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Residually small varieties of semigroups 

RALPH MCKENZIE (1) 

Although much is known about the residual character of varieties of algebras, 
interesting unsolved questions can still be formulated.  A question posed by 
Rober t  Quackenbush in 1971 (in [7]) has received more  attention with each 
passing year. Quackenbush asked whether there exists any finite universal algebra 
A such that the variety it generates, V(A),  is residually finite but not residually 
< n  for any positive integer n. In this paper,  a hypothetical algebra with these 
propert ies  will be  called a Quackenbush algebra. Instead of writing " for  some 
positive integer n the variety W is residually < n " w e  shall write "W is residually 
<<oJ." All the concepts used in this introduction will be defined in Section 0. 

Our  paper  is a response to Quackenbush 's  question, as are the papers  [1], [2], 
[4], and [9]. We prove here that no Quackenbush algebra is to be found in the 
variety of semigroups. That  it cannot be a group was proved in [9]. That  in fact it 
cannot belong to any variety all of whose algebras have modular  congruence 
lattices will be proved in [4]. (Taylor [9] proved a slightly weaker  result earlier.) 

Quackenbush 's  question has now been answered in two ext reme cases. In the 
one extreme we have varieties with very well-behaved (modular) congurence 
lattices, for example,  the variety of groups and the variety of rings. At the other 
extreme lies the variety of semigroups. It is crucial to our  arguments  in this paper  
that if a semigroup is not a group, and in fact is not very close to being a rather 
well-structured union of groups, then it generates a variety in which the congru- 
ence relations are so il l-behaved that large subdirectly irreducible algebras' are 
easily constructed. (The generated variety is not even residually small.) 

To be much more  precise, our main result, whose proof  occupies the bulk of 
the paper,  can be formulated as follows (a condensation of Theorems  1, 4, and 5). 
Any subdirectly irreducible semigroup that generates a residually small variety 
and has more  than three elements  either (1) is a group of finite exponent ;  or  (2) is 
obtained f rom such a group by adding a zero element;  or  (3) can be constructed as 
the disjoint union of a subgroup G of finite exponent  and a zero sub-semigroup 
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U, where, (say) G �9 U = U and U .  G = (0) (or reversely), and the products G �9 U 
are:def ined by a faithful representation of G as a group of permutations of 
U - ( 0 ) .  From this we achieve a reduction of any question concerning the residual 
character of a residually small semigroup variety 0//" to two questions regarding a 
certain variety G(~)  of groups of bounded exponent.  The one question concerns 
the subdirectly irreducible groups in G(~), while the other  has to do with the 
groups G ~ G(~ )  whose lattice of subgroups has a proper  strictly meet  irreducible 
member  H which contains no non-trivial normal subgroup of G. 

The question whether V(A) is residually small (A is an arbitrary semigroup) is 
similarly reduced, in Theorem 29 of Section 4, to questioris about the variety 
generated by a certain group correlated with A. 

Two final remarks to finish the introduction: The results for groups and rings 
(and more widely, algebras in any congruence modular variety) which were 
obtained in response to Quackenbush's question are theoretically stronger than 
what we have been able to prove about semigroups. Any congruence modular 
variety V(A) generated by a finite algebra A must be residually <<~o if it is even 
residually small. (If A is a group, this happens just in case all the Sylow subgroups 
of A are a be l i an - s ee  [4].) We have so far only been able to prove that any 
variety V(S) generated by a finite semigroup S, which is not residually <<~o must 
contain at least one infinite subdirectly .irreducible semigroup. (See the open 
questions in w particularly question 2.) 

The second remark is that Quackenbush's  original question is still open. There  
is only one published example of a locally finite, residually finite variety of 
universal algebras that is not residually <<o9. This is in Baldwin-Berman [2]; the 
variety has infinitely many basic operations and, of course, is not generated by any 

single finite algebra. 

Added in April 1980 

This manuscript was written in April 1979. The author was blissfully unaware 
at that time that anyone else was working on the same problems. The referee has 
now brought to my attention the work of Golubov-Sapir  ("Varieties of finitely 
approximable semigroups"; see Soviet Math. Doklady 20 (1979), no 6, pp. 
828-832).  Detailed proofs of their results have not yet appeared. From their 
abstract, however, I draw the following conclusions. They  have obtained a 
characterization of residually small, finitely generated semigroup varieties, in 
terms of identities, and also of generators. It looks as though one can make a 
direct translation between their results and those of this paper,  in the finitely 
generated case. The difference between our  work and theirs apparently is that we 
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concentrate on the subdirectly irreducible semigroups and do not require the 
varieties to be finitely generated. 

w Orientation 

An algebra is a system consisting of a non-empty set and a list of finitary 

operations over that set. A variety is a class of similar algebras closed under the 
formation of subalgebras, homomorphic  images, and direct products (of any 
number  of factors). For more detail on these basic concepts and any others used 

in this paper  we refer the reader to Gr~itzer's book [5], especially its appendix on 
varieties written by Walter Taylor.  

A semigroup is an algebra with just one basic operation,  a binary operation 
which satisfies the associative identity. 

According to a fundamental  result of Garret t  Birkhoff, a class of algebras is a 
variety iff it can be defined, like the class of groups and the class of semigroups, as 
the class of all algebras (similar in type of operations to a given algebra) satisfying 
a certain set of identities. 

A congruence relation of an algebra A is a subalgebra of 2A that is also an 

equivalence relation over A. The congruence relations of A form a lattice Con A. 
With any R ~ C o n A  we can form the factor algebra A / R  and the natural 
homomorphism 7rn from A onto A/R. Here  R={(x,y)~2A:TrR(x)=TrR(y)}; 
moreover ,  any set R ~ 2A is a congruence relation of A iff it is the kernel, in this 
sense, of some homomorphism with domain A. 

An algebra A is called subdirectly irreducible (s.i. for short) if its congruence 
lattice has an a tom which is a subset of every congruence relation except the 
identity relation. The importance of subdirectly irreducible algebras hinges on a 
fact observed by Birkhoff: every algebra A is isomorphic to a subalgebra of a 
direct product of s.i. homomorphic  images of A (which belong to any variety to 
which A belongs). Thus if a variety possesses only a few s.i. algebras, then all of 
its members  can be found as subalgebras of products of those few. 

We use small Greek letters like K, )t, Ix to denote  cardinal numbers,  and 
Roman  letters like i,], k , . . . ,  n to denote nonnegative integers (finite cardinal 
numbers).  The least infinite cardinal number  is co = {0, 1, 2, 3 . . . .  }. 

A variety is called residually <K (here K is any cardinal, possibly finite) if 
every s.i. algebra in it is of cardinality less than K. We shall use in this paper  the 
abbreviation " r e s < K "  for this concept. Then "res ~< K" is the equivalent of 

"res  <K § where K § is the cardinal successor of K. A variety ~ is called res. small 
if ~ is res <K for some K. ~" is called res. finite if it is res <co, and called res <<K if 

is res <)t for some )t < K. ~ is locally finite iff every finitely generated algebra in 
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is finite. The smallest variety containing an algebra A is V(A)=  HSP (A), the 
class of homomorphic  images of subalgebras of direct powers of A. 

A direct power of A will be denoted tA, or "A - t h e  universe of this algebra is 
the set of all functions from the set I (or, respectively, the set K) into the universe 
of A. Exponents on the right will be used notationally for other  purposes. For 
instance, as IAI will denote the cardinality of the universe of the algebra A, we 
will write I~AI -- [A [ ~ implicitly determining )t k as notation for cardinal exponenti-  
ation. (Take the above as definition of )t~.) Also we use B " ,  where B is a subset 
of a semigroup, to denote the set of all m-fold products of members  of B. 

w Definitions and main results 

The central results stated in this section, and proved in Sections 2 and 3, are 
Theorems 1, 4, and 5. 

The operation of a semigroup will be written as multiplication. Thus x �9 y, and 
sometimes xy, stand for the product of x and y, and x" denotes the n-th power of 
x. A semigroup will be called a group of exponent n(n > 1) if it satisfies the laws 
x"+~x, x " - ~ y " ;  a semigroup A =(A,  .) satisfying these laws becomes a group 
(A, . ,-~) if we define x -~ = x  "-1. A semigroup will be called a semigroup of 
exponent n if it satisfies the law x" ~ x 2". 

My search for the properties of a semigroup which would force it to generate a 
residually small variety led me to progressively stronger necessary conditions in 
the form of identities. Finally it became possible to combine these conditions into 
a simple statement. For each integer n > 1, I define three varieties ~}")(j = 1, 2, 3). 

DEF I NI TI ON E. (1) ~]"~ is the class of all semigroups satisfying the laws (i) 
(xy)"+1~xy,  (ii) x"yz~xnyx"z,  and (iii) xy z" ~xz"y z  ~. 

(2) ~2 ") is the class of all semigroups satisfying the laws (i) "§ x y ~ xy, and (ii) 
x'~ynz -~- y"x"z. 

(3) ~3 ") is the class of all semigroups satisfying the laws (i) xy "+1~ xy, and (ii) 
xynz " ..~.xzny n. 

T H E O R E M  1. Every residually small semigroup variety is contained in some 
one o[ the varieties ~"). 

Notice that ~'~") is self-dual, that is if A = (A, - )~  7/'] ") then A s= (A, .a)~ oV],~ 

where x .  Oy = y . x .  Also ~3 ") is the dual of ~'~"). Notice also that each of the 
varieties o/~/,) consists of exponent  n semigroups. In fact 
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P R O P O S I T I O N  P. The following laws hold identically in ~ (j = 1, 2, 3): 
(1) x " ~ x  2" 
( 2 )  x 2 -'~- x n + 2  

(3) x " .  y" ~ ( x " "  yn)2 
(4) x" .  y" ~ ( x  ~247 y.+l)~ 
(5) (x "+1" y ,+l )n+X~x,§  y,+a 

(6) x " y ~ z " u ~ x " z " y " u "  
(7) x"yz -~ x"yx"z 
(8) xyz ~ ~ xz ~yz ~. 

This proposition, which is hardly obvious, will be proved at the end of this 
section after we first describe the subdirectly irreducible semigroups in the 
varieties ~)"~. 

By Z2 we denote the 2-element  semigroup consisting of the integers 0, 1 and 
actual multiplication. A zero semigroup is one in which all products are equal. Z2 
is a 2-element  zero semigroup. A left(right) zero semigroup is one satisfying the 

law x - y ~ x  (or x . y ~ y ,  respectively). L2, R2 denote  2-e lement  left zero 
(respectively, right zero) semigroups. The semigroup resulting f rom adding a 
(new) zero element  0 to a given semigroup A is denoted A (~ Thus the universe 
of A "~ is A U{0} (it is assumed that 0 ~ A)  and in A ~~ x �9 y = 0 if ei ther of x and y 
is 0, and otherwide x �9 y is the product of x and y in A. 

A further construction is needed.  

D E F I N I T I O N  2. Let  G be a group and o~ be a representat ion of G over a 
non-void set U, such that G, U, and {0} are disjoint sets. (A representat ion is a 
group homomorphism of G into the group of permutat ions of U.) We define 
R(G, U, a) to be the semigroup with universe G U UU{0} and operat ion defined 

as follows (g, h ~ G;  u, v ~ U): 

g .  u = ag(u), 

g .  h = the product in G, 

all other products are O. 

We define L(G, U, a) analogously, except that a has to be representat ion of 
G o over U (i.e. otg.h(u) = cth(ctg(u))), and we put u �9 g = ag(U) and g .  u = u �9 v = 

0. 
When the representat ion a is obvious or implicit we simplify our notation to 

R(G, U) and L(G, U). This is the case if G or U has only one element.  
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PROPOSITION 3. R(1, m) is subdirectly irreducible iff m = 1. When IGI~>2 
the following conditions are jointly necessary and sufficient for R(G,  U, a)  to be 
subdirectly irreducible. 

(1) a is faithful (g~ h implies ag~ ah). 
(2) a(G)  acts transitively on U. 
(3) For some u~  U (equivalently, by (1), (2) for every u ~ U), Stab (u )=  

{g~ G: az(u)=  u} is a completely meet irreducible member of the lattice 
of all subgroups of G. 

This proposition is proved at the end of this section. 
The next two theorems show the power of Theorem 1. The varieties ~3 ") are 

not mentioned as they are dual to the ~2 "~. For the correct statement of the results 
for ~3 "), replace R(G,  U, ct) by L ( G  ~, U, a) and dualize all other mentioned 
semigroups. 

T H E O R E M  4. (1) ~A~) is generated as a variety by the semigroups 
Z2, L(2 ~ R(2 ~ and by the subvariety ~d ~) consisting of all groups of exponent n. 

~'("~ the following: G and G (~ where G ~ ~d ~) is s.i., (2) The s.i. members 01 t, ~ are 

Z2, Z2, L2, R2, L (2 ~ R(2 ~ 
(3) A variety ~ _ ~ )  is residually small iff grfl ~(~ is residually small. 

T H E O R E M  5. (1) ~ is generated as a variety by the semigroups 
R~ ~, R(I ,  I), and the subvariety ~"~ of exponent n groups. (2) The s.i. members of 
T(2 ") are the following: G and G (~ where G ~ c~(.) is s.i.; R(G,  U, a)  where G ~ ~g~"~ 
and the conditions of Proposition 3 hold; Z2, Z2, R2, R~ '~. (3) A variety 7/" ~ T~2 "~ is 
residually small iff: 7/" fq ~"~ is residually small and, further, if ~F~: 7/'~ "~ then the 
groups G ~ ~ f3 cg("~ which admit a representation with the properties Prop. 3(1-3) 
are bounded in cardinality. 

Proof of Proposition P. This proof and the next one are not crucial to 
understanding the later arguments, and may be skipped over. 

First, assume that identities E1 (of definition E) hold in a semigroup A. 
Substitute x for y, z in El(i ,  ii) to obtain x2rt+2"~-'X 2 and xrt+2~X 2rt+2, from which 

Pl ,  P2 follow directly. Then by El(ii) and P1, x "y"x"y" - -xny"y  " =  x"y ~, which is 
P3. P5 is a substitution instance of (i) and P7, P8 are just (ii), (iii). Noting that P3 
yields x" �9 yn=  (x ~ . yn)n, we derive P6 from P1-P3, P7, P8 (abbreviating e = x", 
f =  y", g = z", h = u"): efgh = efghefgh, and from the latter expression, using P7, 
P8, one removes in turn the first f, the first h, the second e, the second g, to obtain 
egfh. 



Vol. 13, 1981 Residually small varieties of semigroups 177 

We now show that P4 follows from P1-P3 and P5-P8.  Again denote  x" by 
e, y" by f, (x,+t . y ,+ l ) ,  by g. We have e 2= e, f 2 = f ,  g2= g. Now 

( f y , - l  e x , - l f )  . (x-+ '  y-+l) z = ( fy , , - '  ey,,+~)(x,+ly .+~) = ( f y " - l  ey"+l) (ex"+ly"+l)  = 

fy2"ex"+~y"+~=fx"+~y "+~, using PT, P8. Thus if u = ( f y " - ~ e x " - ~ f )  "-~, then 
u . g =  f . x"+~ " y "+~ and e x " - ~ u g = e x " - ~ f x  "+~ . f y = e 3 f y = e y " + k  Taking n-th 
powers, we get e l =  ey " ( " + ~ =  (ey"+t)" (by P7 )=  v - g  for a certain v. Therefore  

ef  = e l .  g = e fg f=  egf  = g. The equality ef  = g is just P4. 
Now assume that the identities E2 defining ~t/~ ~ hold in a semigroup A. That  

P2 holds in A, and therefore P I as well, follows by substitution of y for x in E2(i). 
P3 follows immediately from P1 and E2(ii). For P5, x"+~y "+~ = (x"+ty "+~) - y" = 
(x"+~-y"+ t ) "+~y"=(x"+~-y"+~)  "+~ using P1 and E2(i). For  P7, x " y z =  

(x"y)"+~z = ( x " y ) x " ( x " y ) " z  = ( x " y ) ( x " y ) " x " z  = x " y x " z  using P1 and E2(i, ii). For 
PS, zu"  ~-  ( Z U ~ ' I )  n + l  " U n = ( Z U n ) "  " U n Z U  ~" = u n ( z u ~ )  n " Z " U n "~- U r l ( Z U r t ) n 4 - 1  " U "  = 

u"zu  '~. Now P6, P4 follow as in the argument  for ~]"). [ ]  

Proof of  Proposition 3. The correctness of the proposition when ]GI = 1 being 
trivial, we consider the case I G I >  1. Assume that R ( G ,  U, a ) =  S is subdirectly 
i r reducib le .A block of U is a set B = {ag(u): g e G }  where u e U. We define some 
relations over S (x, y range over  S). 

xO~y o x  = y v ( x ,  y~  G A a ~  = %)  

xOuy ~ x = y v (x, y ~ U) 

xOBy *--~x= y v ( x ,  y E B U{0}) 

where B is a block of U. It is clear that each of these relations is a congruence of 
S. Since 0B > A  (the identity relation on S) and 0BA0C= A for distinct (and 
therefore disjoint) blocks B, C, it follows from the s.i, character  of S that there is 
only one block B =  U - i . e .  a ( G )  is transitive over  U. Since OuAO,~ = A  ( U  is a 
block), then 0~ = A - i.e. a is faithful. Then since G has more  than one element, 
so does U, and it follows that the unique smallest congruence t0>A of S is a 
subset of 0u- 

Let u o ~ U ,  g o n g  be such that a~,(uo)#uo,  Define F =  Stab (uo)= 
{g~ G:  a~(u0) = uo}. We conclude the proof  that s.i. ~ (1-3) and also establish 
that (1-3)::~ s.i., by proving the following claim. 

CLAIM.  Assuming that (1), (2) hold, the pair (Uo, ago(uo)) belongs to every 
congruence of S except A iff go belongs to every subgroup of G that properly 
includes F, 

To  prove it suppose first that uoOgo" uo whenever  0 > zl is a congruence. If H 
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is a subg roup  of G p roper ly  ex tending  F, then 

a W{(g- uo, g"  h �9 u , , ) : heH ,  g c G } = O  

is a congruence  re la t ion on S, b igger  than Zl. H e n c e  (uo, go" uo)= 
(g �9 Uo, g �9 h �9 uo) for  s o m e  (g, h ) e  G x H. H e r e  g, go I �9 g �9 h ~ F hence  goe  H. 

Converse ly ,  suppose  that  go does  be long  to every  subg roup  p rope r ly  ex tend ing  
F. Then ,  given 0 > A ,  we can define H = { g e  G: uoOg" uo}. It is c lear ly a g roup  
and  H ~ F .  W e  must  invest igate  0. If O f ' I 2 G ~ A  then, where  ( g , h ) e O - A ,  we 

have  ( g -  u, h �9 u ) c O N Z U - A  for  some  u, by fai thfulness of  a.  If gOu for  s o m e  
g e G ,  u e U t h e n  g . u 0 u . u = 0 a n d  U = G - g - u _ ~ 0 / 0  hence  2 U _c 0. T h e s a m e  
conclusion follows if 00x for  some  x p  0. Putt ing all this toge ther ,  we  conclude  
that  there  exists ( u , v ) ~ O - A ,  u , v ~ U .  By transit ivity of  a ( G )  we have  

u o O g ' u o ~ u o  for  s o m e  g. Consequen t ly ,  H > F ,  and so g o e H .  So, finally, 

uoOgouo. []  

w Proving Theorems 4 and 5 

W e  begin by in t roducing a few concepts  and i tems of no ta t ion  used in the 
r e m a i n d e r  of the paper .  The  least  e l emen t  of  the lattice of congruences ,  Con  A, 
will a lways be deno ted  by A - i t  is the ident i ty relat ion over  A. T h e  least  e l emen t  
0 > A of Con A, where  A is subdirect ly  i rreducible,  will be called the monolith of 
A, and  will usually be  deno ted  by /3. 

A n  a lgebra  A is s.i. iff it is (a, b)-irreducible for  some a ~ b in A - that  is, iff 
the fol lowing are equiva len t  for  any congruence  0 ~ Con A :  0 > A, (a, b ) ~  0. A is 
(a, b) - i r reducible  iff a ~  b and (a, b)~/3 ,  the monol i th .  

A n  ideal in A is a n o n - e m p t y  set  J ~ A such that  J .  A U A �9 J ~ J, i.e. x �9 y ~ J 
if e i ther  of  x, y is in Jr. With any  ideal  J we can fo rm the ideal congruence 
A u ZJ={(x ,  y ) ~ 2 A :  x = y  or x, y ~ J } .  T h e  factor  s emig roup  m a y  be deno t ed  

s imply  A/J.  
In  general ,  the least congruence  0 of A that  includes a given set of o rde red  

pairs  (q, dl), i = 1 . . . . .  n, will be  d e n o t e d  Cg((q, d~), 1 ~< i ~< n); a pair  (x, y) is in 

this congruence  iff x = y  or there  is a finite pa th  of e l emen t s  Xo . . . .  , xk with 
x = Xo, y = xk, and for  each j < k there  are e l ements  rj, s i and some  i = I . . . . .  n 

such tha t  {xj, xi+l} equals  one  of {q,d~}, {rjq, rid,}, {q " sj, di " sj}, or 

{r i �9 ci " s i, r i "di �9 si}. 
N o w  we m a k e  a few r emarks  on wha t  has to be  proved.  I t  is easy  to check that  

all of  the semigroups  men t ioned  in T h e o r e m  4 be long  to W'~ ") (i.e. satisfy the laws 

E l ) ;  tha t  Zz,  L2, Rz  are  suba lgebras  of  L~2 ~ or  of  R(z~ and  that  G ~ is a 
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homomorphic  image of G x Z2 for any group G. In other  words, the semigroups 
listed in 4(2) generate the same variety as those listed in 4(1), and it is a 
subvariety of ~ Thereby,  4(1) and 4(2) are reduced to the assertion that every 
s.i. member  of o/A() is listed in 4(2). We also observe that 4(3) is an easy 
consequence of 4(1) and 4(2). 

The situation as regards Theorem 5 is similar. It  boils down to showing that 
every s.i. semigroup in ~ 2) has been listed in Sta tement  5(2). 

With these preliminaries out of the way we begin the arguments .  For the 
remainder  of this section n denotes a fixed integer larger than 1. We  define ~'(") to 

be the variety of semigroups defined by the identities (1-8) of Proposit ion P, thus 
~(") ~_ ~ " )  tO ~ " ) .  

D E F I N I T I O N  6. Given a semigroup A we denote  by I ( A )  the set of 
idempotent  elements of A (that is x ~ I (A )  iff x 2= x). For e e I ( A ) ,  A ,  denotes 
the largest subgroup of A containing e (thus x e Ae iff e �9 x �9 e = x and y �9 x = e = 
x"  z for some y , z ~ A ) .  We put Ao  = U { A , : e ~ I ( A ) } .  

L E M M A  7. (Let A ~ ' ( " ) . )  
(1) I ( A ) = { x " : x ~ A } .  
(2) A,  = {x "+l : x" = e} for e ~ I (A) .  

(3) A o  ={x " + l : x e A } = { x : x  "+l =x}_D{x=:xeA}. 
(4) I ( A )  and A o  are subalgebras of A.  

(5) A ,  �9 A I ~ A , .  , for e, f e I ( A ) .  

This lemma is an obvious reformulation of the significance of identities P1-P5.  

L E M M A  8. Let A ~ V (") be ( a, b )-irreducible where a, b ~ A ,  and e = e 2. Then 

A = G or A = G (~ for some s.i. group GeCg ("). 

Proof. Recall that the concept of (a, b)-irreducibility was defined in the first 
paragraph of this section. Define xOy iff exe = eye. By P7 and P8, 0 is a congru- 
ence relation on A. Since (a, b) r 0, then 0 = zl. Since xOe �9 x �9 e it follows that e is 
a two-sides identity element for A. Redenote  e by 1. Suppose that  f ~ I ( A )  and 
f ~  1. Either  the ideal congruence 2(A �9 f "  A) U A is zi, or else a, b ~ A �9 f"  A and 
consequently I ~ A - f . A .  In the latter case, l = u - f ' v ,  l = u - f ' v ' l ' l =  
u . f - v . f . 1  (by P 7 ) = u ' . f .  Thus l = u ' - f - f = l . f = f ,  a contradiction. We 
conclude that A - f .  A = {f}. There  can be at most  one idempotent  f with this 

property,  hence either I ( A )  = {1} or I ( A )  = {1, 0} where 0 is a true zero element. 

If I ( A ) = { 1 }  then every x ~ A  satisfies x " = l ,  x " + l = x ,  so A = A x ,  Assume 
now that I ( A ) = { 0 ,  1}, and that A > { 0 } U A 1 .  Then there is u ~ A ,  uT~O, u " = 0 .  
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(Since u" ~{0, 1}.) A s  before ,  we have  tha t  1 is in the  idea l  g e n e r a t e d  by  u. Thus  

1 =  u, x . u ,  u . y ,  or  x . u . y .  All  cases  r educe  to l = x . u . y  as 12=  1. T h e n  

x �9 u = x �9 u �9 x �9 u �9 y. Induct ive ly ,  we ge t  x �9 u = (x �9 u)" �9 y" -a .  N o w  1 ~ 0 impl ies  

x - u ~ 0  impl ies  ( x - u ) " ~ 0  (by the  last  fo rmula)  impl ies  ( x - u ) " =  1. T h u s  u =  

(x �9 u) "-~ �9 x �9 u 2 and u2~k0. But  then  by  P2,  u " ~ 0 ,  a con t rad ic t ion .  [ ]  

L E M M A  9. (Let  A ~ " ) ,  ] = 1 or 2.) T h e  least congruence  0 on A such  that  

A /  O satisfies x 2 -~ x 3 has  the fo l lowing  properties (1) i f  xOy a n d  x ~ A 6 ,  then  y ~ A c  ; 

(2) for  x, y ~ A ~ ,  xOy iff x "  = y". 

Proof.  By L e m m a  7, 0 is the  cong ruenc e  g e n e r a t e d  by co l l aps ing  each  

max ima l  subg roup  of A to a point .  T w o  e l e m e n t s  u, v of A are  0 - r e l a t e d  iff the re  

is a pa th  u = x 0 , . . . ,  Xk = V such tha t  for  i < k ,  (xi, x~§ (c �9 gi " d, c �9 hi �9 d)  for  

some  c, d ~ A where  gi, hl ~ A ,  for  s o m e  e ~ I ( A ) .  W e  can p r o v e  the  l e m m a  by 

showing  tha t  when c, d ~ A,  x, y ~ A~, c �9 x - d ~ A t, then c �9 y .  d ~ A: .  

Suppose  that  c . x .  d e A t  and x, y ~ A e .  A s s u m e  first tha t  A ~ ] " ) .  T h e n  

A �9 A _ A G  by E l ( i ) ,  hence  c �9 y �9 d 6 A g  where  

g = ( c  . y . d)  "~ = ( c e  �9 y . ed)" 

= (ce )"yn(ed )  " by E l ( i ) ,  P4 

= (ce )"x" (ed )"  

= (cxd)"  = f. 

N o w  assume that  A ~ 2  n). Then  

ced = ce(ce )"ed  by E2(i)  

= ce(ce  �9 x )"d  by L e m m a  7(2, 5) and  E2(i)  

(ce = ce . e = (ce)  "§ �9 e = (ce)  "+~) 

= ce (ce  �9 x ) " - l c x d .  

This  last  fo rmula  puts  c e d e A g  w h e r e  g = ( c e ) " ( c e ) " x " ( c x d ) "  = ( c e ) " f  aga in  by  

L e m m a  7. But  cxd  = ce �9 x �9 d = ( c e ) " §  impl ies  f = (ce)"f ,  so c e d ~  A: .  T h e n  

c y d  = ce �9 yd  = c e ( c e ) " y d  

= ce (ce  �9 y'~-~)"yd by [ e m m a  7 

= c e ( c y n - 1 ) " - t c y n d  

= ce(ce  �9 y " - l ) n - l c e d  
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which puts cyd ~ Ag where  now 

g = (ce)" �9 (ce) ~ �9 e .  (ced)" 

=(ce)n  " f = f .  [] 
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C O R O L L A R Y  10. (Let  A E~I  "~, j = 1 or 2.) I f  A is s.i. with monolith [3 then 

one of  the following holds: (1) A = G or G ~~ where G is a group. (2) A satisfies 
X2~'~-'X 3. (3) / 3 ~ 2 ( A - A o ) t 3 A .  

Proof. If (2) fails then for the 0 of L e m m a  9, 0/>/3. Then  by L e m m a  9 either 
/ 3 N 2 A ~ A  for some idempoten t  e, and we get (1) by L e m m a  8, or  else 

/ 3 N 2 A o  ~ A  and (3) follows by L e m m a  9 ( O ~ _ 2 A o U 2 ( A - A o ) ) .  [] 

L E M M A  1 1. ,//.],t~ has no s.i. members satisfying alternative (3) of  Corollary 

10. Every  s.i. member  of  ~ satisfying 10(3) is of the form R ( G ,  U, a).  

Pro@ Let  A e ~ l  ") (j = 1 or  2) be s.i. with monol i th  /3 c_ A U 2 ( A - A o ) .  
(1) A has a zero e lement  0 and, where  

0 = {x : x 2 = 0}, /3 ~_ ,A tO z U. M o r e o v e r  A ~ ~ ] " .  

Indeed,  take any (a, b) ~/3 - A. Then  (a", b n) 6 19 f'l ZA o implies a m = b" = e 

say. Suppose  that  A ' e .  A > { e } .  Then  the ideal congruence  for  the ideal 
A . e . A  includes /3 so a , b ~ A , e . A .  Say b = u - e . v .  Then  ( ~ ] "  or ~%n~) 

u �9 e = (ue) n§ so b = (u �9 e)"b = (ue)"eb = (ue)"be = be. Similarly, a = a �9 e. Then 

a, b ~ Ae, contradict ion.  We  conclude that A has a zero  e lement  0, namely  0 = e. 
Moreover ,  a 2 = a "§ = 0 �9 a 2 = 0, b z = 0. Now if A were  in ~]") we would  have the 

ideal A - A  c AG (El(i)) and so the ideal congruence  would  be disjoint  f rom /3. 

giving A .  A ={0}. Since Z2 is the only s.i. zero semigroup,  we would  have 

A ~ Z 2 .  However ,  Z2 does not satisfy 10(3). 
(2) x e O i f f x . y = 0  for all y e A .  

This follows f rom the fact that  A ~ ( 2  ") (by E2(i)). 

(3) I ( A ) = { O ,  e} where  e ta0  and 

e . x = x  for  all x ~ A .  

To  show this we first establish that  where  (a, b) ~/3, a ~: b, we have e �9 a = a, 

e �9 b = b for  every idempoten t  e5 a 0. In fact the ideal A �9 e �9 A contains  at least 

two elements ,  0 and e, hence a , b ~ A . e . A .  Then ,  say a =  u . e . v ,  giving 

a = (ue)"euev  = e (ue)"uev  by E2(ii), and a = e �9 a. Likewise b = e �9 b. 
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Next ,  fixing a, b, e as above ,  we show that  e . x = x  for  all x. Because  A 

satisfies P7, the  relat ion 

0 = {(x, y): ex = ey} 

is easily seen to be a congruence  of A. N o w  if e .  x ~  x then  x O e . x  and hence  

/3 _q 0 and we get aOb, which contradic ts  e �9 a = a, e �9 b = b. 
Next ,  suppose  that  there  are two i d e m p o t e n t s  e ~ 0 ~ f ~  e. Bo th  e and  f act as 

left ident i ty  e lements .  The  relat ion 

xJy  <--~x = y v ( x ,  y e A ~ A ( V z ) ( x  �9 z = y �9 z)) 

is cer ta inly a congruence ,  and e Jr. Thus  /3 c_j. This  is imposs ible ,  because  

/3 - A c 2 ( A -  AG). 
Finally,  suppose  that  0 is the only i dempo ten t .  Then  x �9 y = x " + l y  = 0 for  all x 

and y, giving us the cont rad ic tory  conclusion that  A -  Z2, once  again.  

(4) A = A ,  0 U 0 {0} (disjoint union)  whe re  

u =  0-{0} ,  A, �9 u__q u, u - A  =C0}. 

It is clear  that  the union is disjoint.  T o  show that  it is A, suppose  tha t  x g  O. 
T h e n  x " =  e, as x" = 0  implies x 2 = x  " §  So we have  x " §  by (3), and 

x"  = e, giving x s Ae. 
T h a t  U .  A = {0} is a consequence  of E2(i).  
T h e  only thing remaining,  to establ ish (4), is to show that  g e  Ae and u ~ 0 ,  

u ~  0, imply  g .  u ~  0 (clearly g . u  ~ 0 by (2). This fol lows by the calculat ion 
u = e �9 u = g , - 1 .  g .  u, which establ ishes also 

(5) For  g ~ A e  the function a ~ u U ,  a ~ ( u ) = g . u ,  is a p e r m u t a t i o n  of 
U .  a:  Ae ~ u U  is a h o m o m o r p h i s m  of A ,  into the s y m m e t r i c  group  on U. 

N o w  checking Defini t ion 2 we see tha t  A = R ( A , ,  U, a).  T h e  p roof  of L e m m a  

11 is comple te .  [ ]  

In light of  the last two results, wha t  r ema ins  in the p roo f  of  T h e o r e m s  4 and 5 
is to cons ider  s.i. semigroups  in ~t'Ji "~ which satisfy the law x 2 ~ x  3. 

L E M M A  12. The only s.i. members  of  ~<2 "~ satisfying x 2 - ~ x  3 are 

Z2, ,~2, R2, R~2 ~ and R(1 ,  1). 

Proof. T a k e  A s.i. in ~2  "~ with mono l i th  /3 and satisfying x 2 ~ x  3. Not ice  that  
A ~  = I ( A )  and that  A Satisfies xyz  ~ yxz  (since xyz  = x"+ ty"§  = x2y2z = 

x " y " z  = y " x " z  = yxz ) and xy ~ x2y. 
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(1) W h e n  x ~  x z in A then x 2 is a (the) zero e l emen t .  

For  the proof,  let a ~ b, a/3b and x ~ x 2, A �9 x 2 �9 A > {xZ}. The  re la t ion  defined 

by r O s i f f r = s ,  or else r , s ~ A ( l ) . x  and  r . t = s . t  for all t is a congruence .  

(a, b) ~ 0 and  consequent ly :  a, b ~ {x} U A �9 x, and a �9 t = b �9 t for all t ~ A. W e  also 

have a, b o A .  x 2- A. Thus  e . a  = a for some e ~ I ( A )  (by E2(i)) and  we can 

actually write a = u . x = u o ' X  2 " u l ,  b = v . x = v o . x  2 " v l .  T h e n  x . a =  

x " /,10 X 2 .  /,11=/,10 " X 3"  U l =  IA0 x 2 .  I l l = a ~  x �9 b = b ,  a = x  �9 a = x  �9 u �9 x = u  . x  . x =  
a . x ,  b = b ' x .  But  a . t = b . t f o r  all t so a = b ,  a c o n t r a d i c t i o n .  

(2) W h e n  e ~ I ( A )  and is not  a zero e lement ,  then  e �9 x = x for all x. 

Let  a, b be as above.  The  re la t ion {(u, v) : e .  u = e �9 v} is congruence .  Hence  

unless e is a left ident i ty  e l emen t  we have e .  a = e �9 b. But  if e is not  the zero 

e l emen t  then  a , b ~ A . e . A = e . A ,  implying e - a = a ,  e . b = b ,  

By (1), (2) we can write A = St3 T where  S is the set of i dempo ten t s  that  are 

no t  zeros, s �9 x = x whenever  s ~ S and  x ~ A, and m o r e o v e r  if T ~  Q ,  then A has 

a zero 0 ~ T and t �9 x = t 2 �9 x =- 0 for all t ~ T and x ~ A. If x, y ~ S or x, y e T, then 

it follows that  2{x, y}Uzl  is a congruence .  Hence  by subdirec t  irreducibil i ty,  

IAI~<3, and  ISI, ITI<-2. Checking through the possibil i t ies establishes the 

lemma.  [ ]  

L E M M A  13. The only s.i. members  of  ~ " )  satisfying x2 ~ x 3 are 

Z2, Z2, L2, R2, L~" and R(2 ~ 

Proof. Take  A s.i. in ~ " )  with monol i th  13 and  satisfying x 2 ~ x  3. Again  

I ( A ) = A ~ ,  and since A ~  "), A ~ = A .  A .  If I A .  A I = I ,  then we have Z2. 

Otherwise  /3 ~_2(A. A ) U A ,  hence  there are i dempoten t s  u ~  v, (u, v )e /3 .  

(1) A satisfies x �9 y ~ - x  2. y2~-x"  �9 yn. 

Since 

xy = (xy)2xy = (xy)2x(xy)2y  = ( x y ) x ( x y ) y  = xyx2y 2 = xx2yx2y  2 

= x2yx2y 2 = x 2 y  3 = xZy 2. 

He re  we have used E l ( i - i i i )  as appropr ia te  with n - t h  powers  replaced by 

squares.  

(2) A satisfies x ~-x 2. 

It follows from 10(2) and  (1) above that  the e l emen t s  x and  x 2 satisfy 

x �9 t =  x 2- t and t .  x = t -  x 2 for all t. H e n c e  2{x, x e}U A is a congruence .  Thus  if 

x ~  x 2 then  {u, v} = {x, x2}. But  u = u 2, v = v2. - 

(3) Every  e l emen t  e in A is e i ther  a left ident i ty,  a right ident i ty ,  or a zero 

e lement .  
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Suppose  not.  Then  the relations {(x, y ) : e x = e y } ,  {(x, y ) : x .  e = y �9 e} are non-  

trivial congruences  (by P7, P8), hence eu = ev, ue = re. But  also u, v e A . e . A .  

Say u = r ' e - s .  T h e n  u = r . e . u = u . e . u  ( r . e ,  e . u ~ I ( A ) ) .  Likewise v =  
v . e . v .  But  u . e . u = u . e . v = v . e - v .  

N o w  we have A = L t_J R U Z where  L is the set of left identi ty e lements ,  R 

the set of right identi ty e lements  and Z = O or  Z = {0}. 

(4) E i ther  L c R  or  R _ L .  

Suppose  to the contrary  that e e L - R  and f e R - L .  Say X o ' e p X o .  Now 
Xo �9 e - t = Xo �9 t for all t. Hence  (with u, v as before,  (u, v) ~/3) we have u �9 t = v �9 t 

for  all t. Likewise ( f r o m f ) ,  t ~  for  all t. Then  u = u - u = v . u = v . v = v .  

This is a contradict ion.  

The  conclusion of the lemma follows directly f rom (3) and (4). [ ]  

w Proving Theorem 1. 

T h r o u g h o u t  this section ~ denotes  a fixed residually small variety of  semi- 

groups.  T h e  notat ion I ( A ) ,  Ae, A~  f rom Definit ion 6 will be carr ied into this 

section. A Variety will called of  finite exponent  if it satisfies some law x" ~ x  zn 

(n > 1). The  least such n will be called its exponent. A variety (or a semigroup)  is 

nilpotent o f  class <-m if it satisfies the law x~ . . . . .  x,, ~ Yl . . . . .  y,,. I t  is ni l -m if it 
is n i lpotent  of  class ~<m and not ni lpotent  of  class ~ < m - 1 .  

W e  use the notat ion S 2 (and more  general ly S ' ,  m I> 1) for the range of the 

opera t ion  of  the semigroup $ (for the set of e lements  o f  S which can be 

represen ted  as m-fo ld  products).  Notice that  S is n i l -m i f f S "  has just one  

e lement  while S " - I  has more  than one,  and that  S "  is always an ideal of S. The  

nota t ion  ~S, where  K is any cardinal, denotes  the K-th direct  power  of  S, whose 

e lements  are all the functions f rom K into S. 

For  construct ing s.i. semigroups,  we use the fact that  when 0 e C o n  S and 

(a, b ) r  0 (a, b e S), then the set of congruences  F of S such that  (a, b ) r  F and 

0__q F has maximal  members ,  and for  any such maximal  F, S /F  is s.i., in fact is 

( a/ F, b/ F)-irreducible.  

The  construct ion of  Definit ion 2 wilt be needed  in this section in a slightly 

more  general  form. 

D E F I N I T I O N  14. Let  a be any homorph i sm f rom a semigroup  S into the 

semigroup  u U  where  S, U, and {0} are disjoint  sets. R ( S ,  U, ct) is f o rmed  as in 

Defini t ion 2, so that S is a subsemigroup,  s ' u = a , ( u )  for  s ~ S , u ~ U ,  and 

x �9 y = 0  if y = 0  or  x ~ S .  I f / 3 :  So---~ u U  homorphica l ly  then L(S,  U,/3) is fo rmed 

analogously  but  with u �9 s =/3 , (s) .  
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The  arguments of this section take the following form. We produce  relative 

splittings of the lattice of semigroup va r i e t i e s -  that is pairs ~1, X where  ~l is a set 
of semigroups and X is a set of identities with the proper ty  that every semigroup 

variety either includes some m em ber  of ~2l or else satisfies some law in ~;. For this 

to be  useful in the present situation we need to be able to show that for each 
S e ~2l, the variety V(S) is not residually small. It then follows that our  residually 
small variety ~r must satisfy one of the laws in ~. 

L E M M A  15. ~ is of finite exponent and contains no nilpotent semigroups except 
zero semigroups. 

Proof. If ~ were not of finite exponent  then the ~V-free semigroup on one 
generator,  F~(1), would be isomorphic to the free semigroup on one generator.  
Factoring by the ideal congruence 2 JUA where J = { x ~ : n / > 3 }  and x is the 
generator,  we get a nil-3 semigroup in o//.. 

Now suppose that o//. contains a semigroup S which is nil-m, "m ~ 3. Then S has 
a zero element  and in fact Sin={0}. Put S t = { x ~ S : x ' S = S ' x = { O } } .  Then 

{ 0 } < S ~ < S .  There  is a~S~, a ~ 0 ,  and b ~ S - S ~  with b.  S U S  �9 b~_St. 
For  any cardinal K let 

S(K~={f~"S:f(a) ~ (I for at most one a <K}. 

Then S (~) is a subalgebra of the K-th direct power  of S, and we define a 

congruence on it. Put 

fO.g ~ (=J~, ~ < K)(f(a),  g(r ~ s ~ - { 0 } ) v f  = g. 

Define 

6 = (0:  a <~>I0~,  a = ( ( a : a  = 0) ~ <0: ~>0) )10~ ,  

;t~=((b:~=f3)U(O:a~(3))lO, for /3<K. Now { /~ : /3<K} is a set of K distinct 
e lements  of A = S(')IO,, and 6 ~  ~ in A. But any congruence ~F of A that 
identifies any t w o / ~ , / ~ , / 3 4  (5 will also identify 0 with 4. (There is/~e A such that 

either [ - / ~  = ti, or h~, [ = (i, say [ - / ~ ,  = ci, while f ' . /~s = 0 =/~s" [-) Taking qr to 
be a maximal member  of the set of congruences that don ' t  identify fi with 0, A/VF 
is s.i. and has at least K elements. 

The  above considerations contradict the assumption that ~ is residually 

small. [ ]  

F rom here on we let n denote  the (fixed) exponent  of ~ ( [ ,emma 15). Thus 

n > 1 by definition. 
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L E M M A  16. ~" satisfies P1, P2 and one at least of the laws E1 (i), E2(i) ,  E3(i) .  

Proof. W e  have  P1 a l ready.  F o r  P2, i.e. xZ-~x "§ l ook  again  at  F~r(1)/J, 
J = {x":  n />  3}. By the  last  l e m m a  this s e m i g r o u p  is a ze ro  s e mig roup .  Th is  impl ies  

tha t  x 2 ~ J. So  o//. satisfies an iden t i ty  x 2 ~ x 2+k, k ~> 1. Then  also x 2 = x 2+"'k = x 2+" 
in F~.(1), h e n c e  x 2 ~ x  2+" holds  in ~ .  

N o w  we look  at  F=F~r(2)=F~.(x, y). T a k e  J = F  3. By L e m m a  15, F/J is 

n i l p o t e n t  class 2, h e n c e  x �9 y ~ J. So we have  for  some  w o r d  w = w(x, y) of  length  

at  leas t  3, tha t  ~ satisfies 

x "  y ~ w ( x ,  y) .  (1)  

If w begins  wi th  X 2 then f rom P2, P1 we de r ive  x - y = x"  �9 x �9 y in F, i.e. 

satisfies E2(i) .  If w begins  with y2 then,  s imi lar ly  ~ satisfies x . y  ~ y " ( x y ) ~  

( y " x ) y - ~  x " ( y " x )  �9 y, the  last equa t ion  by subs t i tu t ion  and  r e p l a c e m e n t  f rom the  

first. T h e n  again x - y  = x " . x ' y  in F. Similar ly ,  if w ends  in x 2 or y2 we get  

E3(i) .  

If w begins  wi th  y �9 x then  we de r ive  x �9 y ~ y �9 x �9 ct(x, y) 

x �9 y - ~ (y ,  x) �9 ct(x, y), which br ings  us the  case tha t  w beg ins  wi th  x �9 y, and  ends  

with ne i t he r  x 2 no r  y2. 

Thus  w is xyE+kx/3 or xyxy/3 or xyx2[3 or  xyx w h e r e  /3 m a y  be  emp ty ,  excep t  

in the  th i rd  case.  In the  first case, by subs t i tu t ion ,  

xy ~ x y  I+k �9 yx �9 y ) ~ x y  I§ �9 yx2+ky/3(y, x) �9 y) 

~ - 3 ' ' x ' y ' 6  

w h e r e  6 = • is poss ib le  but  ~/~ Q .  Then  

x y ~ / "  �9 xy �9 6" 

is de r ivab le ,  and  then  f rom P1, x �9 y ~ y"  �9 xy. N o w  plugging  in 3'" for  x and  xy 

for  y in the  or ig inal  iden t i ty  (1), we get  

xy ~- ynxy --~ 7 n ( x y )  2+k . . . .  

__-(xy)2 +k . . . .  

f rom which  xy~(xy )  "+1 (or E l ( i ) )  fo l lows with the  he lp  of P1,  P2.  

In the  case  w -  (xy)2/3, E l ( i )  is i m m e d i a t e .  In  case  w--xyx2[3 we r e d u c e  to the  

p r e c e d i n g  case:  xy ~-xyxE/3(x, y ) ~  x y x y 2 / 3 ( y ,  x ) x / 3 ( x ,  y). In the  c a s e  w - x y x  we 

have  xy-~x(yx)~x(yxy)  giving E l ( i )  again.  [ ]  

D E F I N I T I O N  17. Le t  p be a p r i m e  in teger .  $4, p is the  s e m i g r o u p  with 



Vol. 13, 1981 Residually small varieties of semigroups 187 

presentation 

(e, f: e 2 = e, f2 = f, (e f )% = e, (fe)~f = f) .  

In other  words, it is the factor algebra of the free semigroup on two generators e, f 
modulo the congruence generated by the four listed ordered pairs of words. 

L E M M A  18. V(S4,o) is not residually small. A s  ~ contains no S4,p and no 
n i l -m semigroup ( m > 2 ) ,  it must  satisfy the law P3. 

Proof. S4,p has four distinct idempotents, e, f, (ef) p = g, (fe) p = h. It is the union 
of four cyclic p-groups A,,  At, Ag, A h generated by efe, fef, ef, and fe respectively. 
A word represents a member of A e iff it begins and ends with e, represents a 
member  of Ag iff it begins with e and ends with f, and so on. S4.p has 4 . p  
elements. 

Given a cardinal K ~>oJ let U c_KSa,p consist of all functions f such that 
f(0) = e, {/3:f(/3) # e} is finite, and (therefore) eventually f ( a )  = e. Define 

fog  iff for all /3, (f(/3)) p = (g(/3)) p, 

and 

[-3 f(~)= [--1 g(~). 
o t < ~  o t < d  

These products are to be formed in the following manner.  Since f ~  U, we can 
partition K into disjoint convex sets Co < C1 < .  �9 �9 < C,, such that f is constant on 
Ci, and [Cil = 1 if f(C~) # {e}, and f (Ci)  = f(C~+l) implies f (Ci)  # {e}. The parition is 
unique. Taking f ( C i ) =  {xi}, then 

rtl 

[-] f (a )%~[~x ,  in $4,0. 
~ t < K  0 

Now U is clearly a subalgebra of "$4,~ and 0 is clearly an equivalence relation 
on U. In fact, 0 is a congruence and U/O is a s.i. semigroup of cardinality K, 
proving that V(S4,p) is not residually small. We omit the proof. The reader who 
wishes to construct it should first look at the analogous situation where K is a 
finite cardinal and the products [-'q~<, f ( a )  can be more directly manipulated. 

To prove that ~ satisfies P3, we assume not. Since it does satisfy P1, P2, we 
have A ~ and two idempotent elements e, f ~ A such that e . f  is not idempo- 
tent. Using that A satisfies P1, P2 and some one of El(i) ,  E2(i), E3(i) we can 
show that some S4,p is a homomorphic image of the subsemigroup ( e , f ) ~ A  
generated by e and f. 

In more detail, we can assume without losing generality that A is generated by 
e, f and is subdirectly irreducible. A must satisfy x "§ ~ x .  (Because A �9 A = A if 
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El( i )  holds,  and because  every  e l emen t  of A is in the fo rm u �9 x �9 v where  U 2 =  U, 

v 2 =  v, in case E2(i) or  E3(i) holds.) 

A n y  two words  built  out  of e, f that  have  equal  value in A must  begin and end 
the same  way.  Otherwise ,  by mult iplying appropr i a t e ly  and  taking n - th  powers  we 
would  be led to e i ther  (e fe )"=(e f )"  or  (efe) n= (fe)" in A. (For  instance,  if 

f (ef)  ~ = (ef)'K, l/> 1 then  (efe)" = (ere) t"  = ((ef)'e)" = ( f (e f ) 'e )  " = (re) ~+~' '  = fie)".) 
Now (efe) '~ = (ef)" implies  (ef)" = (ef)"e = (ef)'~f implies (ef)" = (ef)"ef = ef  implies  
ef = (el') 2. Similarly, (ere) n= (fe)" implies fefe =re, which implies  ef  = (ef) " + l =  

e(fe)'~f = efef. 
T h e r e f o r e  A is the union of four  disjoint  parts:  Tr ={e}O{(e fe )  k :k~>l} ,  

T~={f}U{( fe f )k :k  >- l}. Tg={(e f )k :k  >~ l}. Ta={( fe )k :k  >~ l}. T~. T,  are cyclic 

groups  (g = (el') ~, h = ( fe)") ;  T.. T r are semigroups  each of which is the  union of a 
cyclic g roup  and an i d e m p o t e n t  which may  or m a y  not  be  in the group.  The  

relat ion 

2{e, (ere) ~ } U 2{f, (fef)~} O a 

is a congruence  on A tha t  doesn ' t  identify ef  with (el)  2. (e and (efe) n are fixed by 

mult ipl icat ion by e and identified by mul t ip lcat ion with f.) H e n c e  we can assume 

that  e = (efe)", f = (fef) n. 
The  four  cyclic groups  of which A is the union are now i somorphic :  If for  

instance (efe) k = (efe)" = e then (fef) k+l = f ( e f e ) k f = f e f  giving (fef) k = (fef)" =f.  
Also (re) k + l =  (fef)ke =fe  giving (re) k =  (fe)". The  s t ructure  of  A is t ransparen t .  
Since it is s.i., the o rde r  of the four  groups  is a p r ime p which divides n, and 

A ~ S4.p. [ ]  

D E F I N I T I O N  19. S (~ denotes  the semig roup  ob t a ined  by adjoining an 
identi ty e l emen t  to S. Lz and R2 deno te  the 2 - e l e m e n t  left and right zero 

semigroups .  

L E M M A  20. L(2 l~, R(2 l~ generate non-residually small varieties. Consequently, 
every idempotent semigroup in ~ satisfies the law xyzu  ~ xzyu.  Equivalently (since 
P1, P3 hold in ~ )  the law P6: xnynznu n -~XnZ"y~u n holds in % 

Pro@ B=R~2 l~ is a 3 -e l emen t  i d e m p o t e n t  semigroup ,  B = { 1 ,  a, b} with 
a �9 b = b, b �9 a = a, 1 �9 x = x �9 1 -- x. It  is easily seen that  every  ident i ty  holding in B 
is a consequence  of the associat ive law, x 2 ~-x, and xyx-~ y x -  which hold in B. 
Thus  we can construct  a semigroup  S in V ( B )  by giving a p resen ta t ion .  Le t  K be a 

cardinal  and  S~ be the h o m o m o r p h i c  image  of the free s e m i g r o u p  gene ra t ed  by 
let ters x~, y,,  z~ (ct < K) modu lo  the congruence  0 gene ra t ed  by all ins tances  of  the 
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laws x 2,~x, xyx  ~ yx, and by the relations: 

xc, y~, = x,~zo,, 

x,~y~ = x~y.~, x~,z~ = x~z~ (or < [3, 8 < 3') 

A n y  congruence  ~F on S~ that  has x ~ x ~  for some  ~ < / 3  has Xo" y~FXo'Z~,  

because xoyl = x ~ y ~ x o y ~  =x~z~r =XoZt. We  can show ra ther  easily that 

xoy~ # XoZl in S. Thus  SK has a K-element  s.i. homorph ic  image. 
A proof  that  (Xo �9 yt, Xo �9 z~)~ 0 goes as follows. Let  Q be the set of all words 

(elements  of the free semigroup) which can be writ ten as a .  x~ �9 w where  a is a 

possibly empty  word,  w is a word in which no x~ occurs,  w ends in some y~, and 

the indices of the letters occuring in x,  �9 w are not  all equal.  Clearly Xo" YI E O 

but  Xo �9 z~ ~ Q. By checking all possibilities, it can be shown that  w h e n e v e r  q s Q 

and q'  is ob ta ined  f rom q by replacing an occurrence  of some r in q by s, where 
r = s  is one  of the relations generat ing 0, then q ' ~ Q .  (Here  r = s  may,  in 

part icular  be an instance of ei ther  of the laws x2--~x and x y x ~ y x . )  From a 

wel l -known character izat ion of 0, it follows that Q is a union of  0-equivalence 

c lasses .  
The  above  paragraphs  show that  R~2~r r and, by duality,  L ~ .  The  

idempoten t  semigroups  in ~ form a subvariety ~/,'~ ~_W, and ~'~ must  satisfy an 

identity that  doesn ' t  hold in R~2 ~, and likewise for L~ ~. Now the identities of R~ t> 

are exactly those Wo = wt that satisfy: (a) b a l a n c e d -  Wo and wt contain  the same 

variables;  (b) the r ightmost  occurences  of  the letters in w o have the same order  

f rom left to right as they do in w~. 

Every  idempoten t  variety not  containing R(2 ~ satisfies 

xz  yz ~- x z  yzxz.  (1) 

For  the p roof  of this, suppose that  W o ~ W l  does not  hold in R~ ~). We  have to 

show that  toge ther  with x = x 2 this identity implies (1). If it is not  balanced,  say 

the letter x occurs in Wo and not  in wt, replace all letters but  x by y, multiply both 

sides of both  words  by y, and simplify by idempotence  to derive yxy ~ y. This 

implies (1). If Wo ~ wl is balanced but  fails (b), then there  are letters x and y such 

that  

Wo = O~o �9 x �9 " y " 3'0 

wl = a l  �9 y �9 / 3 1  " x �9 3'1 

(any of c~,/3~, ~,~ may be empty)  where  3'~. 3'1 contain no x or  y,/3.  contains  no x./3t 
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contains no y. Replace all other letters by z, multiply by x on the left, replace x 
and y by z x z ,  z y z  respectively, and simplify by idempotence to obtain z x z y z  

z x z y z x z .  Then multiply by x on the left to get (1). 
Similarly, ~ must satisfy 

z x z y ~ z y z x z y  (the dual of (1)). (2) 

From (1) and (2) we can derive the law for the idempotent  semigroups in 
required by this lemma. First x y x z . x = x z x y x z . x  (by (2)) = x z x . y x z x =  

x z x  �9 y x z x y x  (by (1)) = x z x y  �9 x z x y  �9 x = x z x y x .  We have derived x y x z x  .~ x z x y x .  

Using this several times, x y z x  = x y x y z x z x  = x z x y z x y x  = x �9 z x y  �9 z x y  �9 x = x z x y x .  

Thus we have 

x y x z x  ~ x y z x  ~-- x z y x .  (3) 

Finally, x y z u  = x y z u x y z u  = x y x z  �9 u x  �9 u y z u  = x z y x  �9 ux  u z y u  = x z y u .  I-'] 

L E M M A  21. T h e  s e m i g r o u p  ({0, 1, 2, 3}, .}, in w h i c h  0 . 3  =2 ,  0 . y =  1 f o r  

y=P3, a n d  x . y = x  o therwise ,  genera t e s  a n o n - r e s i d u a l l y  s m a l l  var ie ty .  A n o n -  

t a u t o l o g o u s  iden t i t y  h o l d s  in this  s e m i g r o u p  if[ bo th  w o r d s  h a v e  l e n g t h  >t2 a n d  

agree  in the ir  f i rs t  two  p l a c e s  (on  the lef t ) .  

Proof .  Call the semigroup T (and verify that it is a semigroup). Take a cardinal 
K and let U be the set of functions f ~  KT such that f ( a )  = 1 for all but at most one 
a < K .  Let 

0 = a U {(f, g) : 2~ran (f) fq ran (g)}. 

Verify that 0 is a congruence on U and that any congruence gz~>0 which 
identifies two functions f, g with 0 e ran (f) 1"7 ran (g) must also identify the func- 
tion ( l : a < K )  with all the members of the nontrivial 0-block. Thus U/O has a s.i. 
homomorphic image of cardinal K. 

The statement about the identities of T is easily verified. []  

D E F I N I T I O N  21. We construct two more semigroups, using Definition 14. 
Let U = { 1 ,  2, 3} and let R2, (L2) be the right zero (left zero) semigroup with 
2-element universe {a, b} disjoint from {0, 1, 2, 3}. Define a :  R2--+ v U  by 

3 3 
Lg~--O O-,,~ 

a,~:l k . 0 2  a b : l ~ O  ( . ~ 2  

Define To = R(R2,  U, or) and T x = R(L> 1). 
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L E M M A  22. (1) Neither of  V(T~), i = 0, 1, is residually small. 

(2) A law e o ~ e l  holds in To iff for some letter x, e~ = 7~ �9 x where 3'0, ~ have 

the same letters (hence 3'0 is empty iff "YX is), and if 3'0 is not empty and x does not 

occur in "Yo then 70 and ~1 terminate with the same letter. 

(3) A non-tautologous law eO~el  holds in T~ iff it is balanced and for some 

letters x, Yo, Y~, e~ = x �9 ~ �9 y~ (70 or ~ may  be empty)  and either y~ occurs in x �9 7~ 

for each of  i = O, 1, or else Yo = Yl and Yo does not occur in x �9 3'0 " 3'1. 

Proof. We leave the reader to verify (2) and (3). They are needed in the proof 

of (1). 
To see that V(To)  is not residually small, let (for any cardinal ~ I> o~) F~ be the 

free algebra in V(To)  generated by elements x=0, y,~ (a </3 < ~). Let  0 be the 
congruence on F~ generated by the relations x=oy= = xv~y~ and x=~yo = x~y~ for 

</3 < ~, ~/< ;5 < ~. Using the characterization (2) of the identities of To, it's 
quite easy to show that the set of all elements of F~ of the form w �9 x=~y~, where 
w is a possibly empty word containing no letters y~(~ < ~), is a union of 0-blocks 

and does not include the element xo~y~. Thus (xolYo, xo~yx)~ 0. However ,  every 
congruence ~ > 0  that has y ~ y ~  for some a < / 3  clearly has xo~Yo~Xo~y~. So 
F~/O has a s.i. quotient of cardinality ~. 

To see that V ( T O  is not residually small, let now F~ be the free algebra in 

V ( T O  generated by x=~, y~o, u= (a </3 < ~), and let 0 be the congruence gener- 
ated by the relations 

X,xgU a = XOl UO, X~,~U9 = y~,gU~, 

y~xo~Uo = yo~Xo~Uo = y~yotXo~Uo, 

Xol Uo = Xal~YolXo i U0- 

Any ~ ~ 0  that has u,~gtu~ for some a < / 3  has xolUo~YolXolUo. 
(yoxXoluoOy,~BX~,~U,~gZy,~y,~BU~, = y~u~ in F~ by (3), and this e lement  is gty~au~ x 

Ox,~u, gZx,~uo, OxolUo.) To see that (xo~uo, Yo~XolUo)q~O show, using (3), 
that the set of all elements of F. of the form x,~o �9 w �9 us where x ~  occurs in 
x,~a �9 w for some 7, and where w contains no letter u n (~ < ~), is 0-closed and 

does not include yo~xo~uo. [] 

L E M M A  23. Either ~ c ~/'~'~ ~ ~ ~V(3 ") - - - 2  or or else ~/" satisfies El(i) .  

Proof. Assume ~ does not satisfy El( i ) .  Then for sure ~ satisfies E2(i) or E3(i) 
(Lemma 16). We assume E2(i). We also have P1-P3,  P6 (lemmas 16, 18, 20). 

All the identities of ~ are balanced. Otherwise, by substituting n-th powers of 
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variables we derive the law (using P1, P3) x n y " x n - ~ x  ~ holding in ~ .  Then 
x y = x  �9 x" �9 y (by E2(i)) = x  "Xn(X~y)nx n " y = X2n+ty(x"y) ~ = U " e where e = e 2 ;  

so (u �9 e) "§ = (ue)n+~e = uee = ue by E2(i) and we have derived El( i ) ,  contrary to 

assumption. 
Now we apply L e m m a  22. ~ satisfies some balanced identity that is not of the 

form 22(2). This means either x - ~ x k ( k > l ) ;  or a . x ~ / 3 " y  ( x , y , z  denote 
distinct variables in this discussion); or a -x  ~/3 -x  where a,/3:/: O and x occurs 

i n a ,  n o t i n / 3 ; o r a . y . x ~ / 3 . z . x w h e r e x i s n o t i n a - / 3 ( a n d b y b a l a n c e y i s i n  
/3, z is in a) .  The first alternative is out because it gives El( i) .  The second leads to 
x " y " x " - - ~ x " y  ~ by substituting x" for x, y" for y ,x  n for every other  variable, 
multiplying by x ~ on the left and using P1, P3. The third leads to y"x = (y"x) k 
( k > l )  and then to y " x = ( y " x )  "§ by P 2 - w e  just replace x by y"x and every 

other  variable by y". However,  this takes us back to El(i) :  yx = yy"x = y(y"x) 
(y"x) " =  yxe with e 2= e. So the third is out. The fourth alternative leads to 

y'~z'~y'~x ~ y"z'~x: replace y by y~, z and every other  variable save x by z", and 

multiply by y" on the left. We have established: 

(1) W" satisfies either (i) x"ynx  ~ ~-x~y ~, or (ii) y " z " y n x  ~-y~z"x .  

satisfies Some balanced identity that is not in the form 22(3). This means 
either x - ~ x  k ( k >  1); or x -  a-"~y �9 or x . a . y - ~ x - / 3 ,  y where y occurs in a, 

not in /3; o r x - a - y ~ x ' / 3 " x w i t h  y not in a ; o r x ' a ' y ~ x ' / 3 " z  with y not 
in a. We have ruled out the first alternative. The second leads straightway to 
x " y " ~  y"x"yL The third leads to (x~y) "§ ~ x " y  which we have seen is ruled out. 
The fifth gives the fourth after replacing z by x. The fourth gives x " y ~ ( x " y ) k x "  

( k ~  > 1) and thence x ~ y ~ - x " y x  ~, which with E2(i) gives x " y ~ ( x " y )  "§ and then 
El( i )  again. We have established 

(2) W" satisfies x"y " ~  y"x~y ~. 

Finally, (I)(i) above and (2) give y"z" ~ z " y  ~ which certainly implies E2(ii). 
But (1)(ii) and (2) also give E2(ii) immediately.  []  

L E M M A  24. P1-P3,  P6 and El( i )  jointly imply P4 and P7', P8': 

P7': x " y z u  ~ x " y x " z u  

P8': x y z u  ~ ~ x y u ~ z u  '~. 

Proof. For P7' take e = x n, g = (zu)".  Then 

eyzu  = ey(ey)~gzu by El( i )  

= eyee(ey)~gzu 

= e y ( e y ) ~ e g z u  by P6 

= e y e z u .  

P8'  is by duality. 
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For P4, put u = x  " § 2 4 7  which we 
hope equals el. Clearly, eu = u, fv  = v, eh = h = hr. Using P3, P6, efh = e [h f  = eh[f = 

h, her = h. Now 

( v " - l u " - ' ) ( u v ) e f  = v " - ' e v e f  = v " e f  = f e f  

by P8' as v " - t =  f"  v "-~. Thus 

( v " - ' u " - ' ) "  �9 h = ( v ~ - ' u ~ - ' ) " u v ( u v ) " - ' e f  

= ( v " - ' u " - ' ) " - ' v " - ' u ~ - ' u v  �9 e l .  ( u v ) " - ' e [  

by P3, P8' 

= ( v " - ~ u " - ' ) " - ' f e f ( u v ) " - ~ f e f  by above 

= ( v " - '  u " - ' ) " - t ( u v ) " - ' e f  

~n--IMn--lul.)ef 

=f4. 

Comparing first and last lines of the computation gives f e f  = f e fh  = fh  and then 
e f  = e f  . e f  = e . f h  = h. [] 

LEMMA 25. I f  W satisfies El(i)  then W c _ ~  "~. 

Pro@ The proof will in fact show that ~"~ satisfies E2(i) and E3(i) (which can 
be derived directly from Theorem 4). 

Let W satisfy El(i) .  Then by Lemma 24 and the earlier lemmas it satisfies 
P I -P6 ,  P7', P8'. (P5 is a special case of El(i).)  We return to Lemma 21, and use it 
to prove that ~" satisfies 

(1) (i) x " y " x ~ x " y " x  "+1 

(ii) x y " x "  ~ x " + l y " x  ". 

W has an identity that is not of the type specified by Lemma 21. This means 
either x ~ x  "§ or x x . a ~ x . y . / 3 .  (The alternative x - a ~ y . / 3  leads to the 
latter.) The first possibility implies (1)(i), (ii). The second leads to x . y . / 3  
x "+' �9 y �9 in this replace y by y"x  z getting x �9 y " ~ / ~ x " + ' y " - / w h e r e  3' is a word 
in y" and powers x k (k > 1). By P4, P2, ~" is (actually, is ~F-equivalent to) a word 
in x", y". So we derive x �9 y" �9 -/" �9 x" ~-x"+'y"3," �9 x" which simplifies to (1)(ii) 
using P3. By duality of assumptions, we also get (1)(i). 
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Now we derive E3(i). Put e = (xy) n, and note that ey = ey "+~. 

( x y )  2 = exyxy = exeyxy by P7' 

= exeyy nxy 

= exeyynx(yx)~y 

= exeyynxy~(yx)"y  by P7' 

= a �9 yn+l by (1)(i) above. 

Then (xy) 2 = (xy)2y n, so xy = (xy)n-1(xy) 2 = xy "+1. 

Now we can get El(i i) ,  i.e. P7. 

xnyz  = x " y z z  ~ = x n y x " z z "  by P7' 

= x"yx" z  by E3(i). 

El(ii i)  follows analogously. The proof  of Theorem 1 is now complete.  (See 
Lemmas  23 and 25.) [ ]  

w Review and restatement 

By Theorems 1, 4, and 5, if a variety ~," of semigroups is residually small then 
the really interesting subdirect irreducibles in ~ are groups, groups with 0, and 
semigroups of the form R ( G ,  U, a)  and L(G,  U, a) where G is a group in ~ and 
the conditions of Proposition 3 are realized. To understand the possibilities here, 
we shall now reformulate  the conditions of Proposition 3 to eliminate U and a. 

D E F I N I T I O N  26. A rep-system is a triple (G, H, u) where G is a group, H is 
a subgroup of G, u ~ G - H ,  and the following hold: 

(i) A ( x .  H .  x - l : x ~ G ) = { 1 } .  

(ii) Every subgroup K of G, H <  K _  G, contains u. Equivalently (if G has 
finite exponent)  

(Vx ~ G) (x~  H-.-~ ,,,<,oV O,, ,(x)) 

where • , , (x )  = O, , (x ,  u, H)  is the formula 

(3h l  . . . . .  h,,,, h ~ H) (u  = x h . . . .  x h- �9 h) 

and here x y = y �9 x �9 y-1 by definition. 
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For any rep-system , ~ = ( G , H ,  u), we let U :~ = { x . H : x ~ G } ,  and we let 
,~(x. H )  = y" x .  H. 

PROPOSITION 27. A semigroup of the form R(G, U, a) is subdirectly ir- 
reducible if] it is isomorphic to R(G, U z, a ~) for some rep-system X, = (G, H, u). 

Proof. Easy, by Proposition 3: it is known from group theory that every 
faithful, transitive representation of a group is isomorphic to a representat ion that 
has the group acting naturally as translations on the set of left cosets of a certain 
subgroup. Condition 26(i) is the requirement  for faithfulness. Condition 26(ii), for 
some u ~ G - H ,  is the equivalent of Proposition 3, statement 3. [ ]  

For the next lemma, recall that we are using cgt-) to denote the variety of 
exponent  n groups, that is, semigroups satisfying the laws x ~ x "+~ and x" ~ y". It 
is clear that a semigroup belonging to any one of the varieties ~ (] = 1, 2, 3) is in 
q3 (") just in case it is a group. We denote  by G[A]  the direct product  of all of the 
maximal subgroups of A, where A is any semigroup. Thus, in the notation of 
Definition 6 

G[A ] =F] (A~ : e ~ I(A )). 

LEMMA 28. Let A ~ '~ ) .  Then V(A)Nq3 (")= V(G[A]), or in other words, a 
group G belongs to V(A) iff G satisfies all identities that hold in every subgroup of 
A. 

Proof. It is clear that V(G[A]) ~ V(A) 71 q3 ("~. To get the other  inclusion, we 
let e be any identity that holds in all maximal subgroups of A, and we show that 
the class ~ consisting of all B~~ ~) such that every maximal subgroup of B 
satisfies e, is a variety. Thus V(A) ~_ Y( and, in particular, V(A) M q3 (") satisfies e. 

In proving that N is a variety, we need only show that HSPY[ = Yr. That  
P~ Yt" is easy, using Lemma 7: every maximal subgroup of [- ' l (Bi: i~ I), where 
all Bi ~ W~ ~, is a direct product of maximal 'subgroups of the By That  SSg = Y( is 
also easy: if B ~ _ C e ~  "~ and e~I (B)  then Bec_Ce. That / - / ~ =  Y( is a little 
harder: Let  q5 map C homomorphically onto B, where C~Y(. Let  B e be any 
maximal subgroup of B, with e = e 2 in B. Let  e have the form Wo(Xl,.. . ,  Xk) ~ 
WI(X~,...,  Xk). Choose orbitrary elements u~ . . . . .  uk ~Be and elements fii ~ C 

- -M ~ n - t -  1 with 4~(fi~)= uv Put f=[-]~ u~ and put gi = f "  uj "f. By Proposition P and 
Lemma 7, we have fe  I(C), ~j e Q (J = 1 . . . . .  k ) ,  and moreover  4~(f) = e, 4'(gi) = ui 
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obviously. Since e holds in Cf, we obtain that 

ALGEBRA UNIV. 

Wo(Ul . . . . .  u~) = 6 (Wo (e ,  . . . . .  ~ ) )  

= 4 ~ ( w ~ ( ~ 1 , .  �9 � 9  ~ ) )  

= w l ( u l ,  . � 9  u k ) .  

As e ~ I(B) and ul . . . . .  uk ~ Be are arbitrary, we have proved that B e N. [ ]  

In the following, main, theorem of this section, the phrase "res. small" can be 
replaced by "res <K," or by "res << K" for any fixed infinite cardinal K, with the 
appropriate reformulation of the third condition of the theorem. 

T H E O R E M  29. V(A) is res. small (A is a semigroup) if[ A has finite 
exponent, say n, and the following hold: 

(1) A satisfies one of the systems of identities E l ,  E2, E3 d@nining ~ 
( i=  1 ,2 ,3) .  

(2) V(G[A]) is ares. small variety of groups. 
(3) If the law (x .  y ) " + l ~ x - y  does not hold in A, then the groups G~ 

V(G[A ]) which admit a rep-system (G, H, u) are of bounded cardinality. 

Proof. The necessity of (1) is Theorem 1, of (2) is obvious. For the necessity of 
(3), notice that if (1) holds but (3) fails then by Theorem 1, A belongs to ~2 ") or 
~ " ) ,  say A ~gr~3"~. Then by the dual of Theorem 5, V(A) is generated by s.i. 
semigroups each of which is isomorphic to Z2, Z2, L2, L(2 ~ or to G, G ~~ or 
L(G, U, a) for some group G. As A fails to satisfy the law El(i) ,  some L(G, U, a) 
must belong to V(A). It is easy to see that V(L(G, U, a)) = V(G, L(1, 1)); it can 
I~e done by checking the structure of identities. Hence L(1, 1)~ V(A) and 
L(G, U, a)~ V(A) whenever G ~ V(G[A]). The necessity of (3) then follows by 
Proposition 27. (Notice that the concept of rep-system is self-dual.) 

The sufficiency of (1-3) is by Theorems 4, 5, Prop. 27, and Lemma 28. 

w Finite semigroups 

In this section we prove 

T H E O R E M  30. If  V(A) is res. finite where A is a finite semigroup, then V(A) 
is res << to. (That is V(A)  has only finitely many non-isomorphic s.i. semigroups.) 

The necessary lemma, which we prove by a model theoretic argument inspired 
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by Taylor ' s  paper  [9], is 

L E M M A  31. Assume that F is a finite group and that there is no finite bound 
on the cardinalities of the rep-systems X = (G, H, u) in which G e V(F). Then there 
exists an infinite group G ~ V(F) which admits a rep-system. 

Proof of 30 (given 31). Let  V(A)  be res. finite. Then  (1) of T h e o r e m  29 holds, 
and V(G[A]) is res. finite also. By the main result of [4], or of [9], V(G[A]) is 

res <<o9. By Lemmas  28 and 31 and Proposition 27 and its dual, if A fails El( i )  
then there must be a finite bound on the cardinalities of s.i. semigroups 
R(G, U, a) or L(G, U, a) belonging to V(A).  Hence,  finally, by Theorems  4, 5 or 
by the "res << w" version of Theorem 29, V(A)  is res << a). 

Proof of 31. Let F be a finite group having no finite bound on the size of the 
finite rep-systems ( G, H, u), G ~ V(F). (If there exists an infinite such rep-system, 
we are done.) Define an F-system to be any structure 

:~ = ( G ,  H, u, N ,  . . . .  , N~) 

such that k is finite; G~ V(F); (G, H, u) is a rep-system (Definition 26); 

u ~ N I < N 2 < . . . < N k  = G;  

N~<IG (Ni is a normal subgroup of G) for i =  1 . . . . .  k; and such that  

I < [ H .  N,+I:H" N,]<~ IVl 

for i = l , . . . , k - 1 ,  and I<[I-I.NI:H]<--.IFI. 
Notice that for any F-system as above, 2 k ~<[G: H ] ~  < IF] k. 

L E M M A  32. Every finite rep-system (G, H, u), G e V(F), gives rise to an 
F-system ( G, H, u', N1, . . . , Nk). Here [ GI <<-IFI ~l~l~. 

Proof. It is well known that G is isomorphic to a factor group of a subgroup of 
a finite direct power of F. Thus we can assume that G = G/N where G_~ mF and 
/V<(~. We can write H = H / N ,  N g / ~ ,  u =  fi//~, fi ~ " F .  Define 

Ti = { f ~  mF:fj = 1 for all j>~i}. 
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Let  1 ~< t~ < t2 < "  �9 �9 < tk ~< m be the unique  sequence  of in tegers  such that  

N = N .  ( O n  To) . . . . .  ~ .  ( O n  '~t,-1) 
< A .  (O n L,)  = . . '  = ~r.  (G n T,,_~) 

<_~. (0  n 'T,) �9 �9 �9 ~ .  (G n r,,_,) 

< ~ . ( O n L D = O .  

Define  /Vj = N "  (G  n L) for  ] = 1 . . . .  , k - 1 and Nk = G, and put  N / =  ~ / / ~  for 

] = 1  . . . . .  k. 
W e  clearly have  that  

H.N~=[_f-t.(OnT,)]l~ (1~1~ k) 

and there fore  

{ 1 } < N ~ < . .  "<Nk = G, 

the last equal i ty following f rom the definition. 
T h e  index of H ' N j  in H ' N ~ +  l, or  [ H -  N j + I : H "  N[], is the s ame  as [/-t-(0n 

"F,,+,) : H .  ( G n  T(,j+I)-I)] which is no g rea te r  than [T , :  T ,_ I ]  = IFI (where  a = ti+1), 
and is at least 2. The  same  calculat ion holds for  [ H -  N1 :/-/]. 

Since H -  N~ > H, we can write u = h �9 u '  with h ~ H, u '  ~ N~. T h e n  (G, H,  u') is 

clearly a rep-sys tem.  
T h e  bound  on the cardinali ty of G follows f rom the fact tha t  G is faitfully 

r ep re sen t ed  as pe rmuta t ions  of a set  of cardinal i ty b = [ G: H] ,  and [ G : H ] < ~  

IFI k. [] 

T h e  next l e m m a  is a consequence  of the preceding  one  and  of ou r  assumpt ion 

abou t  F. 

L E M M A  33. There is no finite bound on the length k of finite F-systems 
X = (G, H, u, Nt . . . . .  Nk). 

L E M M A  34. For an F-system ( G, H, u, N 1 . . . . .  N k )  , any element x ~ N,  - H 
satisfies the formula QI~J" from Definition 26. 

Proof. W e  know tha t  x satisfies O ,  for  some  posi t ive  in teger  t. T a k e  t mini- 

mal  and  write 

u = x h . . . .  x"' �9 h (hi, h ~ H) .  
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Notice that [ N a : N a A H ] = [ H ' N ~ : H ] < ~ [ F I L  Assuming then that  t>lFI% and 
using that N,  is normal,  some two of the products x h . . . .  x h, ( i ~  < t) are in the 

same left co-set of N~ N H ;  we have then 

X h '  " " �9 X hi = X  h i  " " �9 X h~ " h '  

where h' �9 H and 1 ~ i < j ~ t. Then 

= . ~  h l  " " " X h ' ' h j §  " " " ~l~ h ' ' h '  " h t " h 

showing that x satisfies O,-j+i, and giving us a contradiction. [ ]  

We are ready to conclude the proof of Lemma 31 with a simple model-  
theoretic argument.  Readers  unversed in the rudiments of model theory and logic 
are referred to Chang-Keis ler  [3], especially chapters 1 and 2 and the compact-  
ness theorem on page 67. 

A first order language appropriate  to our argument  has symbols which can be 
used to denote the basic operations, �9 and - ' ,  of a group G;  it has unary relation 
symbols H and N~ ( l < ~ j < t o )  which can be used to denote (the universes of) 
subgroups of G;  and it has constant symbols 1 (for the identity element)  and u. 

Within such a language we can write out a set of sentences T expressing exactly 
the following: 

(TI)  G is a group and belongs to V(F). (These sentences are identities.) 
(T2) H is a subgroup and the Nj are normal subgroups of G. 
(T3) Ni__Nj+,~H- N j for l~<]<to .  
(T4) u �9 N, - H. 

(T5) For 1 ~< ] < to, (Yx �9 N~ - H)  O i~1 , (x). 
From Lemmas  33 and 34 we see that every finite subset of the set T of 

sentences has a model. By the compactness theorem, T has a model. Let 
( G , H ,  u,N~ ( l~< j< to ) )  be a model  of T. 

From this model we now construct an infinite group in V(F)  which admits a 
rep-system. We take 

N ' =  n ( x  �9 H .  x - l : x � 9  

,~ = ( G, H, ~) = ( G'/N' ,  H/N' ,  u/N'). 

The claim is that (~ �9 V(F) is infinite and that ,,~ is a rep-system. Some verification 
have to be made. 
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It is obvious that U,<~, N, is a normal subgroup of G, and that N' is a normal 
subgroup of G', and that N'<~H<~ G', and u ~ G'. Thus ~ is well-defined. Also 

~ V(F), clearly and it is infinite because [G' :  N'] t> INk : Nk n HI = [H.  Nk : H] >t 
2 ~ for each positive integer k (which is a consequence of T3). 

Referring back to Definition 26, three things remain to be shown. First, ~ / ~ ,  
simply because ur H .  N ' =  H. Second, n ( ~ . / ~ - ~ - ~ : ~  (~)= {1}, which follows 
easily from the definition of N'. Third, each element ~ ~ G -  H must satisfy some 
formula Qm. Suppose that ~ =  x/N' and, without losing generality, allow that 
x = h . y ,  y~Nk (look at the definition of G'). Clearly, y ~ H .  By T5, we have 
O,~(y, u, H) holding in G, where m = IF[ k. An easy calculation shows that Qm(Y) 
implies O , , (h  �9 y) if h~H.  It follows readily that Q,,(~, a , /-~ holds in (~. 

This concludes our proof of Lemma 31. [] 

w Open questions 

The class of cardinalities of the members of a class of algebras ~ is called the 
spectrum of ~s It is well known that the spectrum of the class of subdirectly 
irreducible algebras in a variety of semigroups takes the form of a union of a set 
of positive integers, with a convex class of infinite cardinals. For the class of 
infinite cardinals there are only four possibilities: the empty set, {to}, [to, 2"], the 
class of all infinite cardinal numbers. (These results, holding more generally for 
any variety of algebras with countably many basic operations, are proved by 
model theoretic arguments in [8] and [6].) The possible residual behaviour 
(spectrum of subdirect irreducibles) of any semigroup variety is limited by the 
restrictions just stated. 

The work reported in this paper gives no information at all on the finite 
spectrum in those cases where the infinite spectrum is unbounded. In all other 
cases, our work reduces everything to the following question. Let ~d be any 
residually small variety of groups of finite (bounded) exponent. Let ~(cg) denote 
the class of s.i. groups in q3 and let ~(~J) denote the class of all rep-systems 
(G, H, u) where G e ~. The spectrum of subdirect irreducibles for the semigroup 
varieties associated with ~g throughout this paper can be any one of the following, 
and no other (we ignore cardinals less than 4): (1) Spectrum (9~ (2) {K: K or 

- 1  is in Spectrum (Se(~d))}; (3) the union of the class (2) with the class of all 
cardinals l + K + h  where for some (G,H, u ) ~ ( c g ) ,  we have K=[G[ and h =  
[G: H]. 

QUESTION 1. What classes are realized as (1), (2), or (3) for arbitrary 
varieties ~d of finite exponent? 

This question is no doubt hopeless, but we have some others. 
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Q U E S T I O N  2. D o e s  there exist a finite group F, with abel ian Sylow sub- 

groups,  such that  ~ ( V ( F ) ) i s  u n b o u n d e d ? -  is b o u n d e d  but  includes rep-sys tems of 

size t o ? - o f  size 2~? 

Q U E S T I O N  3. Is it possible for  one,  but  not  both,  of  5e(~) and ~(~g) to be 

b o u n d e d ?  

P R O B L E M  4. Character ize  the class of finite groups  F such that  ~ ( V ( F ) )  is a 

finite set of finite systems, up to i somorphic  systems. (This p rob lem is certainly 
amenable  through the methods  of p roof  used in Section 5. The  p rob lem is really 

to find a very nice characterization.)  

Q U E S T I O N  5. Does  there exist any variety of g roup  or  of  semigroups  which 
is res <to  and not  res << to? Can it be a locally finite var ie ty? 
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