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Varieties of relation algebras 

BJARNI JONSSON 

1. Introduction 

Relation algebras, as defined by Alfred Tarski,  constitute a variety with 
several very strong structural properties.  Most of these propert ies  are consequ- 
ences of the fact that relation algebras form a discriminator variety (see Werner  
[1978]). However ,  we shall make  no use of the theory of discriminator varieties, 
for all the consequences that we need can be derived quite easily from the 

following three facts, which are easy consequences of Tarski 's  axioms. First, 
relation algebras are congruence distributive. Second, for relation algebras, the 
proper ty  of being simple, of being subdirectly irreducible, and of being directly 
indecomposable  are equivalent, and the relation algebras with these propert ies 
constitute a universal class. Thirdly, there is an effective way of associating with 
each open formula ~b a term ~b* in such a way that for simple relation algebras the 
formulas 4' and 4, * =  1 are equivalent. 

All these facts were known to Tarski  as early as the 1940's, and they have 
been used by him and his collaborators. However ,  much of the work in this area 
was done at a time when the general theory of varieties was in its early stages, and 
many  of the ideas, techniques and results from that theory were therefore not 
available. It is the purpose of this paper  to re-examine and extend some of the 
known facts about  relation algebras, making use of these more  recent develop- 
ments.  Our  pr imary concern will be varieties of relation algebras. In particular, we 
shall give simple equational bases for several interesting varieties, and prove a 
number  of theorems about  the lattice of all varieties of relation algebras. Among  
other  things it will be shown that this lattice has infinitely many  dual atoms, the 
conjugate  varieties of the full relation algebras on finite sets, and that these 
varieties have simple equational bases (Theorems 7.5 and 7.7). 

In order  to make this paper  more nearly selfcontained, considerable space has 

been devoted to a summary  of known results about  relation algebras. It  is hoped 
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tha t  this br ief  su rvey  will also serve  a useful pu rpose  as a key  to the  ear l ier  
l i terature ,  which we feel is not  as widely known as it deserves  to be.  

2. Arithmetric properties of relation algebras 

W e  recall  Tarsk i ' s  defini t ion of a re la t ion  algebra,  and  list wi thout  p roo f s  some  
of  the  a r i thmet ic  consequences  of  his axioms.  These  results  m a y  be  found  in Chin,  

Ta r sk i  [1951].  

D E F I N I T I O N  2.1. By a relation algebra we m e a n  an a lgebra  

ag = (ago, ;, r , ' )  

such tha t  

(i) ago = (A, +,  0, ", 1, -)  is a Boo lean  algebra.  
(ii) (A,  ;, 1', ") is an involuted mono id .  

(iii) T h e  ope ra t ions  ; and " are dis tr ibut ive over  +. 
(iv) Fo r  all x, y e A ,  x ;  (x;  y ) - - -<y- .  
W e  deno t e  by R A  the class of  all re la t ion algebras.  

In g rea te r  detail ,  the condi t ion (ii) means  that,  for  all x, y, z e A,  

x ; (y ; z)  = (x ; y); z, 

(x ; y)V= y~ ; x ' ,  

x ; l ' = l '  ; x = x ,  

X w =  X, 

while (iii) m e a n s  that  

( x + y ) ; z = ( x ; z ) + ( y ; z ) ,  ( x + y ) ' = x V + y "  

and,  consequent ly ,  x ; (y + z) = (x ; y) + (x ; z). O b s e r v e  tha t  the inclusion (iv) can 
also be  wr i t ten  as an identi ty,  since in any  lattice the condi t ions  u--< v, u + v = v 
and  uv = u are equivalent .  

T h e  B'oolean a lgebra  ago is cal led the Boolean part of the re la t ion  a lgebra  ag, 
the  ope ra t ions  ; and  ~ are cal led the relative multiplication and the  conversion, the 
e l e m e n t  1' is cal led the  identity element, and the e l emen t  1 '- ,  d e n o t e d  by  0' ,  is 
cal led the  diversity element. W h e n  concep ts  f rom the theory  of B o o l e a n  a lgebras  
are  appl ied  to a re la t ion  a lgebra  ag, it is unde r s tood  tha t  they  re fe r  to the B o o l e a n  
pa r t  ago of  ag. Thus ,  by an atom of ag, or  an ideal of s/,  we m e a n  an a t o m  of Sgo, 
or  an ideal  of  ago, and we say tha t  ag is atomic, or  is complete, if ago is a tomic ,  o r  
comple te ,  respect ively .  
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D E F I N I T I O N  2.2. A n  e l emen t  a of  a re la t ion a lgebra  is called 

(i) an equivalence e lement  if a ; a = a = a ' ,  

(ii) a left ideal e lement  if 1 ; a  = a, 
(iii) a right ideal e lement  if a ; 1 = a, 
(iv) an ideal e lement  if 1 ; a ; 1 = a, 
(v) a funct ional  e lement  if a" ; a <- 1'. 
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T H E O R E M  2.3. The following properties hold in every relation algebra: 

(i) 0 " = 0 ,  1 " = 1 ,  1 " = 1 ' ,  0 ' ~ = 0  '. 
(ii) (xy)" = x ' y ' ,  x - "  = x ' - .  

(iii) 0 ; x = x ; O = 0 ,  1; 1 - - 1 .  

(iv) I f  the join u = ~ x~ exists, then the joins ~ x~', Y. (x~ ;y )  and ~ (y ;x~) also 
exist, and they are equal to u ' ,  u ; y  and y ; u ,  respectively. 

(v) The  conditions 

(x ; y )z  = 0, (x" ; z )y  = 0, (~ ; y ' ) x  = 0 

are equivalent. 
(vi) (x ; y ) z  --<x ;((x v ; z )y) .  

(vii) 
(viii) 

(ix) 
(x) 

(xi) 
(xii) 

(xiii) 

X ~ X ; X V ; X .  

x" = ~  (y, y ;x ~ 0 ' )  
I f  x <---1', then x is an equivalence element.  

I f  x is an equivalence element,  then so is x -  - 
0 ' ; 0 '  is an equivalence element.  

I f  x <- 1' and  y <_ 1', then x ; y = xy. 

I f  x <-- 1' and  y <-- 1', then 

;X . 

( x y ) ; z = ( x ; z ) ( y ; z ) ,  z ; ( x y ) = ( z ; x ) ( z ; y ) .  

(xiv) 

(xv) 

(xvi) 
(xvii) 

(xviii) 

1 ; x ; 1 ,  1 ;x and x ; 1  are, respectively, an ideal element,  a left ideal 
element,  and a right ideal element.  

I f  x and y are ideal elements,  then so are x + y ,  xy and x - .  The  

corresponding statements for left ideal elements  and right ideal elements 

are also true. 
Every  ideal e lement  is an equivalence element.  

I f  x is an ideal element,  then x ; y = y ; x = xy. 

I f  x is an ideal element,  then x(y  ;z)  = (xy) ;z. 
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T H E O R E M  2.4. A n  algebra 

S / =  (s/0, ;, 1', ") 

is a relation algebra iff 

(i) s/o = (A,  +,  0 , . ,  1, -)  is a Boolean algebra. 
(ii) (A,  ;, 1') is a monoid. 

(iii) For all z, y, z ~ A ,  the conditions 

(x ; y )z  = 0, (x ~ ; z )y  = 0, (z ; y ' ) x  = 0 

are equivalent. 

D E F I N I T I O N  2.5. A re la t ion  a lgebra  S / i s  said to be  

(i) Boolean if x ; y = xy fo r  all x, y ~ A. 
(ii) symmetric if x " =  x for  all x ~ A 

(iii) commutative if x ; y = y : x for  all x, y ~ A. 
(iv) integral if x ; y ~ 0 for  all x, y ~ A with x ~ 0 7 ~ y. 

Clear ly  every  s y m m e t r i c  re la t ion  a lgebra  is commuta t ive .  B o o l e a n  re la t ion  
a lgebras  can be a l te rna t ive ly  charac te r ized  by the condi t ion that  1 ' =  1, and  f rom 
this it is seen  tha t  a Boo l ean  re la t ion  a lgebra  is noth ing  m o r e  than  a Boo l ean  
a lgebra  with the opera t ions  ;, 1' and  " def ined " t r iv ia l ly"  by  the fo rmulas  

x ; y  = x y ,  1 ' = 1 ,  x ' = x .  

W e  have  chosen to define a re la t ion  a lgebra  to be  a s t ruc ture  with eight 
pr imi t ive  opera t ions ,  th ree  binary,  two unary,  and three  nullary,  a l though  a much  
smal ler  set  of  ope ra t ions  would  have  sufficed. As regards  the i n t e rdependence  of 
the  Boo l ean  opera t ions ,  the s i tuat ion is well known.  T h e  identi ty e l e m e n t  does  
not  have  to be  listed as a pr imi t ive  concept ,  since the s emig roup  (A, ;) has  at mos t  
one  neut ra l  e lement .  Less  obviously ,  2.3(viii) shows tha t  the  ope ra t i on  ~ could 
also be  omi t ted .  I t  should be  no ted  that  ne i ther  1' nor  " can be  equa t iona l ly  
def ined in t e rms  of  the  o the r  opera t ions ,  and that  the  omiss ion of e i ther ,  or  both ,  
would  lead to a class of a lgebras  tha t  is not  a variety.  H o w e v e r ,  w h e n  this aspect  
of  I I A  is not  impor tan t ,  we s o m e t i m e s  speak  of a re la t ion  a lgebra  (s/o, ;, "), or  

(s/o, ;, 1'), o r  (s/o, ;)- 
By  the  right and left residuals of an e l emen t  x over  an e l emen t  y , -  in symbols  

y \ x  and x / y , - w e  m e a n  the  largest  e l ements  u and v such that  

y;u<--x and v;y<--x. 
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Such elements exist in every relation algebra; indeed, they are given by the 

formulas 

y \ x = ( y ' ; x - )  - ,  x/y = ( x - ; y ' )  -. 

The  two operations of residuation can also be taken as primitive notion in place of 
the conversion. This is done in Birkhoff [1948] and [1967], where relation 
algebras are fitted into the general framework of residuated lattices. The converse 
is then defined by either one of the equivalent formulas 

x '=O ' / x - ,  x ' = x - \ O  '. 

3.  Construct ion  of  re lat ion algebras 

We review here and comment on several of the methods that have been used 
to construct relation algebras. 

I. The full algebra of binary relations. The algebra ~(X)  of all binary relations 
on a set X is the most important example of a relation algebra. The Boolean part 
of this algebra is the set-field consisting of all subsets of X 2, the relative product 
of two relations R and S, and the converse of R, are defined by the fomulas 

R ; S = {(x, y) : xRzSy for some z}, 

R"  = {(x, y) : yRx}, 

and the identity element is the identity relation on X. This algebra was charac- 
terized in J. C. C. McKinsey [1940]. After the general notion of a relation algebra 
had been introduced, a simpler characterization was given in J6nssons, Tarski 
[1952, Theorem 4.30]. 

T H E O R E M  3.1. A relation algebra sg is isomorphic to ~t(X) for some set X iff 
s~ is complete and atomic and p ; 1 ; p" <--- 1' and 1 ; p ; 1 = 1 for every atom p of Sr 

II. Operations on relation algebras. For a class K of algebras, let P(K), H(K) 
and S(K) be the classes consisting of all algebras that are isomorphic, respectively, 
to direct products, epimorphic images, and subalgebras of algebras in K. Since 
R A  is a variety, we have 

P ( R A )  = H ( R A )  = S ( R A )  = R A .  

D E F I N I T I O N  3.2. By a concrete relation algebra we mean a subalgebra of a 
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direct product  of full algebras of binary relations. By a representation of a relation 
algebra `d we mean  an isomorphism from `d to a concrete relation algebra, and we 
say that  `d is representable if such an isomorphism exists. We denote  by R R A  the 
class of all representable  relation algebras. 

If  e is an equivalence e lement  of a relation algebra `d, then the sets 

Ae  = (e] = {x ~ A : x -< e}, 

e ; A  ;e = { e ; x  ; e : x e A } = { y  c A : y  = e ; y ; e }  

are closed under  relative multiplication and conversion, as well as under  the 
Boolean operat ions of join and meet .  In fact, each of the two sets is a relation 
algebra under  these operations.  We denote these algebras by ,de and e ;`d;e.  In 
`de, the unit e lement  is e, the complement  of an e lement  x is x-e,  and the identity 
e lement  is l 'e ,  while the corresponding elements of e ; `d ;e  are e ; 1 ;e, x-(e  ; 1 ;e), 
and e. The  algebra `de is called a relative subalgebra of `d, although it is not a 
subalgebra unless e = 1. Similarly, e ; `d ;e  is not a subalgebra of `d unless e = 1'. If  
`d is representable,  then so are `de and e ;`d;e.  This follows from the fact that if E 
is an equivalence element  of ~ ( X ) ,  i.e., an equivalence relation on a subset of X, 
then ~t(X)E is isomorphic to the direct product of the algebras ~Z(Y) with Y 
running through the blocks of E, and E ; ~ ( X ) ; E  is isomorphic to ~ ( Z ) ,  where Z 
is the set of all blocks of E. 

III .  Diagrams. A finite relation algebra or, more generally, a complete  and 
atomic relation algebra, is completely  determined by the action of the relative 
multiplication on the set P of all atoms. In other words, it suffices to construct a 
table giving the values of p ; q for p, q e P, for any such partial operat ion can be 
uniquely extended to an operat ion on the whole algebra, subject to the condition 
that  it be completely distributive over  Boolean joins. In order  for the resulting 
algebra to be a relation algebra, the partial operation must obviously be subjected 
to some conditions, and these conditions can be more conveniently formulated if 
we assume that the conversion has also been specified, as a permuta t ion  of P, and 
that the e lement  1' has been given, as a join of atoms. 

T H E O R E M  3.3. Suppose `d = (`do, ;, 1', ") is a complete and atomic Boolean 
algebra with operators, with 1' a distinguished element, and ; and ~ operations of 
rank 2 and 1, respectively, that are completely distributive over Boolean joins. Let P 
be the set of all atoms of `do. Then `d is a relation algebra iff the following 
conditions hold for all p, q, r ~ P: 

p ' ~ P ,  p;(q;r)<_(p;q);r ,  l ' ; p = p  

p <_ q ; r implies p" <- r" ; qV and q <- p ; r ~. 

Proof. The displayed conditions are obviously necessary. Conversely,  suppose 
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these conditions are satisfied. We first note that, for all p E P, 

p ' "  ---- p. (1) 

Indeed,  since p = l ' ; p ,  there exists an atom r--<l' such that p = r ;p .  Hence  
r <--p;p ' ,  and consequently p <--r;p " ' <  -- p " .  Since both p and p ' "  are atoms, this 
implies that p ' "  = p. It is now easy to show that, for all p, q, r ~ P, 

p ~ : q ; r  iff p '<--r~;q  ~, (2) 

p ~ q ; r  iff q<<-p;r ~, (3) 

p ~ q ; r  iff r<--q~;p, (4) 

(p ;q)V = q~ ;pW. (5) 

From (1) and (5) it follows that the equations a ~" = a and (a ; b)" = b v ; a ~ hold for 

arbi trary elements a and b, and from (3) and (4) we infer that the conditions 

( a ; b ) c = O ,  ( a ' ; c ) b = O ,  ( c ; b ' ) a  = 0  

are equivalent. Since the inclusion a ;(b ;c)<_(a ; b ) ; c  holds whenever  a, b and c 
are atoms, it holds for arbitrary elements of the algebra, and the opposite 
inclusion is obtained by replacing a, b and c by c ~, b" and a ' .  Finally, noting that 
1' is a left identity element,  we infer that l "  is a right identity element,  and 
conclude that 1 ' =  1" is an identity element.  

By 2.4, sr is therefore a relation algebra. 

Again suppose we are presented with a table for p ;q, with p and q running 
through the atoms of a complete  and atomic Boolean algebra. In order to 
determine whether  the resulting Boolean algebra with operators  is a relation 
algebra, we must first determine the potential identity element  1' and the 
conversion operation. The identity element,  if one exists, must be the join of all 

a toms p such that p ; q --< q for all q ~ P, and the converse of an atom p must be the 
unique a tom r such that r ; p  - ~ :  0'. As an illustration, consider McKenzie 's  [1970] 
example of a non-representable  relations algebra. This algebra has four atoms, a, 
b, c and d, and their relative products are given by the following table: 

I j  

r 

b 

C 

d 

a b c d 

a b c d 

b b 1 b+d 

c 1 c c+d 

d b+d c+d d-  
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In this case 1 '=  a and 

a ' = a ,  b ' = c ,  c ' = b ,  d ' = d .  

IV. Algebras of complexes. If R is a relation of rank n + 1 on a set U, then we 
can form an operat ion R a of rank n on the family of all subsets of U by letting 
Ra(Xo, X1 . . . . .  X~-I) be the set of all q s U such that (Po, P~ . . . . .  P,-I, q) ~ R for 
some Pl ~ Xi (i ~ n). By the algebra of complexes of a relational structure ~ = 
(U, R~, (i ~ / ) ) , -  in symbols ~ ( ~ ) , -  we mean the algebra (~o(U), R~, (i s / ) )  where 
%'o(U) is the Boolean algebra of all subsets of U. Obviously the operations R~ are 
completely distributive over Boolean joins, i.e., over set-theoretic unions. 

In order  to obtain algebras of complexes that are relation algebras, we should 
consider relational structures ~ = (U, R, S, E)  where R is a ternary relation, S is a 
binary relation (in fact a unary operation), and E is a unary relation (a subset .of 
U). If we wish to omit the identity element  or the conversion, or both, from the 
list of primitive notions, we can also consider structures (U, R, S), or (U, R, E),  
or (U, R).  The necessary and sufficient conditions for ~ (~ )  to be a relation 
algebra can be most easily formulated by treating R as a multivalued binary 
operation.  However ,  these conditions then become essentially just a reformula- 
tion of the conditions in 3.3, and there is therefore no need to state them. On the 
other  hand, these conditions become particularly elegant in the case when ~ is a 
partial algebra or an algebra. 

T H E O R E M  3.4. The algebra of complexes of a partial groupoid ~ is a relation 
algebra iff ~ is a category in which every morphism is an isomorphism. 

C O R O L L A R Y  3.5. The algebra of complexes of a groupoid qJ is a relation 
algebra iff ~ is a group. 

For the proofs of these results see J6nsson, Tarski [1952], Section 5. The 
backward implication in Corollary 3.5 was discovered independently by G. 
Birkhoff and J. C. C. McKinsey, c.f. Birkhoff [1948], p. 212 and J6nsson, Tarski 
[1948]. The  converse and Theorem 3.4 are due to J6nsson and Tarski. 

V. Relations algebras from modular lattices and projective geometries. In 
J6nsson [1959], non-Arguesian projective geometries were used to construct 
non-representable integral relation algebras. In Lyndon [1961], this idea was 
greatly improved upon, and a relation algebra was associated with each projective 
geometry that does not contain a line with exactly three points. In Maddux 
[1978], related methods were used to associate a relation algebra with every 
modular  lattice having a zero element.  Both Lyndon's  algebras and the ones 
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constructed by Maddux can be viewed as the algebras of complexes of certain 

relational structures. 

T H E O R E M  3.6 (Maddux [a]). Suppose (M, ix, v) is a modular lattice with a 
zero element, and let R be the set of all (p, q, r) ~ M 3 such that 

p v q = q v r = r v p .  

Then qC(M, R) is a symmetric integral relation algebra. 

T H E O R E M  3.7 (Lyndon [1961]). Let (M, v, A) be the lattice of all subspaces 
of a projective geometry G, let P be the subset of M consisting of the zero element 
and all the atoms of M, and let R be the set of all (p, q, r) ~ p3 such that 

p v q = q v r = r v p .  

I f  no line of G has exactly three points, then c~(p, R) is a symmetric relation 
algebra, and if every line of G has at least four points, then cd(P, R) is integral. 

If we modify the construction in Theorem 3.7 by letting P consist of just the 
points of G, then R becomes the relation of collineation, i.e., (p, q, r) s R iff either 
p = q  =r ,  or else p, q and r are distinct but collinear points. The  algebra of 
complexes, cO(p, R), is in this case "almost"  a relation algebra: The  operation ; 
(i.e., R 'x) is associative, even if G has lines containing exactly three points. In fact, 
the associativity of ; is exactly the projective axiom. Also, because of the 
symmetry of R, the conditions 

(a ;b)c =0 ,  ( c ; b ) a  =0 ,  (a ;c)b =0 

are equivalent. However,  there is in this case no identity element. 

4. Simple relation algebras 

Theorems 4.5 and 4.8 below are of fundamental importance for the study of 
varieties of relation algebras. Theorem 4.5, which was first announced in J6nsson 
and Tarski [1948], is due to J. C. C. McKinsey and Tarski, while Theorem 4.8 was 
proved in Tarski [1941]. 

If ~to is the Boolean part of a relation algebra ~ ,  then the congruence lattice 
of ~ is of course a sublattice of the congruence lattice of S~o, Con ~_c Con ~o- 
The familiar isomorphism 0 ~ 0/0 from Con-~o to the lattice of all ideals of ~t0 
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therefore  maps  the members  of Con ~t onto certain ideals of ~o- We call these 
ideals congruence ideals of ~ .  

D E F I N I T I O N  4.1. An ideal N of a relation algebra ~ is called a congruence 
ideal of .d if N = 0/0 for some congruence relation 0 on ~ .  

T H E O R E M  4.2. For an ideal N of a relation algebra ~ ,  the following 
conditions are equivalent: 

(i) N is a congruence ideal. 
(ii) N is a ideal of the semigroup (A, ;). 

(iii) 1 ; x ; 1 ~ N for all x ~ N. 

The condition (ii) means that A ; N c  N and N ; A  ~ N ,  i.e., that x ;y e N  and 
y ; x ~ N whenever  x ~ A and y E N. If N is a congruence ideal, then the associated 
congruence relation 0 is of course defined by the condition 

xOy iff x ~ y ~ N ,  

where ~ denotes  the symmetric  difference, i.e., x ~ y  = x y - + x - y .  

C O R O L L A R Y  4.3. A principal ideal (a]  of a relation algebra ~l is a congru- 
ence ideal if[ a is an ideal element. 

T H E O R E M  4.4. If  a is an ideal element of a relation algebra ~I, then the 
map x ~ (ax, a -x )  is an isomorphism from ~ to ~ a  x ~ a - .  

T H E O R E M  4.5. For a non-trivial relation algebra ~t, the following conditions 
are equivalent: 

(i) ~ is simple. 
(ii) ~t is subdirectly irreducible. 

(iii) ~t is directly indecomposable. 
(iv) ~t has exactly two ideal elements. 
(v) 1 ; x ; 1 = 1 whenever 0 ~ x e A.  

C O R O L s  4.6. Every relation algebra is isomorphic to a subdirect product 
of simple relation algebras. 

C O R O L L A R Y  4.7. Every subalgebra of a simple relation algebra is simple. 

T H E O R E M  4.8. One can effectively correlate with every open formula 4~ in the 
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language of relation algebra a term 4"* in the same language in such a way that for 
every simple relation algebra ~t, 

T h e r e  will be  occasions when  we need an explicit  f o rm for  4,*, and we 
the re fo re  recall  how this t e rm can be constructed.  W e  m a y  assume  tha t  all the 
a tomic  subfo rmulas  of  4, are  of  the fo rm w = 1, and that  the only connect ives  that  
occur  in 4, are /x and  -~. W e  then  p roceed  recursively as follows: 

If 4, is w = 1, let 4,* be  w. 

If  4, is 4,oA4,t, let 4,* be  4 ,* .  4'*. 
If  4' is 7 0 ,  let 4'* be  1 ; ( 0 " - ) ; 1 .  

It  is a rout ine  m a t t e r  to check  that  4'* has the requi red  proper t ies .  T h e  crucial 
case is the one  in which 4' is 7 0 .  T h e  a rgumen t  for  this case is based  on 4.5(v): 
Fo r  a given ass ignment  to satisfy "nO means  that  0 is not satisfied, hence  that  the 
value of 4'* is not  1, hence  that  the value of ~ * -  is not 0, and finally that  the value 

of 1 ; ( 0 " - ) ; 1  is 1. 
In m a n y  cases this m e t h o d  does  not yield the s implest  t rans la t ion of an open  

fo rmu la  into an equa t ion  (or an inclusion). E.g., if 4' is an implicat ion 

Uo= 0/x u~ = 0 / x -  �9 ./xu~ = 0---~ v = 0  

or ,  equivalent ly ,  

Uo+Ul+" �9 �9 + u ,  =0---~ v = 0, 

then  4, is satisfied in a s imple  re la t ion a lgebra  iff the inclusion 

v-----1;(Uo+U~+" �9 . + u , ) ; 1  

is satisfied. T o  take  a m o r e  specific example ,  consider  re la t ion  a lgebras  sr whose  
divers i ty  e l emen t  is e i ther  0 or  an a tom.  This means  that  the fo rmu la  

0 'x  = 0 v 0 ' x - = 0  

holds  in M. If  M is s imple,  then  this fo rmula  holds just in case the  ident i ty  

(0 'x)  ; 1 ; (0 ' x - )  = 0 

holds.  



284 BJARNI JONSSON ALGEBRA UNIV. 

Since relation algebras are Boolean algebras with certain additional operations, 
RA is both congruence distributive and congruence permutable. We recall some 
of the most important consequences of the congruence distributivity, and then 
combine these facts with Theorems 4.5 and 4.8 to obtain the fundamental 
correspondence between varieties of relation algebras and universal classes of 
simple relation algebras. 

Recall that, for a class K of algebras, P(IK), H(K) and S(IO axe the classes 
consisting of all algebras that axe isomorphic, respectively, to direct products, 
epimorphic images and subalgebras of members of K. We shall also denote by 
Ps (K) and Pu (K) the classes consisting of all algebras that are isomorphic, 
respectively, to subdirect products and to ultraproducts of members of K, and by 
Si (K) the class of all subdirectly irriducible members of K. Finally, we denote by 
Vat (K) the variety generated by K. 

For any class K of algebras, 

Var (IO = HSP(K), 

but if K is contained in a congruence distributive variety, then we also have 

Vat (K) = Ps HS Pu (K), 

Si Vat (K) _~ HS Pu (K). 

Three special cases are particularly important: 
If K is a finite set of finite algebras, contained in a congruence distributive 

variety, then 

Vat (K) = Ps HS(K), 

Si Var (K) c_ HS(K). 

If K is a positive universal subclass of a congruence distributive variety, then 

V a t  (K) = Ps (g ) ,  

Si Var (K) ~ K. 

If U and V are subvarieties of a congruence distributive variety, then U + V, 
the lattice join of U and V, consists of all algebras that are isomorphic to a 
subdirect product of a member of U and a member of V. In particular, 

Si (U + V )  = Si (U) t3 Si (V). 
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We now return to relation algebras. 

D E F I N I T I O N  4.9. We denote by A the lattice of all subvarieties of RA.  

Of  course A is a dually algebraic lat t ice and, since R A  is congruence 

distributive, A is distributive. Recall also that the subdirectly irreducible members  

of R A  are simple. 

T H E O R E M  4.10. The correspondence V---~ Si (V) is an isomorphism from A to 
the lattice of all universal sublcasses of Si (RA). The inverse isomorphism is the 
correspondence K ~ Var  (K). 

Proof. By Theorem 4.5, Si (V) is a universal class for every subvariety V of 
RA,  for Si (V) consists of all those members  of V that satisfy the open formulas 
0 ~ 1 and x # 0 ~ 1 ; x ; 1 = 1. The equality Vat" Si (V) = V and the inclusion K _~ 
SiVar  (K) hold for any variety V and any class K of subdirectly irreducible 
algebras. To complete  the proof,  it therefore suffices to show that the above 
inclusion is in fact an equality when K is a universal class of subdirectly 
irreducible relation algebras. 

By Theo rem  4.8, there exists a set X of identities such that K is precisely the 
class of all those members  of Si (RA) that are models of X. In other  words, K is 
the class of all members  of R A  that are models of N and of the two formulas 0 7 ~ 1 
and x = 0 x/1 ; x ; 1 = 1. If we omit  the formula 0 ~ 1, the members  of R A  that are 
models of the remaining formulas form a positive, universal class K'  with K__q K'. 
Consequently,  SiVar(K)_~ K'. But the only member  of K'  that is not in K is the 

trival relation relation algebra. Hence  Si Var  ( K ) c  K. 

T H E O R E M  4.11. R R A  is a variety. 

This result was first proved in Tarski [1955] by a rather  indirect argument.  The  
proof  outlined here was suggested by R. McKenzie. 

Let  K be the class of all simple, representable relation algebra. Then  M ~ K iff 

is isomorphic to a subalgebra of ~ ( X )  for some non-empty  set X. Observe that 

R R A  = Ps (K) ~_ Var (K). 

To prove  the theorem it therefore suffices to show that S(K), H(K) and Pu  (K) are 
subclasses of R R A .  Actually, S(K) is equal to K, and H(K) is simply K with the 
one-e lement  algebra adjoined (because all the members  of K are simple.) We 
claim that Pu  (K) = K. To  prove this it suffices to show that if M is an ultraproduct 
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of full algebras of relations ~(X~), i ~ / ,  modulo an ultrafilter ~ on /, then ~ is 
isomorphic to a subalgebra of ~ (Y)  for some set Y. We take for Y the 
ultra-product of the sets X~. With a member F/OR of s~, where F ( i ) c  X 2 for i e L 
we associate the relation F ~ on Y determined by the condition that (x/~)F~ 
iff 

{i ~ I :  x( i)F(i)y( i)}  ~ ~ 

It is a routine argument to show that the map F/OR --~ F r is well defined, and is an 
embedding of sr into ~(Y) .  

5. The atoms and the center of A 

The relation algebra ~ (n )  satisfies the identity 0' ; 0 ' =  1 if n->3,  but for n = 2 
and n = 1 we have 0 ' ; 0 ' =  1' and 0 ' ; 0 ' = 0 ,  respectively. It is convenient to have 
names for the varieties determined by these three equations. 

D E F I N I T I O N  5.1. We denote by B1, B2, and B 3 the varieties consisting of all 
relation algebras that satisfy, respectively, the identities 0' ; 0 '=  0, 0' ; 0 ' =  1', and 
0 ' ; 0 ' = 1 .  

Incidentally, 0 ' ; 0 ' = 0  is equivalent to 0' =0 ,  and hence to 1 '=  1. In fact, if 
(0' ;0')1' =0 ,  then 0 ' = 0  by 2.3(v). Thus B1 is precisely the variety of all Boolean 
relation algebras. 

The next theorem was proved in J6nsson, Tarski [1952]. 

T H E O R E M  5.2. Every relation algebra is isomorphic to a direct product 
,9~ 1 X d~ 2 )( S~ 3 where sr ~ B~ for i = 1, 2, 3. 

C O R O L L A R Y  5.3. Every simple relation algebra belongs to one of the varieties 
B~. Hence, R A  =B~ +B2+B3.  

C O R O L L A R Y  5.4. The smallest subalgebra sg' of a non-trivial relation 

algebra sr has order 2, 4, 8, 16 or 32. I f s g ~ B x ,  then the order of sg' is 2, but if 
,~ t~ B2, or ~ E B3, then the order of s~' is 4. 

This follows from the fact that the set {0, 1, 1', 0'} is a subuniverse of ~/ 
provided 0' ;0' is a member  of the set. This happens just in case ~t is in one of the 
varieties B~. If ~ is in Bx, then 0' = 0 and 1' = 1, but if ~t is in B2 or B3, then 0, 0', 
1 and 1' are easily seen to be distinct. 



Vol 15, 1982 Varieties of relation algebras 287 

For  sCsB~, i = 1, 2, 3, the smallest subalgebra sO' of sr is determined up to 
isomorphism by the fact that 0 ' ;0 '  is equal to 0, 1' and 1, respectively. We need 
names for these three algebras, and for the varieties that they generate. 

D E F I N I T I O N  5.5. For n = 1, 2, 3, we denote by ~', the smallest subalgebra of 
~(n) ,  and we denote  by A ,  the variety generated by g, .  

C O R O L L A R Y  5.6. A has precisely three atoms: A~, A2 and /ti, 3. 

This readily follows from the fact that every simple relation algebra has a 
subalgebra isomorphic to one of the algebras ~.. This corollary was proved in 
Tarski [1956] by a different argument. 

T H E O R E M  5.7. The center of A is a Boolean algebra of order 8 whose atoms 

are BI, B2 and ][33. 

Proof. By 5.3, RA = B a +B2+B3.  Furthermore,  any non-trivial member  of B~ 
has a subalgebra isomorphic to ~'~, and therefore cannot belong to B/ for ]~ i. 
Hence each of the three varieties B~ has the join of the other  two as a 
complement,  and they therefore generate a Boolean algebra of order  8, contained 
in the center of A. This Boolean algebra must in fact be the whole center of A, for 
otherwise A would contain four pairwise disjoint non-zero members,  contrary to 
the fact that every non-zero member of A contains one of the algebras r as a 

member.  

6. Examples of equational bases 

The varities At and B~, i = 1, 2, 3, generate a sublattice of A or order  18. Four 
members of this sublattice, RA, B1, B2 and B3, w e r e  defined as models of certain 
sets of identities, so we already have equational bases for these varieties. A fifth 
member  is the trivial variety. We are going to find one or more equational bases 
for each of the remaining thirteen varieties, as well as some alternative bases for 
B1. First we need to take a closer look at BI and B2. 

T H E O R E M  6.1. A1 = B >  

Proof. By the remark following Definition 2.5, Bt  is simply the variety of all 
Boolean relation algebras. In other words, a member  ~ = (~1o, ;, 1', ") of B1 is 
obtained from the Boolean algebra ~/o by letting x ; y  = xy, 1 '=  1 and x ~= x. It 
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follows that Con sg = Con Mo, and hence that sg is simple iff s~0 is. Thus the only 
simple member  of B1 is gl ,  which belongs to A1. Consequently B1 =Az.  

The facts concerning B2 are somewhat less trivial. The  following result from 
J6nsson, Tarski [1952] is needed. 

T H E O R E M  6.2. Every relation algebra in which the unit element is the join of 
finitely many functional elements is representable. 

A more general representation result can be found in Maddux [1978]. 

C O R O L L A R Y  6.3. Bz + ] ~ 2 - < R R A -  

Proof. In any member  of BI+B2,  both 1' and 0' are functional elements. 

C O R O L L A R Y  6.4. A n  algebra s~ ~ ][~2 is simple iff s~= ~2 or  s~= ~(2).  

Proof. A simple, representable relation algebra sr is isomorphic to a sub- 
algebra of ~(K) for some cardinal K. If M belongs to B2, then it satisfies the 
condition 0 ' ; 0 ' =  1'. Hence ~(K) must also satisfy the condition, which implies 
that K = 2. From this the conclusion follows, since the only proper  subalgebra of 
Or(2) is g2. 

C O R O L L A R Y  6.5. ][I 2 c o v e r s  A 2 in A. 

Since all the varieties under consideration are subvarieties of RA,  we speak of 
equational bases for these varieties when we actually mean equational bases 
modulo RA. For  brevity we write 

r(x)  = (O' x) ; 1 ; (O' x-) .  

The prevalence of this term is explained by the observation, made in Section 4, 
that a simple relation algebra satisfies the identity -r(x) = 0 iff its diversity element 
is either an atom or the zero element. 

T H E O R E M  6.6. The varieties listed below have the equational bases indicated. 
Different equational bases for the same variety are separated by a semicolon. 

Az I' 
A 2 0' 

0' 
0' 
0' 

= 1 ;  x ; y = x y ;  x ; x = x .  
; 0 ' = 1 '  and x ; y = y ; x ;  
; 0 ' =  1' and xV=x;  
; 0 ' = 1 '  and x ; x ; x = x ;  
;0' = 1' and r(x)  = O. 
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A3 
A x + A 2  

Aa +A3 

A2 + A3 

A1 + A 2 + A 3  

B2+A3 

A z + B 3  
B 2 + B 3 
A1 +B2 

A I + B 3  
A~ + A 2 + B  3 

A l + B 2 + A 3  

O' ; O' = 1 and  "r(x) = O. 

0 ' ;0 ' -<1  ' a n d x ; y = y ; x ;  

x ; x ; x = x ;  x ; x ~ ; x = x .  

O' <- O' ; O' a n d  "r(x) = O. 

1 ' -<0 ' ;0  ' and  ~'(x)=0. 
~'(x) = 0 .  

1' <-- O' ; O' and  "r(x) <- 1 ; (0' ; 0 ' ) - .  

1 ' -<0 ' ;0  ' and  x ; y - ( y  ;x )+(0 ' ;0 ' ) .  
1 ' - 0 ' ; 0 ' .  
0' ; 0' - 1'. 
0 ,<0 , ; 0 , .  
x ; y - ( y  ; x ) + ( 0 ' ; 0 ' ) ;  x~-< x ;(0' ;0'). 
,r(x) -< 1 ;(0' ;0')-. 

Proof. As an equational basis for A~ we can take any identity, or set of 
identities, that holds in ~'1 but fails in ~2 and ~3- Each of the three identities listed 
fulfils this requirement.  Similarly, for A 2 we can take any set of identities that 
holds in ~2 but fail is ~ ,  s and ~(2). The identity 0' ;0' = 1' excludes s and ~'3, 
while each of the four identities 

x - y = y  "x,  x ' = x ,  x ; x ; x = x ,  "r(x) = 0 

excludes ~ (2). For  A1 + A2 we need identities that hold in r and r but fail in ~3 
and ~ (2). The identities 0' ; 0' --< 1' and x ; y = y ; x jointly fulfil these requirements, 
and so does each of the identities x ;x ; x = x and x ;x" ; x = x. 

For  most of the remaining varieties, this type of argument does not work, for 
we do not know all their covers. 

As was observed earlier, a simple relation algebra satisfies the identity 1"(x) = 0 
iff its diversity element is either an atom or the zero element. The algebras ~fl, ~f2 
and ~3 have this property,  and we claim that they are the only such algebras. To  
prove this it suffices to show that if the diversity element of a simple relation 
algebra is an atom, then so is the identity element. Suppose, to the contrary, that 
l ' = x + y  with x y = 0  and x~k0~y .  Then (x ; 0') + (y ; 0') = 0' and, by 2.3(xiii), 
( x ; 0 ' ) ( y ; 0 ' ) = 0 .  Consequently, either x ; 0 '  or  y ; 0 '  is 0, say x ; 0 ' = 0 .  Thus 
(x ;0 ' )0 '=  0, hence (0 ' ;0 ')x = 0. This shows that 1 ' :~0 ' ;0 ' ,  and the only simple 
relation algebra with this property is gl.  

The  variety generated by gl ,  ~2 and ~3 is A I + A 2 + A 3 ,  and the equation 
- r (x)=0  therefore constitutes an equational basis for this variety. To  obtain 
equational bases for A2 +A3,  or A l +A3, or A3, we need only add identities that 
exclude ~'1, or g2, or both. Such identities are 1 ' - 0 '  ;0', 0' <--0' ;0', and 0' ; 0 ' =  1, 
respectively. 
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The variety A1-I-B2 = n l  q-B2 is the complement of B 3. The  inclusion 0' ;0 ' - -1 '  
is an equational basis for 111 +B2 because it holds in B1 and B2, but fails in ~'3, and 
therefore in every non-trivial member  of B 3. 

The  inclusion -r(x)--< 1 ;(0' ;0 ')-  holds in A1 and in B2, where 1 ;(0' ; 0 ' ) - =  1, 
and it also holds in A3, for that variety satisfies the identity "r(x) = 0. On the other  
hand, if s /  is a simple relation algebra that does not belong to A1 + B2 + A3, then 

E B3, and the diversity element  of ~t is not an atom. The inclusion ~-(x)----- 
1 ; (0' ; 0 ')- therefore fails in ~ ,  for the right hand side is identically zero, but the 
left hand side is not. This inclusion therefore constitutes an equational basis for 

A2-t- B2 + A. 3 . 
Each of the inclusions x ; y < - - ( y ; x ) + ( 0 ' ; 0  ') and x'<_x+(O';O') is an equa- 

tional basis for At + A 2 + B 3 ,  for  both inclusions fail in ~ (2 ) ,  but in every simple 
relation algebra not isomorphic to ~ ( 2 )  we have either 0 ' ; 0 ' =  1 or x ; y  = y  ;x 

and x" = x. 
The inclusion 1' --- 0' ;0' is easily seen to be an equational basis for n 2 + B  3. The 

equational bases for B 2- t -A 3 and A2+B3 are obtained by observing that 

B2 + A3 = (A1 + B2 + A3) CI (B 2 + B3) , 

A 2 + B 3 -- (A t + A 2 + B3) f"l (B 2 + B3). 

7.  Splitting algebras and their conjugate  varieties 

The notion of a splitting algebra arose in McKenzie [1972] in the context of 
lattice varities, but the concept obviously applies to arbitrary varieties of algebras. 
A subdirectly irreducible algebra ,~/in a variety Vo is said to be splitting (in Vo) if 
the subvarieties of Vo that do not have ~t as a member  form a principal ideal in 
the lattice of all subvarieties of Vo. The variety generating this ideal is then the 
largest subvariety of Vo that does not have ~t as a member.  It is called the 
conjugate variety of s~. Since ~ is not a member  of its conjugate variety V, there 
must exist an identity that holds in V but not in s~, and because of the maximality 
of V, this identity must form a basis for V modulo Vo. This identity, which is 
called the conjugate identity of s~, is therefore unique up to equivalence modulo 
the identities that hold in Vo. 

T H E O R E M  7.1. Every finite, simple relation algebra ~ is splitting. A simple 
relation algebra ~ belongs to the conjugate variety of ~ iff sg is not monomorphic to 

Proof. Let  K be the class of all simple relation algebras ~ such that s~ is not 
monomorphic  to ~ .  Since s~ is finite, K is a universal class, whence by Theorem 
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4.10, Si Var  (K)=  K. In particular, Md Vat  (K). If U is any subvariety of RA that 
is not included in Vat  (10, then there must exist a simple relation algebra ~ that 
belongs to U but not to K. It follows that ,~ is monomorphic  to ~ ,  and therefore a 
member  of U. This shows that M is splitting, with Vat  (K) as its conjugate variety. 

D E F I N I T I O N  7.2. For  any non-zero cardinal K, we let RA (K) be the variety 
generated by ~(K), and for K finite, we let RA* (K) be the conjugate variety of 
~(~). 

L E M M A  7.3. For any non-zero element p of a simple relation algebra ~ ,  if 

p ; 1 ; p ' - - < l  ' and p ' ; 1 ; p - < l  ', (i) 

then p is an atom of ~ .  

Proof. The first inclusion in (i) can be written (p ;1  ; p ' ) 0 ' = 0 ,  and by two 
applications of 2.3(v) we obtain first (p~ ;0')(1 ;p~)= 0, then (p" ;0' ;p ) l  = 0, i.e., 
p ~ ; 0 ' ; p = 0 .  Now suppose p = a + b ,  with ab=O. Then a " ; 0 ' ; b = 0 .  Also, 
(a ; l ' )b  = 0, which by 2.3(v) yields ( a ' ; b ) l ' =  0, i.e., a ' ; b  <-0'. Consequently, 

a~;1 ;b =(a';O'  ;b)+(a~;l ' ;b)<-O ', 

and together  with the second part of (i) this yields a ~ ; 1 ; b  =0 .  Since ~ was 
assumed to be simple, we conclude that a = 0 or b = 0. Thus p is an atom of ~ .  

L E M M A  7.4. For any positive integer n, ~(n)  is not isomorphic to a proper 
subalgebra of a simple relation algebra. 

Proof. Suppose f is a monomorphism from ~(n )  to a simple relation algebra 
~t. Since the atoms of ~ (n )  satisfy the condition 7.3(i), their images in a /m u s t  be 
atoms. From this the conclusion follows, for if a monomorphism from a finite 
Boolean algebra to a Boolean algebra takes atoms into atoms, then it is an 
isomorphism. 

T H E O R E M  7.5. The varieties RA* (n) with n a positive integer are pairwise 
distinct coatoms of A. 

Proof. By 7.4, RA* (n) contains every simple relation algebra except ~(n) .  
From this theorem follows. 
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L E M M A  7.6. For every positive integer n, a simple relation algebra sl is 
isomorphic to ~ (n )  iff there exists a ~ A with 

a;a<--a, a + a ' = 0 ' ,  a " = 0 ,  a " - i # 0  

Proof. The fo rward  impl ica t ion holds because  the  less than re la t ion  on the  set  
n = {0, 1 , . . . ,  n - 1 }  satisfies the  d isplayed formulas .  

N o w  suppose  a e A has the indicated proper t ies .  By  7.4 it suffices to show that  
sr has a sublat t ice  i somorph ic  to. ~R(n). Thus  we wish to find n 2 e l emen t s  p~.i, 
i, ] ~ n, with the  fol lowing proper t i es :  

1 = ~ P~a (1) 
i , /~n 

1'= Z p,.,. (2) 
iEa  

P~aPk.,. = 0 for  (i, j) # (k, m) .  (3) 

Pl,i ~ = Pj.i- (4) 

P~.~ ; P~k = P~.k- (5) 

P~.i; Pk.,. = 0 for  i # k. (6) 

M o t i v a t e d  by  the  p rope r t i e s  of  the less than relat ion,  we define 

b k = ( 1 ; a k ) l  ' for  k = 0 , 1  . . . . .  n, 

ck=bk(bk+l) - for  k = 0 , 1  . . . . .  n - I ,  

p ~ j = q ; 1 ; q  for  i , / = 0 , 1  . . . .  , n - 1 .  

F r o m  the fact  that  a2<--a and a "  = 0  it follows that  

1 ' =  b 0 - b l - .  �9 ._>b,  = 0  (7) 

and,  consequent ly ,  

1 ' =  Co+Cl+"  �9 �9 + c . -1 ,  

c , q = O  for  i#].  

(8) 

(9) 

F r o m  the fact  tha t  q -  1' for  all i ~ n, we infer by 2.3(xiii) that  

P~,iPk, m ----- (qck ; 1)(1 ; qcm), 
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whence  (3) follows by (9). Fur the rmore ,  

( ~ , )  ; ( ~ ] q )  ; 1 ' =  ~.. p~a = c~ ;1 = 1 ' ; 1  1, 
i , jen  i j ~ n  

proving (1). T h e  formulas  (4) and (6) are obvious. 
Obse rve  that  pi.j ;Pi.~ = q  ; 1 ; q  ;1;ck.  The  formula  (5) will the re fore  follow 

f rom the simplicity of s l  if we can show that  c, ~ 0. I.e., it suffices to show that  the 
e lements  b~ form a strictly decreasing sequence.  By 2.3(vi), 

1 ; bk = 1 ; (1 ; a k ) l  ' >-- (1 ; l ' ) a  k = a k, 

hence  I ; b k > - - l ; a  k. The  opposi te  inclusion is obvious,  and we the re fore  have 
1 ;bk = 1 ;a  k. Thus,  for  k < n ,  we cannot  have bk = bk+l, for  this would imply 
1 ; a  k : 1 ; a  k+l, hence 1 ;a  " - t  = 1 ; a "  = 0 .  The  formula  (5) there fore  holds. 

T o  comple t e  the proof  of the temma,  it only remains  to verify (2). This  will be 
done  by showing that  p~.~ = q, i.e., that  c~ ; 1 ;q  = q. Obviously,  c~ ; 1' ; q  = q, and 
the conclusion will therefore  follow if we show that  c~ ; 0' ; c~ = 0. Since 0' = a + a ~, 
this is equivalent  to the conjunct ion  of the two equat ions  ci ;a  ;c~ = 0  and 
q ; a  ~ ; q  = 0, and by symmet ry  it suffices to p rove  one  of these equat ions,  say the 
former .  Writ ing this equat ion in the form (q ;a  ; q ) l  = 0 ,  and applying 2.3(v), we 
obta in  an equivalent  equa t ion  

(c~ ; a ) ( l  ; c i ) = 0 .  (10) 

By 2.3(xiv), (xv), the e lement  d~ = (1 ;a~)(1 ;a~+~) - is a left ideal e lement .  Hence ,  
by 2.3(vi), 

1 ; (dl  1 ' )=  1 ;((1 ;d~) l ' )>  (1 ; l ' )di = d~, 

and consequent ly  1 ; (d~ 1') = d ,  i.e., 

1 ;c, = (1 ; ai)(1 ; a~+~) -.  

T o  prove  (10) it the re fore  suffices to show that 

(ci ;a) (1  ;ai+l)  - = 0 .  

This last equa t ion  obviously holds, for  

q ; a - ~ l ; #  ; a =  1 ; a  ~+~. 



294 BJARNI JONSSON ALGEBRA UNIV 

The proof of the lemma is now complete. 

T H E O R E M  7.7. For any positive integer n, ~(n)  has the conjugate identity 

x "-1 <- 1 ;((x ;x )x -  + O'x~x'- + xn) ; 1. (i) 

Proof. A simple relation algebra ~t belongs to the conjugate variety of ~ (n )  iff, 
for every element  a of A, one of the following four conditions fails: 

a;a<--:a, a+a'>_O', an - l#O,  a" =0 .  (1) 

Here  we have replaced the equality a + a " =  0' in 7.6 by an inclusion a + a" >-0'. 
This is justified by the observation that any element a that satisfies the inclusion 
but not the equality necessarily fails to satify the fourth condition, a n = 0. 

To say that at least one of the conditions in (1) fails, is equivalent to saying 
that 

a n - l ~ 0  implies (a;a)a-+O'a-aV-+anr  

and since M is simple, this holds iff a satisfies (i). 

The  conjugate varieties of ~(1) and ~(2) are B2-t-B 3 and A I - t - A 2 + B  3. In the 
preceding section it was shown that these varieties have the equational bases 
1'-----0';0' and x ;y-----(y ; x )+ (0 ' ; 0 ' ) ,  respectively, while the present result yields 

the bases 

1 '--  1 ;((x ;x )x -  +O' x - x ' -  + x) ; 1, 

x <- 1 ; (x ; x + O'x-x ~-) ; 1. 

The new basis for B2+B3 easily reduces to 1 '~  1 ;0 ' ;1 ,  and it is not hard to show 
that this is equivalent to 1'--<0';0 '. It does not appear to be as easy to prove 
directly that the two bases for A ~ + A 2 + B  3 do in fact define the same variety. 

T H E O R E M  7.8. There exists 2 ~,, varieties of symmetric, representable relation 
algebras. 

Proof. For any odd prime p, let ~tp be the Lyndon algebra of a projective line 
G o of order  p, and for any set S of odd primes let Vs be the variety generated by 
the algebras ~p with p ~ S. Since the algebras s~p are symmetric and representa- 
ble, so are the members of Vs. It therefore suffices to show that the correspon- 
dence S --~Vs is one- to-one  or, equivalently, that s~q ~Vs implies q ~ S. 
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The atoms of s~, are the identity element and the points of Gq. The points r of 
Gq are characterized by the properties r_<0' and r;r = r +  1'. Consequently,  any 
monomorphism from s~q to ~p must take atoms into atoms, for the points of Gq 
must go into points of Gp, and of course the identity element of s~q goes into the 
identity element of sgp. It follows that no such isomorphism exists unless p = q. 
Consequently,  if q~ S, then Vs is contained in the conjugate variety of s~q, and 
thus st/q ~ Vs, as was to be shown. 

Observe that the varieties in the above theorem also satisfy the identity 
X2 ~ X 3. 

If sg is a finite, non-representable,  simple relation algebra, then the conjugate 
identity of st/obviously holds in l iRA,  but not in RA. However,  these identities 
tend to be rather involved, and often simpler, but weaker, identities can be 
obtained by more ad hoc methods. This is illustrated in the next theorem, which 
was discovered by analyzing the proof of the non-representability of McKenzie's 
algebra described in part III  of Section 3. 

T H E O R E M  7.9. Let O(X) = (x-x  ~- ; x -x ' - )  -. Then the inclusion 

(x ;xV)(x ~ ;x)p(x) -< 1 ;(x ;x) (x-  + O(x)) ; 1 

holds in l i R A  but fails in McKenzie's non-representable relation algebra. 

Proof. The inclusion fails in McKenzie's algebra if we take x = 1 '+ p, where p 
is one of the two atoms with p~7 ~ p. 

In order  to show that the inclusion holds in every representable relation 
algebra it suffices to show that it holds in ~(X).  We want to show that if x is a 
transitive relation, i.e., if (x ; x ) x - =  0, and if 

(x ; x~)(x" ;x)o(x) ~ O, (1) 

then (x ;x)o(x)pO. Adopting the terminology normally used for partial orders, 
we observe that p(x) consists of all ordered pairs (a, 13) with the property that 
every member  e of X is comparable with either a or/3,  i.e., satisfies one of the 

four conditions 

exo,, o, xe, ex/3, /3x~. (2) 

Our hypothesis (1) thus means that there exist elements a, 13 ~ X such that one of 
the conditions in (2) holds for every e ~ X and furthermore,  for some 3r 6 e X, the 
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four conditions 

ax3,, [3x3,, 8xa, 8x~ 

hold. Clearly (8, 3') belongs to x ;x, and to show that (8, 3") also belongs to O(x), 

we observe that if, for a given e ~ X, either exa or ex[3, then ex3", but  if axe  

or [3xe, then ~xe. 

8. The varieties RA(K) 

Obviously R R A  is the join of the varieties R A ( r ) ,  with K running through all 
the non-zero cardinals. We shall prove that all the varieties RA(K) with K infinite 
are equal. This is certainly not surprising, but it does not appear  to be completely 

trivial. From this it follows that 

RRA = RA(1) + RA(2) +-- �9 + RA(Ro), 

and it will be  shown that this representat ion is irredundant. 

T H E O R E M  8.1. For any infinite cardinals K and A, R A ( K ) = R A ( A ) .  

Proof. It is clearly sufficient to show that if an open formula ~b(r ~2 . . . . .  ~n) 

in the language L of relation algebras is satisfiable in fit(X) for some infinite set X, 
then ~b is satisfiable in fit(X) for every infinite set X. In order  to prove this, we are 
going to associate with each such formula 4, a sentence 4, ~ in a language L ~ with 
binary predicates P1, P2, �9 �9 �9 P ,  in such a way that, for any set X, a sequence of 
binary relations R~, R2 . . . . .  R .  on X satisfies r in ~ ( X )  iff 4, ~ hold in the 

structure 

= (X, R1, R2 . . . . .  R , ) .  (1) 

First we associate with each te rm t in L a formula t~(rh, "02) in L ~, containing no 
free variables distinct from "0~ and "02, in such a way that the truth set of C("01, "02) 
in ~ is the relation t (R1, R2 . . . . .  R , )  in ~ (X) .  If t is 0, or 1, or 1', or  a variable ~, 

we take t '~ to be ~("01 = "01), or  "01 = "01, or "01 = "02, o r  Pi("01,  T~2), respectively, and 
for composi te  terms t we define t ~ recursively by 

(s + ty" = s" v t L  (st)" = r" ^ t '~, 

( S ; t )  a = ( : : l ' 03) (S~(n l ,  "03)A t'~('03, "02)), 

(:) '~(n~, n2) = t'~(n2, rh). 

( S - )  ~ = "-.IS c~, 
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If  05 is an a tomic  fo rmula  s = t, we let 05= be the sen tence  

( v ~  O(V,n2)(s '~ ~ t~), 

and  we ex tend  the definit ion to o the r  formulas  in such a way  tha t  the  logical 
connect ives  are p rese rved .  A n  easy  recursive a rgumen t  shows tha t  t ~ and 05~ have  
the  requ i red  proper t ies .  

Suppose  now that  X and Y are infinite sets, of cardinali t ies K and h, 
respect ive ly ,  and  suppose  the open  fo rmula  05(~:~, ~2 . . . . .  s  in L is satisfied in 

(X)  by  a sequence  (R1, R2 . . . . .  R , ) .  T h e n  the s t ructure  ~f in (1) is a mode l  of 05". 
Since 05~ has a mode l  in one  infinite p o w e r  it has,  by the L 6 w e n h e i m - S k o l e m -  
Tarsk i  T h e o r e m ,  a mode l  in every  infinite power .  In par t icular ,  05~ has a mode l  

0y = ( y ,  S, ,  S2 . . . . .  S , )  

whose  universe  is Y, and f rom this it follows that  05 is satisfied in ~ ( Y )  by the 
sequence  (S,, $2 . . . . .  S,) .  

T h e  next  result  was  sugges ted  by G.  Birkhoff .  

L E M M A  8.2. The identity 

(x ~ ; x)0 '  -< 1 ; ((x ; x ~) ~ 1') ; 1 (i) 

holds in every finite relation algebra, but fails in ~t(X) if X is infinite. 

Proof. It is well known that  in a finite mo no id  every  left or  r ight inverse  of an 
e l emen t  a is a two-s ided  inverse of  a. Hence ,  in a finite re lat ion a lgebra ,  

x ; y = l '  implies  y ; x = l ' .  

I f  05 deno tes  this implicat ion,  then  05* can be taken  to be  

(y ; x ) ~  1'--- 1 ;((x ; y ) ~  1') ; 1. (1) 

Thus  (1) holds in every  finite re la t ion algebra,  and (i) is but  a w e a k e r  fo rm of (1). 
For  an infinite set  X, (i) fails in ~ ( X )  wheneve r  x" is a surject ive m a p  that  is not 

injective.  

C O R O L L A R Y  8.3. Neither one of the varieties R A  and l i R A  is generated by 
its finite members. 

T H E O R E M  8.4. R R A  is the irredundant join of the varieties RA(K)  with 

l_<~<_Ro. 
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Proof.  By 8.1, R R A  is the join of  the indicated varieties. In  this represen ta t ion  

RA(Ro) is not  r edundan t  because of  8.3, while R A ( n ) ,  with n finite, canno t  be 

omi t t ed  because  RA(K)  _c R A * ( n )  for  K ~ n. 

I t  is wor th  not ing that  the join of  the varieties R A ( n )  with n finite does  not  

even include all the finite m e m be r s  of  R R A .  This is so because there  exist finite 

re la t ion algebras that  are representable  but  cannot  be represen ted  over  a finite 

set. A simple example  is the relat ion algebra genera ted  by a total ly order ing  
re la t ion that  is dense  and has nei ther  a first nor  a last e lement .  This a lgebra  has 
th ree  atoms,  1', a and a ' ,  with 

a ; a = a ,  a + a ' = 0  ', a ; a ' = l ,  a ' ; a = l .  

T h e  con juga te  identi ty of  this algebra therefore  fails in ~ ( n )  for  n finite. The  
inclusion 

x 0 ' - -  1 ; ((x ; x ) ~ ( x 0 ' ) )  ; 1 

is a simplified, but  weakened ,  version of  this identity which also fails in this 
a lgebra  but  holds in all the algebras ~ (n ) .  

BIBLIOGRAPHY 

G. BmKHO~'~ [1948]. Lattice theory, Amer. Math. Soc. Colloq. Publ., vol. 25, 2nd ed; [1967]. Lattice 
theory, Amer. Math. Soc. Colloq. Publ., vol. 25, 3rd ed. 

L. H. CHIN and A. TARSra [1951]. Distributive and modular laws in relation algebras, Univ. of Calif. 
Publ. in Math. N.S. vol. 1, pp. 341-383. 

B. JONSSON [1959]. RepresentatiorL~ of modular lattices and relation algebras, Trans. Amer. Math. Soc. 
92, 449--464; [1967]. Algebras whose congruence lattices are distributive, Math. Scand. 21, 110-121. 

B. JONSSON and A. TARSKI [1948]. Representation problems for relation algebras, Bull. Amer. Math. 
Soc. 54, 80; [1952]. Boolean algebras with operators, II, Amer. J. Math. 74, 127-162. 

R. C. LYNDON [1961]. Relation algebras and projective geometries, Michigan J. Math. 69, 294-307. 
R. MADDUX [1978]. Some sufficient conditions for the representability of relation algebras, Algebra 

Universalis 8, 162-172; [a] Embedding modular lattices into relation algebras, to appear in Algebra 
Universalis. 

R. N. McKENzm [1970]. Representation of relation algebras, Michigan J. Math. 17, 279-287; [1972]. 
Equational bases and non-modular lattice varieties, Trans. Amer. Math. Soc. 174, 1-44. 

J. C. C. MCKINSEY [ 1940]. Postulates for the calculus of binary relations, J. Symbolic Logic 5, 85-97. 
A. TAaSKI [1941]. On the calculus of binary relations, J. Symbolic Logic 6, 73-89; [1955]. Contribu- 

tions to the theory of models, III, Proc. Konikl. Nederl. Akad. Wet. 58, 56-64; [1956]. Equationally 
complete rings and relation algebras, Proc. Neder. Akad. Wet. 59, 39-46. 

H. WEm~'ER [1978]. Discriminator algebras, Studien zur Algebra und lhre Anwendungen, 6, Berlin, 
ii+98 pp. 

Vanderbih University 
Nashville, Tennessee 
U.S.A. 


