Algebra Universalis, 15 (1982) 153-155

Generating the algebraic theory of C(X)

JOHN ISBELL

Let **T** be the (infinitary) algebraic theory consisting of all continuous maps between cubes $I^n \to I^m$ (I = [0, 1], *m* and *n* any cardinals). Thus the set of *n*-ary operations of **T** is Hom (I^n , I); the laws are determined by the generic model, Iitself. In this note I show (1) that **T** is generated by an explicit set of five simple operations (one of which is infinitary), and (2) that the models of **T** are precisely the algebras Hom (X, I) for compact Hausdorff spaces X.

The result (2) was first proved by Duskin [1]. The present proof is no longer and uses much less category theory.

This note is a condensation of Zbigniew Semadeni's notes of my lectures in the Banach Center, Warsaw, 1974. I am very grateful to him for the invitation, and for the lecture notes. The result, with citation of Semadeni's notes, has since appeared as an exercise in Manes' book [3, p. 194]. A fuller record seems desirable because more work remains to be done. A number of other dualities ride piggyback on this Gelfand-Stone duality (cf. [2]). For the theory **T** itself, what are the laws?

One can show (let's leave this among the exercises) that a compact topological **T**-algebra is a power of *I*. This may be compared with a result of Taylor [4] on topological algebras whose *n*-ary operations are given by Hom (X^n, X) for rather general *H*-spaces *X*, for finite *n* only; but Taylor uses a narrower notion of topological *X*-algebra. Still there should be more connection than a mere resemblance.

To begin work, let us coordinatize I as [-1, 1]; then Hom (X, I) is precisely the unit ball of the Banach algebra C(X). The five operations are 0-ary 1 (the constant function with value 1), unary $-: I \rightarrow I(-(x) = -x)$ and $\tilde{2}(\tilde{2}(x) = (2x \land 1) \lor$

Presented by W. Taylor. Received December 11, 1980. Accepted for publication in final form September 2, 1981.

(-1)), binary m(m(x, y) = xy) and \aleph_0 -ary $\sigma(\sigma(x_1, x_2, \ldots) = \sum 2^{-1}x_i)$. And the first thing to do is to deduce some other needed operations from these. Averaging a(x, y) = (x+y)/2 is $\sigma(x, y, y, \ldots)$; then 0x is a(x, -x), and for any scalar λ in (0, 1), λ is $\sum \varepsilon_i 2^{-i}$ with certain coefficients $\varepsilon_i \in \{0, 1\}$ and λx is $\sigma(\varepsilon_1 x, \varepsilon_2 x, \ldots)$.

(One can reduce the five operations to four since $-\sigma$ generates - and σ . I don't know how far one can reduce.)

We'll now show that for any cardinal n, in Hom (I^n, I) the closure K of the set of coordinate projections p_i under our five operations is all of Hom (I^n, I) . In the ring of real-valued functions $C(I^n)$ let RK be the set of scalar multiples λf of functions f in K. It will suffice, because of the Stone-Weierstrass theorem, to prove that

(a) RK is a uniformly closed separating subalgebra of $C(I^n)$ containing 1-thus $C(I^n)$ -and

(b) the unit ball of RK is K.

At least RK is a linear subspace of $C(I^n)$. Any pair of its elements can be written as λf and $\kappa \lambda g$ with $\lambda \in R$, $\kappa \in I$, f and $g \in K$, and then $\lambda f \pm \kappa \lambda g$ is $2\lambda a(f, \pm \kappa g) \in RK$; and clearly RK is non-empty and closed under scalar multiplication.

Now (b). The functions in K have norm ≤ 1 and so lie in the unit ball. Conversely, if λf has norm ≤ 1 , $\lambda \in R$ and $f \in K$, there is a positive integer e such that $2^{-e}\lambda \in I$; and $\lambda f = 2^{e}(2^{-e}\lambda f) = \tilde{2}^{e}(2^{-e}\lambda f) \in K$.

For (a), *RK* contains (in *K*) 1 and the projections p_i , which separate points. The product of λf and μg in *RK* is $\lambda \mu m(f, g) \in RK$. And given a norm-convergent sequence (f_i) in *RK* with limit $f \in C(I^n)$, we may assume (using scalar multiplication) $||f_j|| \le 2^{-1}$ and (choosing a rapidly convergent subsequence) $||f_{j+1}-f_j|| \le 2^{-j-1}$. Then $f = f_1 + \sum (f_{j+1} - f_j) = \sum g_j = \sum 2^{-j} 2^j g_j = \sigma(\tilde{2}g_1, \tilde{2}^2g_2, \ldots) \in RK$. These operations generate the theory, as claimed.

Now the theory **T** is by definition (I recall; see e.g. [3]) substantially the dual of the full subcategory of Cpt on all the objects I^n . Recall, the free **T**-algebras are just the algebras Hom (I^n, I) ; and every **T**-algebra is a quotient of a free one. Thus for any **T**-algebra A we have a surjective homomorphism $q: \text{Hom}(I^n, I) \rightarrow A$. Let J be the kernel of q, and in $C(I^n) = R$ Hom (I^n, I) consider RJ. By Gelfand-Stone theory, when we show

(c) RJ is a closed ideal in $C(I^n)$,

we'll have that for some closed subset H, RJ is the set of functions vanishing on H; $C(I^n)/RJ$ is C(H), and A is its unit ball Hom (H, I).

RJ is a linear subspace, as before. If $f \in J$ and $g \in \text{Hom}(I^n, I)$, products $\lambda f \cdot \mu g$ are $\lambda \mu m(f, g)$, and q(m(f, g)) = m(q(f), q(g)) = 0, so $m(f, g) \in J$. Finally, if (f_i) in *RJ* converges in norm to f, we may assume as before that $2f_i \in J$ and $2^{i+1}(f_{i+1}-f_i) \in J$; so $f = \sum 2^{-i}2^{i}g$; $= \sigma(\tilde{2}g_1, \tilde{2}^2g_2, \ldots) \in RJ$.

REFERENCES

- [1] J. W. DUSKIN, Variations on Beck's tripleability criterion, Springer Lecture Notes 106, 1969, 74-129.
- [2] K. H. HOFMANN, The duality of compact semigroups and C*-bigebras, Springer Lecture Notes 129, 1970.
- [3] E. G. MANES, Algebraic Theories, Springer-Verlag, 1976.
- [4] W. TAYLOR, Primal topological algebras, Algebra Universalis 9 (1979), 211-220.

State University of New York at Buffalo Buffalo, New York U.S.A.