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The lattice of varieties of modal  algebras is not  strongly atomic 

W. J. BLOK* 

To Professor Ph. Dwinger 
On the occasion of his 65th birthday 

It is well-known that any lattice A of all subvarieties of a given variety of 
algebras is atomic, i.e., if K ~ A such that K # T where T is the variety consisting 
of one-element  algebras only, then there is a K '~  A such that K'  covers T and 
K ' ~  < K. A surprising consequence of J6nsson's theorem [4] is that if K is a variety 
of algebras whose congruences form a distributive lattice and which is further- 
more generated by its finite algebras then for any K~ < K  such that KI belongs to 
the lattice A(/() of subvarieties of K there is a K2e  A(K) which covers K1. The 
question arises if the lattice L of subvarieties of a congruence distributive variety 
even has the following stronger property: if a, b ~ L such that a < b then there is a 
c e L such that c covers a and c ~< b. A lattice with this property is called strongly 
atomic. The question if the lattice of varieties of lattices is strongly atomic has 
remained unanswered up to now (cf. [6]); in the present paper we will show that 
the lattice A (M) of subvarieties of the variety of modal algebras M is not strongly 
atomic by presenting varieties of modal algebras Kt  and K2 such that the interval 
[K1, K2] is isomorphic to the chain 1 + co*. Note that _._K 1 cannot be finitely based 
since it is easy to verify that any such variety Kt  does have a cover in any proper 
interval [/(1,/(2]- Furthermore,  any lattice of subvarieties of a variety is weakly 
atomic, i.e., any proper  interval [/(1,/(2] in the lattice contains/ (3 ,  K4 such that 
/(4 covers K3, (cf. [6]). The fact that A (_M) is not strongly atomic only strengthens 
the impression of complexity of the lattice, conveyed by the results of [1] where 
the existence was shown of a variety of modal algebras having 2 ~,, covers and of a 
variety generated by a finite algebra which has, besides infinitely many covers 
generated by a finite algebra, also covers which are not generated by any finite 
algebra. 

Having introduced the needed preliminaries in section 1, we develop, in 
section 2, a technique which provides a way of visualizing ultraproducts of modal 
algebras. As a by-product we prove that not every finite subdirectly irreducible 
modal algebra is a splitting algebra. This may be contrasted with the result in [2] 
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which says that every finite subdirectly irreducible interior algebra does split the 
lattice of varieties of interior algebras. In section 3 we present the announced 
interval. 

1. Preliminaries 

A modal algebra is an algebra (A, ( + , . ,  ', 0, 0, 1,)) such that (A, ( + , . ,  ', 0, 1)) 
is a Boolean algebra, + , .  denoting Boolean sum and product respectively, ' 
denoting complement and 0, 1 the smallest and largest element respectively. The 
operator o is a unary operation satisfying 1 ~ = 1 and (x �9 y)O = x o . yO. The variety of 
modal algebras is denoted by M and the lattice of varieties of modal algebras by 
A(_M). If A e M, S___ A then IS] will denote the subalgebra of A generated by S, 
and if a, b ~ A  then [ a ) = { x ~ A [ x > ~ a } ,  ( a ] = { x ~ A l x ~ < a }  and [ a , b ] =  
{x ~ A [ a ~< x ~< b}. And if K _ M, then I(__K), H(K), S(K) and P(K) have the usual 
meaning; V(K) stands for the variety generated by K and Pu(K) for the class of 
ultraproducts of families of algebras in K. We write H(A),  S(A) etc. if K = {A} 
for some A e M. The class of subdirectly irreducibles belonging to a class of 
algebras K is denoted by Kst. Since _M is congruence distributive, for any K ~ M 
we have V(K)sI c HSPu(K) by J6nsson's results ([4]). For further notions and 
results of universal algebra we refer to [3]; more on modal algebras may be found 
in [1]. 

2. Ultraproducts of modal algebras 

A flame is a pair (W,R)  such that W is a set and R~_ W x  W is a binary 
relation on W. We write Rwv instead of (w, v)~ R. The Boolean algebra ~ ( W )  of 
all subsets of W endowed with the operation o defined by 

x~ WtVve W[Rwo=>vex]} 

for any x c_ W is easily seen to be a modal algebra. Such an algebra will be called 
the Kripke algebra F § derived from the frame F = (W, R). An element w ~ W is 
called reflexive if Rww, otherwise it is called irreflexive. Kripke algebras owe their 
importance to the following theorem which is an immediate consequence of 
J6nsson and Tarski [5]. 

2.1 THEOREM.  For every modal algebra A there is a frame F such that 
A ~ S(F+). 

Examples of modal algebras are most easily obtained by describing some 
frame (W, R) and specifying a Boolean algebra of subsets of W closed under the 
operation o induced by R. When studying the variety generated by such algebras it 
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is useful to learn how the operations of forming homomorphic  images, subalgeb- 
ras and direct products correspond to operations on frames. 

If (W,R)  is a frame and W'__ W then ( W ' , R I W ' )  is called a generated 
subframe of ( W , R )  if for all w � 9  the implication R w v ~ v � 9  holds. If 
A �9 S(F+), where F = (W, R), and F1 = (W1, R I Wl) is a generated subframe of F 
then A [ F~ denotes {x f'l W1 [ x �9 A}. 

2.2 LEMMA.  Let F = (W, R)  be a frame, A �9 S(F § and F1 = {Wx, R [ Wl) a 
generated subframe of F. Then A ] F1 is a modal algebra and A [ F~ �9 H(A) .  

Proof. The map h :A---~F~ defined by x ,--~xfq W~ is clearly a Boolean 
homomorphism, which furthermore preserves o. In fact, for any x �9 A and w �9 W~ 
we have 

w ~ h ( x )  ~ iff 

iff 

if[ 

Hence h[A] = A 

Vv �9 W~[Rwv ~ v �9 h(x)] 

Vv  �9 W [ R w v  ~ v �9 x] 

(since F1 is a generated subframe) 

w �9 h(x~ 

I F1 is a modal algebra and A I F I � 9  H(A) .  

If A �9 S(F § and A t � 9  S(A)  then we can use the same frame F, although 
sometimes a simpler frame F~ can be found such that A �9 by identi- 
fying elements of F. And if Ai �9 S(F~-~ ), i � 9  I then it is not difficult to see that 

f-L1A~ �9 S ( t~ i~  I F~), where ~ i  F~ = (I.J i~I Wi, R), the union being disjoint, with 
Rwv i f f 3 i � 9  such that w, v � 9  W~ and R~wv. 

In order to be able to apply J6nsson's theorem we need the following lemma. 

2.3 LEMMA.  Let {A~l i � 9  be a family of modal algebras and for i � 9  
F~ = (W~, Ri) a frame such that Ai �9 S(F.+,). For any A �9 Pu({Ai I i �9 I}) there is an 
F = (W, R) �9 Pu({F~ I i �9 I}) and A ' � 9  S(F § such that A -~ A'.  Furthermore, if for 
every i �9 I and w �9 W~, {w} �9 A~ then for every w �9 W, {w} �9 A' .  

Proof. Let U be an ultrafilter on I and A = I ' L ~ A J - U  where ~ U is the 
equivalence relation on I-L~A~ induced by U. Let  AI=II~xF.+,/--U and F =  
1-Lr F J -  U = (W, R). First we show that A1 ~ A'I �9 S(F+). For any x �9 I ] ~  A~ or 
x � 9  let ~ denote the equivalence class containing x. If ( x i ) ~ � 9  is an 
atom then, since "being an a tom" is expressible by a first order sentence, {i �9 I I x~ 
is an atom in F~} �9  U, hence there exist wi �9 W~, i � 9  such that (x~)~i = ({w~})~z. 
For a modal algebra B let At  B denote the set of atoms of B. Define a map 
4~':At A1 --~ ~ ( W )  by assigning to an atom x = (x ~ )~ �9  At A1 the set {w} where 
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w = (w~)~ such that (x~)~ = ({wi})~ r. The map ~b' is well-defined and establishes a 
1-1 correspondence between the atoms of A1 and one-element  subsets of W. 
Extend 4>' to a map 4> :A~---> ~ ( W )  by putting x ~ u{4~(a)[ a ~<x, a e A t  A~}. 
S i n c e e v e r y  F~-, i ~ / ,  is atomic and atomicity is expressible by a first order  
sentence, A~ is atomic; hence 4> is an injection and further, clearly a Boolean 
homomorphism. It remains to show that 4~:A~--->F § is in fact an _/2/- 
homomorphism, i.e., that for x e A 1  ~b(x ~ ~ where ~b(x) ~  

{w ~ W IVv ~ W[Rwv ~ v ~ ~b(x)]}. If x =. (x i ) i~  I then 

4,(x~ = [_J{4~(a) l a <~ x ~ a e A t  A~} 

o ieI} ,  ={w 1 w = ( w ~ ) ~  for some w. i e l  with w~ex~, 

o iffVvi ~ W~[Rwiv~ ::) v~ e x~]. Now suppose that w ~ 4~(x ~ and v ~ W and wl ~ xl 

such that Rwv, w = (w~)i,1, v = (v~)~,1. Then {i ~ I[  Riw~vi}e U, and since we may 
assume that for all i~1  w~ex ~ { i~I[  v~x~}e  U hence v~rk(x). Thus 4~(x~ 
~b(x) ~ Conversely, if w=(wi)i~1r ~ then { i~I[  wif~x~ hence we may 
assume that for all i~ I w~r x ~ Choose vi ~ W~ such that R~w~vi but v ~  xl. Then 
v = (v~)~,xe W and Rwv but v~ck(x), hence w f ~ ( x )  ~ It follows that 4> is an 
M-embedding,  hence A 1 ~ At  = ~b[A1]~ S(F+). 

In the general case we have A~ ~ S(F.+,), hence l-L~ A~ ~ S(1-L~t F~) and A = 
I-L,r A,/~ U ~ S(A1). Thus A ~- A '  = (4> [ A)[A]  ~ S(F+). If for all w, ~ Wi, {w,} ~ A, 
then ({w,}),,~ At A hence {w}= {(w,),,t}~ (4~ ] A)[A], for every w ~ W. 

To illustrate the use of the lemma we give an example. Recall that an algebra 
A in a variety K is said to be a splitting algebra in __K if there exists a variety 
K1 c_ K such that for any variety K'  _ K either A ~ K'  or K'  c_ K1, but not both, i.e. 
the lattice A(K) of subvarieties of K satisfies A ( K ) = [ V ( A ) ) U ( K a ]  with 
[ V ( A ) ) N ( K 1 ] =  ~ .  It is not difficult to verify that if K is generated by its finite 
members and congruence distributive then for any splitting algebra A there is a 
finite subdirectly irreducible algebra A1 such that V(A)= V(AI), whence we may 
restrict ourselves in that case to finite subdirectly irreducible splitting algebras. In 
[2] it was shown that any finite subdirectly irreducible interior algebra, i.e. a 
modal algebra satisfying the equation x ~ �9 x = x ~ and x ~176 = x ~ is a splitting algebra 
in the variety of interior algebras and a similar statement holds for the variety 
K,,  c M defined by the equation x ~ on+, _ = x , m = 1 ,  2 ,  3 . . . .  ( c f .  [ 7 ] ) .  

Let  L,  be the frame (Wn, Rn) where W , = { 1  . . . . .  n} and R, , i / i f f i=]  or 
] = i + 1 and let C, = (W,, R ' )  where R',,ij iff i = ] or ] = i + 1 rood n. In [1] it was 
proven that the C~ +, n = 1, 2 , . . .  are simple and that S( C+,) = {_2, C~ +} if n is a 
prime number, so V(C+,) covers V(_2) if n is prime. Here _2 denotes as usual, the 
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two-element  modal  algebra {0, 1}, with 0 ~ = 0, 10 = 1. The set of natural  numbers 
1,2,  3 , . . .  is denoted by N. 

2.4. T H E O R E M .  Let K =  V({L+,In~N}) .  Then K =  V({C,+ [ h e M } )  for any 
infinite set M ~_ N. 

Proof. To prove that K _  V({C+~ I n ~ M}), let A ~ Pu({C 2 I n ~ M}) be infinite. 
By 2.3 we may assume that A is an algebra of subsets of some infinite 
ultraproduct (W, R)  of {C, 1 n ~ M}. Using the known facts about  preservation of 

first order sentences we see easily that W =  U ~ v  Z=, where the Z~, a ~ F  are 
disjoint copies of the integers and that R is defined by Ri] iff ::la ~ F i, ] 6 Z~ and 
i = ] or i + 1 = ]. Let  a e W be arbitrary and Fa the smallest generated subframe of 

(W, R) containing a. Then F~ = (IV,, R [ IV,) where W, = {a, a + 1, a + 2 , . . .  } and 
by 2.2 A I F , ~ H ( A ) .  Since A contains {w} for w ~ W  by 2.3, {a}, 
{ a + l } , . . . , { a + n - 1 }  and W , \ { a , a + l  . . . . .  a + n - 1 }  belong to A [ F ,  and 

clearly form the atoms of a subalgebra of A IF ,  isomorphic to L ,  +. Hence,  for any 
n ~ N  L + , ~ S H P u ( { C 2 ] n ~ M } ) ,  thus K _  V({C+,[n~M}).  

To prove the converse, we will show that for any k a N C~ ~ V({L+~ I n ~ N}). 
Let  A ~ P u ( { L ~ l n  EN}), say A =lI~=x L+,/~ U, where U is a non-principal ul- 
trafilter on N, and - U  the congruence relation induced by U. We may assume 
that A is an algebra of subsets of (W, R) where W =  U ~ r  X~ such that X~o~N, 
X ~ , ~ { n ~ Z ] n < ~ O }  for certain ao, a ~ F  and X ~ - ~ Z  for a ~ F ,  a r  a~, and 
X , , A X t 3 = O  if a, /3eF,  a # / 3 .  The relation R is determined by R i ] i f f 3 o t 6 F  
i,]~X,~ and i=]  or i + 1 = ] .  Let  a6X,~ for some a 6 F ,  a ~ a l  and F , =  
(W~, R IW,~) be the smallest generated subframe containing a. We claim that 

X o = { a + n k ] n = O ,  1,2  . . . .  } c A l F , , .  For if {a,,}6L+, are such that a = ( a , ) , ~ N  
then if for n ~ N x, = {a, + ]k mod n I 0 ~ ] <~ [n/k]} ~ L*, and x = (x,),~N one easily 
verifies that xo = x n W~. Similarly, x, = {a + i + nk [ n = O, 1, 2 . . . .  } ~ A [ F,, for 
i = 1 , . . . ,  k - I and clearly Xo, xl, �9 �9  xk-1 are the atoms of a subalgebra of A I F,  
isomorphic to C~. It follows that V({C+, ] n ~ M}) ~ K. 

2.5 C O R O L L A R Y .  Neither L 2, n ~ N, n > 1 nor C*,, n ~ N, n > 1 are splitting 
algebras in M. 

Pro@ Suppose that C ,  + is a splitting algebra for some n ~ N, n > 1. Let  M :  C + 

denote the corresponding splitting variety. Since C + ~ V(L+~) for any m ~ N, - - in  
fact, V(L+,,)s~ _ HS(L+,.) = {L + [ 0 ~< n ~< m}, as one easily ver i f ies - -L + a M:  C + for 
all m ~ N, hence V({L+ ] m ~ N})c_ M : C ,  +. But this contradicts our result in 2.4 
which implies that C~ ~ V({L+I n ~ N}). In a similar way one shows that the L + 
are not splitting algebras in M. 
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Note that in fact we have proved that the L~ + and C: ,  n �9 N, n > 1 are not 
splitting in the variety of modal algebras defined by the equation x ~ x = x ~ 

3. An interval [K1, K2] in which _K 1 does not possess a cover 

In our construction we use a modification of the recession frame (cf. [1]). Let  
B be the subalgebra of finite and cofinite subsets of F § where F is the frame 
(N, R) and 

R i ] i f f ] = i - 1  or ]>--i+l or i=] and i ~ { k Z [ k ~ N , k > l } .  

Let  B" be the subalgebra of B generated by the element {1 . . . . .  n}~B, so 
B"=[{1 , . . . ,n}]~_B.  If K 1 - - - N ~ = I V ( B " )  and K 2 = V ( B ) ,  then the interval 
[_K_I, Kz] satisfies the announced property.  The one element modal algebra is 
denoted by ! ,  and if x ~ A ~ M  then x ~ 1 7 6  and x ~ 1 7 6  ~ for n ~ N .  The 
following facts about the algebra B will be used repeatedly. 

(1) x finite ::> x ~  0 

For x cofinite, choose i minimum such that [i, oo)~ x. 

(2) i= l ~ x = x ~  l 

(3) i>~2, i - 2 ~ x ,  i - 1  a square ~ x ~  l , i + 2  . . . .  } 

(4) ii>2, i - 2 d x  or i - l n o t a s q u a r e  

x ~  1, i + 2  . . . .  }. 

(5) i>~ 2 ~ x~176 =[i + 2, oo) & x~ . x =[i + l, oo) 

3.1 LEMMA.  (i) H(B")={!,2_,B ~} 

(ii) S(B") ~_ I({B" [ m >I n}U{_2}). 

(iii) If  B" -- B"  then n = m. 

Proof. (i) L e t  h : B " - - * A  be an onto homomorphism which is not 1-1; say 
x ~ B", x#  1, h(x)= 1. Then h(x ~ = 1 for n = 1, 2 . . . .  and one easily verifies that 
for each cofinite set y in B" there is an m a n  such that y ~ x  ~ so h ( y ) =  1 for 
every cofinite set y. Thus A----_2 or A---_1 and clearly both possibilities occur. 

(ii) Let  A e S ( B " ) ,  A~2_, and let m = m i n { k [ [ k ,  oo)eA, k > l } ;  then m is 
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well-defined and m > n ,  and for all k>~O { m + k } ~ A  since { r e + k } =  
Ira, ~)o~. ([m, ~)o**~),. If x is an a tom of A such that  x <~ [1, m -  1] then either 

[1, n]<~x or x<~[n+l ,  m - l ] .  There  are at most  two a toms of  A conta ined  in 

[1, m - 1] for  if there  were three or  more  then at least one of  them,  say Xl, would 

satisfy x~ ~< [1, rn - 3] and then x'~~ has the form [p, ~), 1 < p ~ m - 1, contradic-  

tory  to our  choice of  m. If  x~ is the a tom of A conta ined in [1, rn - 1] such that 

m - l f ~ x ~ ,  x 2 the o ther  a tom of A such that  x2~<[1, r n - 1 ]  then the map 

x~ ~ [ 1 ,  m - 2 ] ,  x 2 ~  { m - l } ,  { m + k } ~ { m + k }  for k=O,  1 , 2 , . . .  is easily seen 
to induce an i somorphism f rom A to B " -2 .  A n d  if there is only one a tom of A 
conta ined in [1, m - l ]  then A ~ - B ' - L  

(iii) In B ~ the e lement  x,  = N \ { 1  . . . .  , n} is the unique e lement  x satisfying: 1 

covers x and for  all y, if y r  1 then y .  y~176 It  follows that  if h : B"  --~ B m is an 

i somorphism then h(x~) = xm and hence h({n + k}) = h(x ~ . (x~ ') = x ~ . (x~)' = 
{m + k}, k = 1, 2, 3 . . . . .  It  follows that n + k is irreflexive iff m + k is irreflexive 

which can only be if n = rn (note that for any i >  1, i is a square iff{i}~<{i}'~ 

Observe  that  in order  to represent  the algebra B", n ~ N ,  n > 1 we do no t  need 

the full f rame F. In fact, B ~ is isomorphic  to the algebra of finite and cofinite 
subsets of F~ = (N,, R , ) ,  where  N ,  = {m ~ N  I rn/> n} and 

R,~i] iff i, j ~ N ,  and j = i - 1  

or  j>~i+ l or  i = j  and i~{k2l  k e N ,  k 2 > n } ,  

also to be deno ted  by B".  

In order  to guarantee  that  the interval [K~, K2] is p roper  we prove 

3.2 T H E O R E M .  For every n ~ N  V(B n§ ~ V(B").  

Proof. Suppose  that  B"aV(Bn+I ) s  ~ for  some n s N .  Then  there exists an 
u l t rapower  A1 of  B n+l and a h o m o m o r p h i s m  h : A~ --~ A2 which is on to  such that  

B ~ ~ S(A2), in virtue of Jdnsson 's  result and the fact that  for  any class K of modal  

algebras HS(K)= SH(K). Indeed,  congruence  relations on a moda l  algebra A 
cor respond  to filters F on the Boolean  par t  of A such that  x a F ~ x ~ ~ F. Hence  

if A is a subalgebra  of B, F is a filter on A, and G is the filter on B genera ted  by 

F, then G Cl A = F. F r o m  these facts it is rout ine  to check that  HS(K)= SH(K). 
By 2.3 A1 is an algebra of  subsets of some ul t rapower  of  F,,+I, which can be 

represen ted  as (X, R) ,  where  X = U ~ , r  X, ,  F being a densely linearly o rde red  set 

with first e lement  o~ o and wi thout  last e lement ,  X~o = N,+~ and the X~,, a ~ a being 
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disjoint copies of the integers. The relation R will be of the following form: 

Rij iff 

P 

i, jeX~,o 

i, jex~ 

and j = i - 1  or j ~ > i + l  or i = j  and i ~ k  2 
k e N ,  k 2 > n  

for some a e F ,  ot>o~ 0 and j = i - 1  or i + l ~ < j  or 

i = j ,  for all i e X ~  except at most  one 

iex~, jex~, c~<f3. 

So the frame starts with a copy of F~§ and consists further of copies of Z with 
the relation of the recession frame, except that one element may be irreflexive. 
Now suppose that h is not 1-1. Then, we claim, A2----A~[F' for some genera ted 

subframe F ' =  (X' ,  R [ X'),  where X ' =  U , ~ r ,  X, ,  F '  being a proper  final segment  
of F. Indeed,  let X ' =  n { x e A l l h ( x )  = 1}. Since h ( x ) =  1 implies h(x~ = 1 and h 
is not 1-1 X '  satisfies the requirements.  Since B " e  S(A2) we may assume that 
X ' ~ .  It suffices now to verify that for x e A ~  if x n X ' = X '  then h ( x ) =  1. Note  
that x ~ ~ X ' ,  for if x ~  X '  then x ~  x ~176 contradicting the fact that the algebra 

B "+~ satisfies the sentence 

'r l ^ x ~  x ~ 1 7 6  ~ 

hence so does At .  
Let  y e A~ be such that h(y) = 1 and x ~176 ~ y. Then X'___ y, and X ' ~  yO ~< xOO ~< 

x, hence h(x) = 1, as was to be shown. Let  i : B" ~ A2 be an M-embedd ing  and 
let i((Nn \{n}) ~176 = u e A2. Then there is precisely one oe e F '  such that u O X~ = 
[m, oo) for some m e X,.  Using the fact that N~\{n}  generates B n we see that 
i ( { n + k } ) = { m + k - 3 }  for k~>3. However ,  there is then a k e N ,  k~>3 such that 
{n+k}  is irreflexive, hence { n + k } ~ { n + k }  '~ while i({n+k}) is reflexive, so 
i({n + k})~  i({n + k}) '~ a contradiction. Hence  our assumption that h is not 1-1 
cannot be true, so there is an M-embedd ing  i: B"---> A1. If i((Nn \{n}) ~176 = u and 
u O X~ = Ira, oo) for some m e X~, a > ao then we arrive at the same contradiction 
as before,  hence u A X,, = Ira, oo) for some m e X~o. But then, since N \{n}  gener- 
ates B ~, B" is isomorphic to a subalgebra of the algebra {x e A1 [ x n X~o is finite 
or x ' N X ~  is finite} which is isomorphic to B n§ By 3.1 (ii) and (iii) this is 
impossible. 

It  will follow from the next theorem that K,  does not possess a cover  in 

[ K I ,  K 2 ] .  

3.3 T H E O R E M .  Let K be a variety such that K , ~  Kc_K2. Then K =  V(B m) 
for some m eN.  
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Proof. Let  A �9 K be a finitely genera ted  subdirectly irreducible algebra such 

that  A C K ~ .  W e  will show that  V ( A ) =  V(B ~) for some m � 9  Le t  Ax be some 

ul t rapower  of B, say A I =  I-L,t B/~ U where ~ U is the congruence  relat ion on 
1-L~t B induced by the ultrafilter U on I, h:A~ ~ A2 a surjective h o m o m o r p h i s m  

and A �9 S(A2). We claim that  if h is not  1-1 then A 2 � 9  n n = l  V(B ~) = K ~ ,  hence 
n _  n . n n also A � 9  1. Let  BI-I-L~zB / ~ U  and define g .B1- - -~A2 by g = h [ B  1. This 

makes  sense since B" �9  hence B'~�9 The map g is an M -  

h o m o m o r p h i s m  and it remains  to show that g is onto.  Le t  a E A  2 and x = (x~)~,i�9 

A~ such that  h(x) = a. Let  y~ = [n + 1, o~) �9 B, and y = (y~)i~r, then h(y)  = 1. Indeed,  

there is a z �9 A t ,  z r  1 such that  h(z) = 1. If z = (z i ) ie  I then {i �9 I I z ~  < yl} �9  U, so 
z ~ ~<y hence  h ( y ) =  1. But  h (y  - x ) =  h ( y ) -  h(x)= 1. h(x)= h(x)= a, and y �9 x =  

(y~ �9 x~)~t where y~ �9 x ~ � 9  thus y �9 x � 9  So g(y �9 x ) =  h(y  �9 x ) =  a, hence  g is 

onto.  There fo re  h cannot  be 1-1,  so we may assume that  A �9 S(A~). Recall  that  

we may think of A t  as an algebra of subsets of a frame (X, R)  as descr ibed in the 

proof  of 3.2. Since in B 

Vx[(x ~ ~ 0 v x '~ # O) ̂  (x ~ ~ O, 1 ~ (x ~176 # 0 ^ x ~176 < x~ 

this sentence also holds in A t ,  so there is an a � 9  n �9 X~, such that  {m]rn �9 X~, 
m I> n or  m �9 Xo, /3 > 0~}, deno ted  by In), belongs to A,  because,  as one  easily 

verifies, every e lement  x ~176 such that  x ~ 1 7 6  0 is of this form.  Now assume that  for  

no n �9 n > 1, [ n ) � 9  Then  there exists a h o m o m o r p h i s m  h : A  t ~ A2 which 
is on to  and not  1-1 such that  A �9 S(A2), and we are back in the previous  case. 

For  let F ' = ( U ~ ; s  R IUc~oX~) then the map h:A~---~At IF' defined by 
x ~ x n U :~.~o X~ is a h o m o m o r p h i s m  which is onto  but  not  1-1,  and h I A is 1-1,  

since if x � 9  such that x ; a l  then x ~ 1 7 6  for some n � 9  hence  

h(x~176 1 thus h(x)~ 1. So there is an n � 9  n > l  such that neX,,o and [n) �9  
Let  no be the smallest such number .  Now let C = {y n X~o I Y �9 A,  y n X~o is finite 
or  cofinite}; then C is isomorphic  to a subalgebra of A. Ident i fying X~,o with N, we 

may consider C to be a subalgebra  of B. Let  j : C - - - > B  m~_B deno te  the 

isomorphism described in the p roof  of 3.1 (ii). Observe  that  m = n o - 2  if 

[1, n o -  i ]  contains two a toms of A (and hence  of  C), m = n o -  1 otherwise,  i.e. if 

[1, n o -  1] is an a tom of A (and hence of C). It follows that  B m E V(A). To prove 

that A �9 V(B") as well, note  that  if y � 9  y = (Y~)i~, then we may  assume that 

y~ �9 C, i �9 L For  in virtue of the last s ta tement  of 2.3, for  any k �9 N, y �9 A,  k �9 y if 

and only if {i s I I k �9 y~}�9 U. Since [1, n o -  1] is finite, it follows therefore  that  

{ i �9  n o - 1 ] = y n [ 1 ,  no-1]} �9  so we may assume that  for  all i � 9  
y~N[1, n o -  1 ] � 9  C. Since for  any z � 9  z � 9  if and only if z n [ 1 ,  n o - 1 ] � 9  we 
conclude that  we may  assume that  y~ �9 C, for  all i �9 L Using the fact that  C �9 S(B) 
we see that  A ~ S(IL~ C/~ U) c_ IS(I-L~1Br~/~ U), whence  A � 9  V(B~). Now let 
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m o = m i n  { m l B  m ~/(}. Then V(B"o) c_ K,  and conversely, for any A ~Ks~ either 
A ~/(1 c V(B"o) or V ( A )  = V ( B " )  for some m >~ m o, in which case A ~ V(B"o) as 
well. Thus K = V(B"o). 

3.4 C O R O L L A R Y .  The lattice [/(1, K2] is isomorphic to the chain 1 + to*. 

The use of f rames which are not reflexive in our example is not essential. One 
can also choose K1 a n d / ( 2  in such a way that they satisfy the law x ~ ~< x. Consider 
for that purpose the f rame F = (W, R)  with 

W = N U { k 2 * J k  ~N,  k~>2} 

and 

. f f [n ,  m e N  and m > ~ n - 1  
Rnm l ( {n, m } c { k  2, k 2+} for some k ~N,  k ~ 2. 

Let  D be the algebra of finite and cofinite subsets of W and D n = [{[1, n]}]c_ D. If 

K1 = ~ 1  V(D")  and K2 = V(D) then also [/(1, K 2 ] ~ l + t o * .  
However ,  the question, if the lattice of varieties of interior algebras or even 

the lattice of varieties of Heyt ing algebras is strongly atomic or not, has not been 
answered. 
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