility was defined in the first
paragraph of this section. Define x0y iff exe = eye. By P7 and P8, 6 is a congru-
ence relation on A. Since (a, b) ¢ 6, then 8 = A. Since xfe - x - e it follows that e is
a two-sides identity element for A. Redenote e by 1. Suppose that fe I(A)} and
f# 1. Either the ideal congruence (A - f- A)UA is A, orelse a, be A - f - A and
consequently 1€ A -f-A. In the latter case, 1=u-f-v, 1=u-f-v-1-1=
u-f-o-f-1 (y PH=u'-f. Thus 1=u'-f-f=1-f=f a contradiction. We
conclude that A - f- A ={f}. There can be at most one idempotent f with this
property, hence either I(A)={1} or I(A)={1, 0} where 0 is a true zero element.

If I(A)={1} then every xc A satisfies x" =1, x"*'=x, so0 A=A,. Assume
now that I(A)={0, 1}, and that A >{0}U A,. Then there is ue A, u#0, u"=0.
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(Since u" €{0, 1}.) As before, we have that 1 is in the ideal generated by u. Thus
1=u, x-u u-y or x-u-y All cases reduce to 1=x-u-y as 1>=1. Then
x-u=x-u-x-u-y Inductively, we get x - u=(x - u)" - y"~'. Now 1 # 0 implies
x - u#0 implies (x - u)"#0 (by the last formula) implies (x - u)*=1. Thus u=
(x - uw)*™'-x-u® and u*#0. But then by P2, u"#0, a contradiction. [

LEMMA 9. (Let A e"V}"), j=1 or 2.) The least congruence @ on A such that
A/ 9 satisfies x*~x> has the following properties (1) if x8y and x € A, then ye Ag;
(2) for x, ye Ag, x0y iff x" = y".

Proof. By Lemma 7, 6 is the congruence generated by collapsing each
maximal subgroup of A to a point. Two elements u, v of A are §-related iff there
is a path u=x,,...,x.=v such that for i<k, (x,x,.,)=(c-g -d, c-h; -d) for
some ¢, de A where g, h;€ A, for some e I(A). We can prove the lemma by
showing that when ¢,de A.x,ye A, c-x-decA,thenc-y-deA,

Suppose that c-x-deA; and x,y€ A,. Assume first that A e¥{". Then
A-AcAg by E1(), hence ¢ - y-de A, where

g=(c-y-d)y"=(ce-y-ed)

=(ce)"y"(ed)" by El1(i), P4
= (ce)*x"(ed)"

={cxd)" =Ff.
Now assume that A € ¥$". Then

ced = ce(ce)'ed by E2(i)
=ce(ce - x)"d by Lemma 7(2, 5) and E2(i)
(ce=ce-e=(ce)""' - e=(ce)"™")
= ce(ce - x)" " 'cxd.
This last formula puts ced € A, where g=/(ce)"(ce)"x"(cxd)" = (ce)"f again by
Lemma 7. But cxd =ce - x - d = (ce)"*'xd implies f = (ce)"f, so ced € A;. Then
cyd = ce - yd = ce(ce)"yd
=ce(ce - y" " ")"yd by Lemma 7
= ce(cy” ™ ")" 'cy"d

=ce(ce - y*"")"'ced
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which puts cyd € A, where now

g =(ce)" - (ce)" - e (ced)"
=(ce)"-f=f 0O

COROLLARY 10. (Let Ae¥{™, j=1 or 2.) If A is s.i. with monolith B then
one of the following holds: (1) A =G or G where G is a group. (2) A satisfies
x=~x% (3) BSAA~Ag)UA.

Proof. If (2) fails then for the 6 of Lemma 9, 6= 8. Then by Lemma 9 either
BN*A,&£A for some idempotent e, and we get (1) by Lemma 8, or else
BN2?A; <A and (3) follows by Lemma 9 (§c?A; UXA - Ag)). O

LEMMA 11. V" has no s.i. members satisfying alternative (3) of Corollary
10. Every s.i. member of ¥ satisfying 10(3) is of the form R(G, U, a).

Proof. Let A€¥{™ (j=1 or 2) be s.i. with monolith B AU?*(A - Ag).
(1) .A has a zero element 0 and, where

U={x:x*=0}, B<=AU*U.  Moreover A¢ V™.

Indeed, take any (a,b)eB—A. Then (a”, b")e BN*As; implies a"=b"=e
say. Suppose that A -e- A>{e}. Then the ideal congruence for the ideal
A-e- A includes B so a,becA-e-A. Say b=u-e-v. Then (¥ or ¥Y)
u-e=(ue)"*!, so b=(u-e)"b=(ue)"eb = (ue)"be = be. Similarly, a=a - e. Then
a, b e A,, contradiction. We conclude that A has a zero element 0, namely 0 =e.
Moreover, a’=a""?=0"-a*=0, b>*=0. Now if A were in "’ we would have the
ideal A - A < As (E1(i)) and so the ideal congruence would be disjoint from S,
giving A - A ={0}. Since Z, is the only s.i. zero semigroup, we would have
A=Z,. However, Z, does not satisfy 10(3).

) xeUiffx-y=0 forall yeA.

This follows from the fact that A e ¥ (by E2(i)).

(3) I(A)={0, e} where e#0 and

e-x=x forall xeA.

To show this we first establish that where (a, b)€ 8, a# b, we have e - a=aq,
e - b=>b for every idempotent e# 0. In fact the ideal A - e - A contains at least
two elements, 0 and e, hence a,be A -e- A. Then, say a=u-e - v, giving
a = (ue)"euev = e(ue)"uev by E2(ii), and a =e - a. Likewise b=¢ - b.
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Next, fixing a, b, e as above, we show that e-x=x for all x. Because A
satisfies P7, the relation

0={(x, y): ex=ey}

is easily seen to be a congruence of A. Now if e - x# x then xfe - x and hence
B <6 and we get afb, which contradicts e-a=a, e-b=0b.

Next, suppose that there are two idempotents e# 0 # f# e. Both e and f act as
left identity elements. The relation

xJyeox=yvix,yeAgn(Vz)(x-z=y - z))

is certainly a congruence, and eJf. Thus B<J. This is impossible, because
B-ASHA-AQ).

Finally, suppose that 0 is the only idempotent. Then x - y=x""'y =0 for all x
and y, giving us the contradictory conclusion that A =Z,, once again.

(4) A=A, UUU{0} (disjoint union) where

U=U0U-{0}, A.,-Ucl, U-A={0}.

It is clear that the union is disjoint. To show that it is A, suppose that x& U.
Then x"=e, as x" =0 implies x>=x""?*=0. So we have x"*'=x by (3), and
x" =e, giving x€A,.

That U - A ={0} is a consequence of E2(i).

The only thing remaining, to establish (4), is to show that ge A, and ue U,
u#0, imply g-u#0 (clearly g-ue U by (2). This follows by the calculation
u=e-u=g" ' g-u which establishes also

(5) For geA, the function a €YU, a,(u)=g-u is a permutation of
U.a: A,— YU is a homomorphism of A, into the symmetric group on U.

Now checking Definition 2 we see that A = R(A,, U, a). The proof of Lemma
11 is complete. []

In light of the last two results, what remains in the proof of Theorems 4 and 5
is to consider s.i. semigroups in ¥{" which satisfy the law x*=x>.

LEMMA 12. The only s.i. members of V3" satisfying x*~x> are
Z,, %2, Ry, RY and R(1,1).

Proof. Take A s.i. in ¥$ with monolith 8 and satisfying x>~ x>. Notice that
n+l_n+l

Ag =I(A) and that A Satisfies xyz=yxz (since xyz =x""'y"*'z=x%y*z=
x"y"z = y"x"z = yxz) and xy = x?y.
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(1) When x# x* in A then x* is a (the) zero element.

For the proof, let a# b, aBb and x# x*, A - x* - A >{x?}. The relation defined
by résiffr=s, or else ,s€ A" -x and r-t=s-t for all ¢t is a congruence.
(a, b) € 8 and consequently: a,be{x}UA -x,and a-t=>b -t for all te A. We also
have a,be A -x*- A. Thus e-a=a for some ecI(A) (by E2(i)) and we can
actually write =u-x=uy-x*-u, b=v-x=vy-x*-v,, Then x-a=
X UX: Uy =Ug X2 Uy =uUgX* uy=a, x-b=b a=x-a=x-u-x=u-x-x=
a‘x,b=b-x.Buta-t=>b-tfor all t so a=>b, a contradiction.

(2) When e I(A) and is not a zero element, then ¢ - x = x for all x.

Let a, b be as above. The relation {(u, v):e- u=e - v} is congruence. Hence
unless e is a left identity element we have e - a=e - b. But if e is not the zero
element then a,bec A-e-A=e- A, implying e-a=a, e-b=>b.

By (1), (2) we can write A =SUT where S is the set of idempotents that are
not zeros, s * x =x whenever s€ S and x € A, and moreover if T# J, then A has
azero0eTandt-x=t*-x=0forallteTand xe A. If x,ye S or x, ye T, then
it follows that *{x, y}UA is a congruence. Hence by subdirect irreducibility,
|A|<3, and |S|,|T|<2. Checking through the possibilities establishes the
lemma. O

LEMMA 13. The only si. members of ¥\ satisfying x*=x*> are
Z27 Z27 L25 R2a L(ZO) and R(ZO)'

Proof. Take A s.i. in ¥%” with monolith 8 and satisfying x>=x>. Again
I(A)=Ag, and since Ae¥{’, Ag=A-A. If |A-A|=1, then we have Z,.
Otherwise B =?%(A - A)U A, hence there are idempotents u# v, (u, v) € B.

(1) A satisfies x - y=x?- y>=x" - y".

Since

xy = (xy)*xy = (xy)*x(xy)?y = (xy)x(xy)y = xyx?y> = xx?yx?y?
= x2yx2y?= x2y3 = x2y2,
Here we have used E1(i-iii) as appropriate with n-th powers replaced by
squares.

(2) A satisfies x =~ x2.

It follows from 10(2) and (1) above that the elements x and x? satisfy
x-t=x*-tand t-x=t-x? for all + Hence *{x, x*}UA is a congruence. Thus if
x# x? then {u, v} ={x, x*}. But u=u? v=10%"

(3) Every element e in A is either a left identity, a right identity, or a zero

element.
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Suppose not. Then the relations {(x, y):ex=ey}, {(x, y):x-e=y - e} are non-
trivial congruences (by P7,P8), hence eu =ev, ue = ve. But also u,ve A -e- A.
Say u=r-e-s. Then u=r-e-u=u-e-u (r-e, e-ucl(A)). Likewise v=
vece-v.Butu-re-u=u-e-v=v-e-v.

Now we have A=LURUZ where L is the set of left identity elements, R
the set of right identity elements and Z= or Z={0}.

(4) Either L& R or R= L.

Suppose to the contrary that e L —R and fe R—L. Say x,- e¢# x,. Now
Xo - e-t=xg -t for all t. Hence (with u, v as before, (u, v)€ 8) we have u-t=v -1t
for all t. Likewise (from f), t-u=t-v forall . Then u=u-u=v-u=v-v=o
This is a contradiction.

The conclusion of the lemma follows directly from (3) and (4). O

§3. Proving Theorem 1.

Throughout this section V" denotes a fixed residually small variety of semi-
groups. The notation I{A), A,, Ag from Definition 6 will be carried into this
section. A variety will called of finite exponent if it satisfies some law x" = x?"
(n>1). The least such n will be called its exponent. A variety (or a semigroup) is
nilpotent of class <m if it satisfies the law x, - --+ - x,, =y, - --- - y,.. Itis nil-m if it
is nilpotent of class =m and not nilpotent of class <m —1.

We use the notation S? (and more generally S$™, m=1) for the range of the
operation of the semigroup S (for the set of elements of S which can be
represented as m-fold products). Notice that S is nil-m iff S™ has just one
element while $™~' has more than one, and that S™ is always an ideal of S. The
notation S, where « is any cardinal, denotes the «-th direct power of S, whose
elements are all the functions from « into S.

For constructing s.i. semigroups, we use the fact that when §<Con S and
(a,b)¢ 6 (a, beS), then the set of congruences I' of S such that (a, b)¢ ' and
@ < I’ has maximal members, and for any such maximal I, S/ is s.i., in fact is
(a/T, b/I)-irreducible.

The construction of Definition 2 will be needed in this section in a slightly
more general form.

DEFINITION 14. Let a be any homorphism from a semigroup S into the
semigroup YU where S, U, and {0} are disjoint sets. R(S, U, «) is formed as in
Definition 2, so that § is a subsemigroup, s- u=¢,(u) for seS, ue U, and
x-y=0if y=0or x¢8S. If B:S$°— YU homorphically then L(S, U, B) is formed
analogously but with u - s =,(s).
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The arguments of this section take the following form. We produce relative
splittings of the lattice of semigroup varieties — that is pairs %, X where 2 is a set
of semigroups and ¥ is a set of identities with the property that every semigroup
variety either includes some member of % or else satisfies some law in 3. For this
to be useful in the present situation we need to be able to show that for each
S e, the variety V(S) is not residually small. It then follows that our residually
small variety ¥ must satisfy one of the laws in 3.

LEMMA 15. ¥ is of finite exponent and contains no nilpotent semigroups except
zero semigroups.

Proof. If ¥ were not of finite exponent then the V-free semigroup on one
generator, F,(1), would be isomorphic to the free semigroup on one generator.
Factoring by the ideal congruence *JUA where J={x":n=3} and x is the
generator, we get a nil-3 semigroup in V.

Now suppose that ¥ contains a semigroup S which is nil-m,'m =3. Then S has
a zero element and in fact S™ ={0}. Put S, ={xeS:x-S=S-x={0}}. Then
{0}<8,<S. There is ae S, a#0, and be S-S, with b-SUS-bcS,.

For any cardinal « let

St ={fe*S:f(a)# 0 for at most one a <«}.

Then S™ is a subalgebra of the k-th direct power of S, and we define a
congruence on it. Put

fo.g < (Qa, B<k)(f(a), g(BYeS —{0PVv =g

Define
0=(0:a<k)/b., d={a:a=0)U0:a>0))/6,,

e =((b:a=B)YU{0:a#B))/6, for B<k. Now {hs:B <k} is a set of x distinct
elements of A =8%/6., and 0#d in A. But any congruence ¥ of A that
identifies any two hy, hs, B# & will also identify 0 with @. (There is f€ A such that
either f - ﬁs =d, or ﬁB f=a,sayf- HB =g, while f - hs =0=hs - f) Taking ¥ to
be a maximal member of the set of congruences that don’t identify @ with 0, AV
is s.i. and has at least x elements.

The above considerations contradict the assumption that ¥ is residually
small.

From here on we let n denote the (fixed) exponent of ¥ (Lemma 15). Thus
n>1 by definition.
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LEMMA 16. ¥ satisfies P1, P2 and one at least of the laws E1(i), E2(1), E3(i).

Proof. We have P1 already. For P2, i.e. x*~x"*? look again at F,(1)/J,
J={x":n=23}. By the last lemma this semigroup is a zero semigroup. This implies
that x2€ J. So ¥ satisfies an identity x”>~ x> k=1. Then also x2= x?*"* = x?*"
in F,(1), hence x?>~x*"" holds in ¥.

Now we look at F=F,(2)=F,{(x,y). Take J=F* By Lemma 15, F/J is
nilpotent class 2, hence x - y € J. So we have for some word w = w(x, y) of length
at least 3, that ¥ satisfies

x - y=w(xy). , (1)

If w begins with x? then from P2, P1 we derive x -y=x"-x-y in F, ie. ¥
satisfies E2(i). If w begins with y? then, similarly ¥ satisfies x - y~=y"(xy)=
(y"x)y = x"(y"x) - y, the last equation by substitution and replacement from the
first. Then again x-y=x"-x-y in F. Similarly, if w ends in x? or y* we get
E3(3).

If w  begins with y-x then we derive x-y=y-x-alx, y)=
x -y - al(y, x) - a(x, y), which brings us the case that w begins with x - y, and ends
with neither x> nor y2.

Thus w is xy®**xp or xyxyB or xyx*$ or xyx where 8 may be empty, except
in the third case. In the first case, by substitution,

xy=~xy'"™™* cyx - Blx, y)=xy'"* - yx**yB(y, x) - B(x, y)
=y-x-y-'8

where 8 = J is possible but y# . Then

xy=y"-xy 8"
is derivable, and then from P1, x - y~~y" - xy. Now plugging in y" for x and xy
for y in the original identity (1), we get

xy== »y"xy = Y"(xy)2+k e
z(xy)2+k. e
from which xy=(xy)"*" (or E1(i)) follows with the help of P1, P2.

In the case w=(xy)?*B, E1(i) is immediate. In case w=xyx*8 we reduce to the
preceding case: xy = xyx’B(x, y) = xyxy?B(y, x)xB(x, y). In the case w=xyx we
have xy=x(yx)=x(yxy) giving E1(i) again. [

DEFINITION 17. Let p be a prime integer. S,, is the semigroup with
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presentation

(e, fre*=e f> =T, (ef)Pe =, (fe)’f=T).

In other words, it is the factor algebra of the free semigroup on two generators e, f
modulo the congruence generated by the four listed ordered pairs of words.

LEMMA 18. V(S, ) is not residually small. As ¥ contains no S,, and no
nil-m semigroup (m>2), it must satisfy the law P3.

Proof. S, , has four distinct idempotents, e, f, (ef)? = g, (fe)? = h. It is the union
of four cyclic p-groups A,, Ay, A,, A, generated by efe, fef, ef, and fe respectively.
A word represents a member of A, iff it begins and ends with e, represents a
member of A, iff it begins with e and ends with f, and so on. S,, has 4-p
elements.

Given a cardinal k=w let U<*S,, consist of all functions f such that
f(0)=e,{B:f(B) # e} is finite, and (therefore) eventually f(a)=e. Define

fegififorall B,  (f(B))* = (g(B))",

and

M fle)= 1 gle).
These products are to be formed in the following manner. Since fe U, we can
partition x into disjoint convex sets C,<C,<- - -< C,, such that f is constant on
G, and |C]=1if f(C)#{e}, and f(C) = f(C,,,) implies f(C,) # {e}. The parition is
unique. Taking f(C)={x;}, then

M f@% % in S,

a<x V]

Now U is clearly a subalgebra of “S, , and 0 is clearly an equivalence relation
on U. In fact, @ is a congruence and UJ/@ is a s.i. semigroup of cardinality .k,
proving that V(S, ) is not residually small. We omit the proof. The reader who
wishes to construct it should first look at the analogous situation where « is a
finite cardinal and the products [ |, f(a) can be more directly manipulated.

To prove that ¥ satisfies P3, we assume not. Since it does satisfy P1, P2, we
have A €% and two idempotent elements e, f€ A such that e - f is not idempo-
tent. Using that A satisfies P1, P2 and some one of E1(i), E2(i), E3(i) we can
show that some S,, is a homomorphic image of the subsemigroup (e,f)< A
generated by e and f.

In more detail, we can assume without losing generality that A is generated by
e, f and is subdirectly irreducible. A must satisfy x"*'=~x. (Because A - A=A if
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E1(i) holds, and because every element of A is in the form u - x - v where u”>=uy,
v2=1y, in case E2(i) or E3(i) holds.)

Any two words built out of ¢, f that have equal value in A must begin and end
the same way. Otherwise, by multiplying appropriately and taking n-th powers we
would be led to either (efe)" = (ef)" or (efe)* =(fe)* in A. (For instance, if
flef)* = (ef)'x, I=1 then (efe)" = (efe)' ™ = ((ef)'e)" = (f(ef)“e)" = (fe)** V" = (fe)".)
Now (efe)™ = (ef)" implies (ef)" = (ef)"e = (ef)"f implies (ef)" = (ef)"ef = ef implies
ef = (ef)*. Similarly, (efe)" =(fe)" implies fefe = fe, which implies ef =(ef)"*' =
e(fe)f = efef.

Therefore A is the union of four disjoint parts: T, ={e}U{(efe)*:k=1},
Tr={ftu{(feH*:k=1}, T,={(ef*:k=1}, T,={(fe)*:k=1}. T, T, are cyclic
groups (g = (ef)", h =(fe)"); T, T; are semigroups each of which is the union of a
cyclic group and an idempotent which may or may not be in the group. The
relation

e, (efe)"U{S, (fef)"}u A

is a congruence on A that doesn’t identify ef with (ef)*. (e and (efe)" are fixed by
multiplication by e and identified by multiplcation with f.) Hence we can assume
that e = (efe)", f = (fef)".

The four cyclic groups of which A is the union are now isomorphic: If for
instance (efe)* = (efe)" = e then (fef)“™' = f(efe)“f= fef giving (fef)* = (fef)" =f.
Also (fe)**' =(fef)“e = fe giving (fe)* = (fe)". The structure of A is transparent.

" Since it is s.i., the order of the four groups is a prime p which divides n, and
A=S,,. O

DEFINITION 19. S denotes the semigroup obtained by adjoining an
identity element to S. L, and R, denote the 2-element left and right zero
semigroups.

LEMMA 20. L, RSV generate non-residually small varieties. Consequently,
every idempotent semigroup in V satisfies the law xyzu = xzyu. Equivalently (since
P1,P3 hold in V) the law P6: x"y"z"u"=x"z"y"u" holds in V.

Proof. B=RY’ is a 3-element idempotent semigroup, B ={l, a, b} with
a-b=bb-a=a,1-x=x-1=x 1Itis easily seen that every identity holding in B
is a consequence of the associative law, x*~x, and xyx = yx — which hold in B.
Thus we can construct a semigroup S in V(B) by giving a presentation. Let « be a
cardinal and S, be the homomorphic image of the free semigroup generated by
letters x,, Yo, Zo{a < «) modulo the congruence 6 generated by all instances of the
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laws x®=x, xyx =yx, and by the relations:

xa ya = xazﬂ’

XY = X5Yy» XoZg = %2, (a<B,8<vy)

Any congruence ¥ on S, that has x,¥x, for some a <f has x, - y; ¥x,- 2y,
because xoy, = X,V ¥Xgyp = XpZaPX,Zs = Xoz,. We can show rather easily that
XoY1 7 X0z, in S. Thus S, has a x-element s.i. homorphic image.

A proof that (x,* yy, xo* z,) ¢ 0 goes as follows. Let Q be the set of all words
{elements of the free semigroup) which can be written as a - x, -+ w where a is a
possibly empty word, w is a word in which no x, occurs, w ends in some y,, and
the indices of the letters occuring in x, - w are not all equal. Clearly x, -y, € Q
but x, - z; ¢ Q. By checking all possibilities, it can be shown that whenever qe Q
and ¢’ is obtained from g by replacing an occurrence of some r in q by s, where
r=s is one of the relations generating 6, then q'€ Q. (Here r=s may, in
particular be an instance of either of the laws x*~x and xyx=yx.) From a
well-known characterization of 6, it follows that Q is a union of #-equivalence
classes.:

The above paragraphs show that RY’¢¥ and, by duality, LY’ ¢%. The
idempotent semigroups in ¥ form a subvariety %' <%, and ¥ must satisfy an
identity that doesn’t hold in R$", and likewise for L$". Now the identities of RY"
are exactly those w,=w, that satisfy: (a) balanced - w, and w, contain the same
variables; (b) the rightmost occurences of the letters in w, have the same order
from left to right as they do in w,.

Every idempotent variety not containing RY" satisfies

XZYZ = XZyZXZ. (1)

For the proof of this, suppose that wo=w, does not hold in R{". We have to
show that together with x = x? this identity implies (1). If it is not balanced, say
the letter x occurs in wq and not in wy, replace all letters but x by y, multiply both
sides of both words by y, and simplify by idempotence to derive yxy=y. This
implies (1). If wo=w, is balanced but fails (b), then there are letters x and y such
that

We=0ag X" Bo Yy Yo

wi=apry Birxcy

(any of o, B;. v; may be empty) where v,,. v, contain no x or y. 3, contains no x, 8,
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contains no y. Replace all other letters by z, multiply by x on the left, replace x
and y by zxz, zyz respectively, and simplify by idempotence to obtain zxzyz =
zxzyzxz. Then multiply by x on the left to get (1).

Similarly, ¥ must satisfy

zxzy=zyzxzy (the dual of (1)). | 2)

From (1) and (2) we can derive the law for the idempotent semigroups in ¥
required by this lemma. First xyxz - x=xzxyxz -x (by (2)) =xzx-yxzx=
xzx - yxzxyx (by (1)) = xzxy - xzxy - x = xzxyx. We have derived xyxzx = xzxyx.
Using this several times, Xyzx = XyXyzxzx = XzXyzXyx =X - ZXy * zZXy - X = XZXyX.
Thus we have

XYXZX 2= XyZX == XZyX. 3)

Finally, xyzu = xyzuxyzu = Xyxz * ux - uyzu = xzyx * ux uzyu = xzyu. [1

LEMMA 21. The semigroup ({0,1,2,3},-), in which 0-3=2, 0-y=1 for
y#3, and x - y=x otherwise, generates a non-residually small variety. A non-
tautologous’ identity holds in this semigroup iff both words have length =2 and
agree in their first two places (on the left).

Proof. Call the semigroup T (and verify that it is a semigroup). Take a cardinal
« and let U be the set of functions f € “T such that f(a) =1 for all but at most one
a<k. Let

0=AU{(f, g):2eran (f)Nran (g)}.

Verify that 6 is a congruence on U and that any congruence ¥ =6 which
identifies two functions f, g with Oeran (f) Nran (g) must also identify the func-
tion {1 :a<«) with all the members of the nontrivial §-block. Thus U/@ has a s.i.
homomorphic image of cardinal «.

The statement about the identities of T is easily verified. [

DEFINITION 21. We construct two more semigroups, using Definition 14.
Let U={1,2,3} and let R,, (L,) be the right zero (left zero) semigroup with
2-element universe {a, b} disjoint from {0, 1, 2, 3}. Define a:R,— YU by

3 3
a1 92 @:1Q 02

Define T, = R(R,, U, a) and T, = R(L,, 1).
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LEMMA 22. (1) Neither of V(T;), i=0,1, is residually small.

(2) A law go=¢g, holds in T, iff for some letter x, &; = v, - x where vy,, v, have
the same letters (hence v, is empty iff v, is), and if v, is not empty and x does not
occur in vy, then vy, and vy, terminate with the same letter.

(3) A non-tautologous law g,= ¢, holds in T, iff it is balanced and for some
letters x, yo, y1, €. =X * vi * y; (Yo or v, may be empty) and either y, occurs in x - v,
for each of i=0,1, or else yo=y, and y, does not occur in x * vy * v;-

Proof. We leave the reader to verify (2) and (3). They are needed in the proof
of (1).

To see that V(T,) is not residually small, let (for any cardinal « = w) F, be the
free algebra in V(T,) generated by elements x,5, y, (a <B<k). Let 6 be the
congruence on F, generated by the relations x,gy, = x5y, and x,zyg = x,5y5 for
a<B<k, y<8<«. Using the characterization (2) of the identities of T,, it’s
quite easy to show that the set of all elements of F, of the form w - x_zy,, where
w is a possibly empty word containing no letters y,(8 <), is a union of 9-blocks
and does not include the element x4,y;. Thus (x4,y0, X0, Y1) € 6. However, every
congruence W= 0 that has y, ¥y, for some a <f clearly has x4,y,¥X;,y,. So
F./0 has a s.i. quotient of cardinality .

To see that V(T,) is not residually small, let now F, be the free algebra in
V(T,) generated by X.g, Yap, U, (@ <P <«), and let 6 be the congruence gener-
ated by the relations

XopUy = Xo) U, XoglUp = YapUp,
YapXo1Uo = Yo1X01Uo = YagYo1Xo1Uo»
Xo1Up = XagYo1X01 Up-

Any ¥ =60 that has u,WYu; for some a<B has xq,us¥yyiXxe;Up.
(Y01X01U00YopXapla ¥ YosYasla = YoplUo N F, by (3), and this element is ¥y, guz X
0% gUs WX, gl 0%y, Uy.) To see that (x4 Uy, YorXo1Uo)¢ 6 show, using (3),
that the set of all elements of F, of the form x,s - w - us where x5, occurs in
X - W for some v, and where w contains no letter u, (n<k), is 6-closed and
does not include yg,xpue. O

LEMMA 23. Either Y=V or V' < V§ or else V" satisfies E1().

Proof. Assume ¥ does not satisfy E1(i). Then for sure ¥ satisfies E2(i) or E3(i)
(Lemma 16). We assume E2(i). We also have P1-P3, P6 (lemmas 16, 18, 20).

All the identities of ¥ are balanced. Otherwise, by substituting n-th powers of
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variables we derive the law (using P1,P3} x"y"x"=x" holding in ¥. Then
xy=x-x"-y (by E2(Q)) =x - x"(x"y)"x" - y=x*""'y(x"y)" = u - e where e =e%;
50 (u - e)""' = (ue)"*'e = uee = ue by E2(i) and we have derived E1(i), contrary to
assumption.

Now we apply Lemma 22. ¥ satisfies some balanced identity that is not of the
form 22(2). This means either x=x"(k>1); or a-x=B-y (x,y z denote
distinct variables in this discussion); or « - x =8 - x where o, B# & and x occurs
ina,notin B;ora-y-x=f-z-x where x is not in « - 8 (and by balance y is in
B, z is in «). The first alternative is out because it gives E1(i). The second leads to
x"y"x" =x"y" by substituting x" for x, y" for y,x" for every other variable,
multiplying by x" on the left and using P1, P3. The third leads to y"x = (y"x)*
(k>1) and then to y"x=(y"x)""' by P2~we just replace x by y"x and every
other variable by y". However, this takes us back to E1(i): yx = yy"x = y(y"x)
(y"x)" = yxe with e*=e. So the third is out. The fourth alternative leads to
y"z"y"x = y"z"x: replace y by y", z and every other variable save x by z", and
multiply by y" on the left. We have established:

(1) ¥ satisfies either (i) x"y"x™ =x"y", or (ii) y"z"y"x=~y"z"x.

¥ satisfies some balanced identity that is not in the form 22(3). This means
either x=x* (k>1);or x-a=y-B;0rx-a-y=x-B -y where y occurs in a,
notin B;orx-a-y=x-f3-x with ynotin a;orx-a-y=x-f#-z with y not
in . We have ruled out the first alternative. The second leads straightway to
x"y" = y"x"y". The third leads to (x"y)""' =~ x"y which we have seen is ruled out.
The fifth gives the fourth after replacing z by x. The fourth gives x"y=(x"y)*x"
(k=1) and thence x"y=x"yx", which with E2(i) gives x"y=(x"y)"*! and then
E1(i) again. We have established

(2) ¥ satisfies x"y" = y"x"y".

Finally, {1)(i) above and (2) give y"z" =z"y" which certainly implies E2(ii).
But (1)(ii) and (2) also give E2(ii) immediately. {J

LEMMA 24. P1-P3, P6 and EI1(i) jointly imply P4 and P7', P8"
P7": x"yzu=x"yx"zu
P8': xyzu" =xyu"zu".

Proof. For P7' take e =x", g=(zu)". Then
eyzu=ey(ey)"gzu by EI1()
= eyee(ey)"gzu
=ey(ey)'egzu by P6
= eyezu.
P8’ is by duality.
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For P4, put u=x"""L,v=y""e=x"=u",f=y"=0", h=(uv)" which we
hope equals ef. Clearly, eu = u. fv = v, eh = h = hf. Using P3, P6. efh = efhf = ehff =
h, hef = h. Now

(" *u" Y (uv)ef = v" " 'evef = v"ef = fef

by P8 as v" '=f-v""'. Thus

("' u" " - b= (0" D uo(u)” " ef
=" w0 T W - ef - (uo) ef
by P3, P8’
=" 'u"")""fef (uv)" " 'fef by above

- (vn-lun—l)n—l(uv)n—lef

n-—-1_n—1

=v" ' u" " uvef
= fef.

Comparing first and last lines of the computation gives fef = fefh = fh and then
ef=ef-ef=e-fh=h. O

LEMMA 25. If ¥ satisfies E1(i) then ¥ c¥{".

Proof. The proof will in fact show that ¥{" satisfies E2(i) and E3(i) (which can
be derived directly from Theorem 4).

Let ¥ satisfy E1(i). Then by Lemma 24 and the earlier lemmas it satisfies
P1-P6, P7', P8'. (PS5 is a special case of E1(i).) We return to Lemma 21, and use it
to prove that ¥ satisfies

(1) (1) xnynxzxnynxn+l

(i) xy"x" zxn*—lynxn'

¥ has an identity that is not of the type specified by Lemma 21. This means
either x=x""! or xx-a=x-y-B. (The alternative x-a=y- B leads to the
latter.) The first possibility implies (1)(i), (ii). The second leads to x-y- =
x"*!.y- B, in this replace y by y"x? getting x - y"y=x""'y"y where v is a word
in y" and powers x* (k>1). By P4, P2, y" is (actually, is ¥-equivalent to) a word
in x", y". So we derive x -+ y" - y" - x"=x""'y"y" - x™ which simplifies to (1)(ii)
using P3. By duality of assumptions, we also get (1)(i).
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Now we derive E3(i). Put e = (xy)", and note that ey = ey™*!.

(xy)? = exyxy = exeyxy by P7'
= exeyy"xy
= exeyy"x(yx)"y
= exeyy"xy"(yx)"y by P7’
=a-y"*!' by (1)(i) above.
Then (xy)? = (xy)’y”", so xy = (xy)" " '{xy)*=xy"*".
Now we can get E1(ii), i.e. P7.
x"yz =x"yzz" =x"yx"zz" by P7’
=x"yx"z by E3().

E1(iii) follows analogously. The proof of Theorem 1 is now complete. (See
Lemmas 23 and 25.) O

§4. Review and restatement

By Theorems 1, 4, and 5, if a variety ¥ of semigroups is residually small then
the really interesting subdirect irreducibles in ¥ are groups, groups with 0, and
semigroups of the form R(G, U, a) and L(G, U, a) where G is a group in ¥ and
the conditions of Proposition 3 are realized. To understand the possibilities here,
we shall now reformulate the conditions of Proposition 3 to eliminate U and «a.

DEFINITION 26. A rep-system is a triple (G, H, u) where G is a group, H is
a subgroup of G, ue G—H, and the following hold:
i) Nx-H-x':xeG)={1}.
(ii) Every subgroup K of G, H< K< G, contains u. Equivalently (if G has
finite exponent)

(VxeG)(x¢H—> v Qim(x))
where J,,(x) = J,.(x, u, H) is the formula
@hy, ..o by, heHY(u=x" - x" . h)

and here x” =y - x - y~! by definition.
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For any rep-system X=(G,H, u), we let U*={x-H:x€G}, and we let
aX(x-H)=y-x-H.

PROPOSITION 27. A semigroup of the form R{G, U, a) is subdirectly ir-
reducible iff it is isomorphic to R(G, U*, a*) for some rep-system X = (G, H, u).

Proof. Easy, by Proposition 3: It is known from group theory that every
faithful, transitive representation of a group is isomorphic to a representation that
has the group acting naturally as translations on the set of left cosets of a certain
subgroup. Condition 26(i) is the requirement for faithfulness. Condition 26(ii), for
some ue G- H, is the equivalent of Proposition 3, statement 3. [

For the next lemma, recall that we are using 4" to denote the variety of
exponent n groups, that is, semigroups satisfying the laws x =x"*! and x" =~ y". It
is clear that a semigroup belonging to any one of the varieties %% (j =1, 2,3) is in
%™ just in case it is a group. We denote by G[A] the direct product of all of the
maximal subgroups of A, where A is any semigroup. Thus, in the notation of
Definition 6

G[A]=["1(A.:ecI(A)).

LEMMA 28. Let Ae¥{™. Then V(A)N4"™ = V(G[A)), or in other words, a
group G belongs to V(A) iff G satisfies all identities that hold in every subgroup of
A.

Proof. It is clear that V(G[A]) < V(A)N %™. To get the other inclusion, we
let ¢ be any identity that holds in all maximal subgroups of A, and we show that
the class X consisting of all Be¥{™ such that every maximal subgroup of B
satisfies ¢, is a variety. Thus V(A) < ¥ and, in particular, V(A)N 4™ satisfies &.

In proving that ¥ is a variety, we need only show that HSP¥ = %. That
P¥ =¥ is easy, using Lemma 7: every maximal subgroup of [|(B;:i€I), where
all B;e¥{", is a direct product of maximal subgroups of the B, That S¥ = ¥ is
also easy: if B Ce¥{” and ecI(B) then B,=C,. That HY =% is a little
harder: Let ¢ map C homomorphically onto B, where CeX. Let B, be any
maximal subgroup of B, with e =e? in B. Let ¢ have the form wy(x,,..., x)=
wi(Xq, ..., X ). Choose orbitrary elements u;,...,u, €B, and elements # e C
with ¢(&)=uw. Put f=["]{ a4} and put §,=f-a; "' -f By Proposition P and

i

Lemma 7, we have fe I(C), 5;€ G; (j=1, .. ., k), and moreover ¢(f) = e, d(5,) = y;
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obviously. Since ¢ holds in C;, we obtain that

woltdy, . .., )= d(wWo(Dy, ..., Te))
=¢(wy(Dy, ..., T))

= Wl(ul’ sety uk)-
As ecI(B) and uy,..., u € B, are arbitrary, we have proved that Be¥. [

In the following, main, theorem of this section, the phrase “res. small” can be
replaced by ‘“‘res <k,” or by “res «k” for any fixed infinite cardinal x, with the
appropriate reformulation of the third condition of the theorem.

THEOREM 29. V(A) is res. small (A is a semigroup) iff A has finite
exponent, say n, and the following hold:

(1) A satisfies one of the systems of identities E1,E,, E3 definining ¥\
(i=1,2,3).

(2) V(GIAY) is a res. small variety of groups.

(3) If the law (x-y)""'=~x -y does not hold in A, then the groups Ge
V(G[A)) which admit a rep-system (G, H, u) are of bounded cardinality.

Proof. The necessity of (1) is Theorem 1, of (2) is obvious. For the necessity of
(3), notice that if (1) holds but (3) fails then by Theorem 1, A belongs to ¥{ or
vy, say Ae¥y’. Then by the dual of Theorem 5, V(A) is generated by s.i.
semigroups each of which is isomorphic to Z,, Z,, L,, L or to G, G, or
L(G, U, a) for some group G. As A fails to satisfy the law E1(i), some L(G, U, «)
must belong to V(A). It is easy to see that V(L{G, U, o)) = V(G, L(1, 1)); it can
be done by checking the structure of identities. Hence L(1,1)e V(A) and
L(G, U, a)e V(A) whenever Ge V(G[A]). The necessity of (3) then follows by
Proposition 27. (Notice that the concept of rep-system is self-dual.)

The sufficiency of (1-3) is by Theorems 4, 5, Prop. 27, and Lemma 28.

§5. Finite semigroups
In this section we prove

THEOREM 30. If V(A) is res. finite where A is a finite semigroup, then V(A)
is res< w. (That is V(A) has only finitely many non-isomorphic s.i. semigroups.)

The necessary lemma, which we prove by a model theoretic argument inspired
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by Taylor’s paper [9], is

LEMMA 31. Assume that F is a finite group and that there is no finite bound
on the cardinalities of the rep-systems 3 = (G, H, u) in which G € V(F). Then there
exists an infinite group G € V(F) which admits a rep-system.

Proof of 30 (given 31). Let V(A) be res. finite. Then (1) of Theorem 29 holds,
and V(G[A)) is res. finite also. By the main result of [4], or of [9], V(G[A]) is
res < w. By Lemmas 28 and 31 and Proposition 27 and its dual, if A fails E1(i)
then there must be a finite bound on the cardinalities of s.i. semigroups
R(G, U, a) or L(G, U, «) belonging to V(A). Hence, finally, by Theorems 4, 5 or
by the “res € w” version of Theorem 29, V(A) is res € w.

Proof of 31. Let F be a finite group having no finite bound on the size of the
finite rep-systems (G, H, u), G € V(F). (If there exists an infinite such rep-system,
we are done.) Define an F-system to be any structure

%={(G H uN,...,NJ)

such that k is finite; G e V(F); (G, H, u) is a rep-system (Definition 26);
ueN,<N,<--< N, =G;

N; G (N, is a normal subgroup of G) for i=1,..., k; and such that
1<[H- N, :H- N]<|F|

fori=1,...,k—1, and 1<[H- N,: H|<|F|.
Notice that for any F-system as above, 2* <[G: H]<|F]*.

LEMMA 32. Every finite rep-system (G, H,u), G V(F), gives rise {0 an
F-system (G, H,u’, Ny, ..., N,). Here |G|<|F|“"¥",

Proof. 1t is well known that G is isomorphic to a factor group of a subgroup of
a finite direct power of F. Thus we can assume that G = G/N where G<™F and
N<G. We can write H=H/N, Nc H, u=ii/N, iie™F. Define

T.={fe™F:f,=1forall j=1i}.
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Let 1<t <t,<---<t,<m be the unique sequence of integers such that

H=I-—I'(Gﬂ o)="'=FI'( nTn—l)
<H-(GNT)=---=H-(GNT,_))
<H-(GNTy)---H-(GNT,_)
<H-(GNT)=G.

ji=1,...,k
We clearly have that

H-N=[H-(GNT)IN (1<j<k)
and therefore
{I}<N;<---<N,=G,

the last equality following from the definition.

The index of H* N, in H* Ny, or [H- N, ,:H- N], is the same as [H- (GN
’I_',,_H):I-—I- (GNn ’I-'(,j“)_l)] which is no greater than [T,: T,_,]=|F| (where a =1,,,),
and is at least 2. The same calculation holds for [H - N, : H].

Since H - N, > H, we can write u = h - u’ with he H, u’€ N,. Then (G, H, u’) is
clearly a rep-system.

The bound on the cardinality of G follows from the fact that G is faitfully
represented as permutations of a set of cardinality b=[G:H], and [G:H]=<
|FI*. O

The next lemma is a consequence of the preceding one and of our assumption
about F.

LEMMA 33. There is no finite bound on the length k of finite F-systems
2=(G, H u N,,...,N).

LEMMA 34. For an F-system (G, H,u, Ny,..., N.), any element xe N,— H
satisfies the formula &g from Definition 26.

Proof. We know that x satisfies J, for some positive integer t. Take ¢ mini-
mal and write

u=xM---x"-h (h, h e H).
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Notice that [N,:N,NH]=[H - N,:H]=<|F|*. Assuming then that ¢>|F|?, and
using that N, is normal, some two of the products x" - - x" (i<t) are in the
same left co-set of N, N H; we have then

u=xh-+-+x ','u.-.xhl'h..h’.h

showing that x satisfies &,_;,;, and giving us a contradiction. [J

We are ready to conclude the proof of Lemma 31 with a simple model-
theoretic argument. Readers unversed in the rudiments of model theory and logic
are referred to Chang-Keisler [3], especially chapters 1 and 2 and the compact-
ness theorem on page 67.

A first order language appropriate to our argument has symbols which can be
used to denote the basic operations, - and ', of a group G; it has unary relation
symbols H and N, (1<j<w) which can be used to denote (the universes of)
subgroups of G; and it has constant symbols 1 (for the identity element) and u.
Within such a language we can write out a set of sentences T expressing exactly
the following:

(T1) G is a group and belongs to V(F). (These sentences are identities.)

(T2) H is a subgroup and the N; are normal subgroups of G.

(T3) NN EH:- N forlsj<o.

(T4) u eN H.

(TS) For 1<j<w, (VxeN,— H)J g(x).

From Lemmas 33 and 34 we see that every finite subset of the set T of
sentences has a model. By the compactness theorem, T has a model. Let
(G, H,u, N, (1= j<w)) be a model of T.

From this model we now construct an infinite group in V(F) which admits a
rep-system. We take

G'=H- (U N,,)

n<<w

N=Nkx-H -x':xeG")

$=(G H, a)=(G/N,H/N, u/N).

The claim is that G € V(F) is infinite and that § is a rep-system. Some verification
have to be made.
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It is obvious that | J, -, N, is a normal subgroup of G, and that N’ is a normal
subgroup of G’, and that N<H=<G’, and ue G'. Thus § is well-defined. Also
G € V(F), clearly and it is infinite because[G':N]=[N,: N, NH]=[H - N,: H]=
2* for each positive integer k (which is a consequence of T3).

Referring back to Definition 26, three things remain to be shown. First, ii¢ H,
simply because ug¢ H- N'=H. Second, N(x - H- 7 ':£eG)={1}, which follows
easily from the definition of N’. Third, each element % € G — H must satisfy some
formula &,,. Suppose that X =x/N’ and, without losing generality, allow that
x=h-y, yeN, (look at the definition of G'). Clearly, y¢ H By T5, we have
& (y, u, H) holding in G, where m =|F|*. An easy calculation shows that &,,(y)
implies &, (h - y) if he H. It follows readily that &,,(%, &, H) holds in G.

This concludes our proof of Lemma 31. O

§6. Open questions

The class of cardinalities of the members of a class of algebras X is called the
spectrum of ¥. It is well known that the spectrum of the class of subdirectly
irreducible algebras in a variety of semigroups takes the form of a union of a set
of positive integers, with a convex class of infinite cardinals. For the class of
infinite cardinals there are only four possibilities: the empty set, {w}, {w, 2*], the
class of all infinite cardinal numbers. (These results, holding more generally for
any variety of algebras with countably many basic operations, are proved by
model theoretic arguments in [8] and [6].) The possible residual behaviour
(spectrum of subdirect irreducibles) of any semigroup variety is limited by the
restrictions just stated.

The work reported in this paper gives no information at all on the finite
spectrum in those cases where the infinite spectrum is unbounded. In all other
cases, our work reduces everything to the following question. Let ¢ be any
residually small variety of groups of finite (bounded) exponent. Let (%) denote
the class of s.i. groups in § and let R(¥Y) denote the class of all rep-systems
(G, H, u) where G € %. The spectrum of subdirect irreducibles for the semigroup
varieties associated with ¢ throughout this paper can be any one of the following,
and no other (we ignore cardinals less than 4): (1) Spectrum (¥(%)); (2) {x:x or
k—1 is in Spectrum (£(9))}; (3) the union of the class (2) with the class of all
cardinals 1+« +A where for some (G, H, u)c R(¥9), we have «=|G| and A=
[G:H].

QUESTION 1. What classes are realized as (1), (2), or (3) for arbitrary
varieties ¢ of finite exponent?
This question is no doubt hopeless, but we have some others.
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QUESTION 2. Does there exist a finite group F, with abelian Sylow sub-
groups, such that R{ V(F))is unbounded? —is bounded but includes rep-systems of
size w?~of size 2“7

QUESTION 3. Is it possible for one, but not both, of ¥(%) and R(¥%) to be
bounded?

PROBLEM 4. Characterize the class of finite groups F such that R(V(F)) is a
finite set of finite systems, up to isomorphic systems. (This problem is certainly
amenable through the methods of proof used in Section 5. The problem is really
to find a very nice characterization.)

QUESTION 5. Does there exist any variety of group or of semigroups which
is res <w and not res K w? Can it be a locally finite variety?
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