
Algebra Universalis, 11 (1980) 173-192 Birkhauser Verlag, Basel 

The representation ot posets and lattices by sets 

GEORGE MARKOWSKY* 

O. Introduction 

In this paper, we present those aspects of representing posers and lattices by 
sets which have a combinatorial flavor. Thus the emphasis is on counting and 
using such concrete objects as collections of sets and binary relations. 

In Section 2, we exhibit a "well-known" correspondence between residuated 
maps from a poset P into a poset O and dually residuated maps from O to P. This 
gives us a correspondence between sup-preserving maps from a complete lattice 
La to a complete lattice L2 and inf-preserving maps from L2 to L1. As an 
application of this result in Theorem 2.5 we show that the number of representa- 
tions of a finite lattice L by subsets of a set of n elements such that sup 
corresponds to union is 

IAut (L) l ,=o( -1) i  (ILI-0n' 

where k is the number of meet-irreducible elements of L. Among other  things, 
this result shows that no representation is possible unless k <--n. 

In Section 3, we ((derive a new characterization of finite distributive lattices 
(Theorem 3.1): a lattice is distributive if and only if for some n it has length n, n 
joint-irreducible elements, n meet-irreducible elements and satisfies the Jordan- 
Dedekind chain condition. This characterization provides a quick and simple test 
for distributivity which can be applied directly to the Hasse diagram of a lattice. 
We also present a related characterization (Theorem 3.5) of finite locally distribu- 
tive lattices due to Greene  and Markowsky [11]. 

* The results described here are partly contained in the author's doctoral thesis [15] which w~s 
partly supported by ONR Contract N00014-67-A-0298-0015. 
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In Section 4, we next show that given a sup-representation (sups are carried 
into unions) of a lattice L by subsets of a set X and a sup-representation of its 
dual L '  by subsets of a set Y, then a binary relation on X x Y can be found from 
which both representations can be recovered in a simple manner (Theorem 4.5). 

Section 5 (Theorem 5.2) presents techniques for calculating the number of 
order-isomorphic representations of a poset by subsets of a given set. The 
technique is general enough to yield the asymptotic number of representations as 
the size of the representing set gets large (Theorem 5.4). 

Theorem 6.1 in Section 6 shows how to characterize those complete lattices 
which can be embedded into a given complete lattice and Theorem 6.2 relates 
these results to those in [16]. The results in Section 6 have application to 
computer science and biomathematics (see [19]) because they allow a "coordinate 
free" formulation of various problems. 

The results in this paper complement the results described by the author in 
[16]. Some of these results appeared, mostly without proof, in [17]. 

1. Preliminaries 

We will use this section to introduce some concepts and state some basic 
results which will be useful throughout this paper. The definitions of all terms left 
undefined in this paper can be found in [1]. 

NOTATION 1.1. Let L be a complete lattice (in particular, all finite lattices 
are complete.) We use 0 to denote inf L = sup ~ and 1 to denote sup L = inf I~. If P 
is a poset and a, b~P,  we use [a, b]([-, b], [ a , - ]  to denote the set 
{x ~ P[ a -<x - b} ((x ~ P[  x -  b}, {x ~ P I x - -  a}). We call [ - ,  b]([a, - ] )  the princi- 
pal (dual) ideal generated by b (a). 

NOTATION 1.2. Let  X and Y be sets and n an integer. IX[ denotes the 
cardinality of X, 2 x denotes the powet set of X, n denotes {1 . . . . .  n} (thus 0 = 9). 

Note that 2 X•  is the set of binary relations between X and F. For S e X  
( T c Y )  and A ~ 2  x• we use SA (AT) to denote { y ~ Y l f o r  some x~S ,  
(x, y) ~ A} ({x ~ X I for some y e T, (x, y) ~ A}). If S = {x} (T = {y}) we simply write 
xA (Ay), omitting the brackets. 

Remark. Whenever we talk about 2 x as an ordered set, we will always use the 
usual set inclusion ordering with infs and sups corresponding to intersections and 
unions. 
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DEF INI TI ON 1.3. Let  L be a complete lattice and L'  c L. We say that L'  is a 
sup-sublattice (inf-sublattice) if for all X ~  L',  supL X ~  L'(infL X ~  L').  Thus 0 
L'(1 ~ L'). 

Remark. It is easy to see that in both cases above, L '  is a complete lattice with 
respect to the induced ordering. If L '  is a sup-sublattice, its sup is identical with 
the sup in L, but its inf is simply the sup of lower bounds in L '  of the set in 
question. 

DEF INI TI ON 1.4. Let  A ~ 2 x• The row space of A, denoted by R(A) ,  is 
{SA I S c X  }. The column space of A, denoted by C(A), is {AT[ T c  Y}. 

Remark. Note that R(A) (C(A)) is a sup-sublattice of 2v(2 x) and is thus a 
complete lattice. 

DEF I NI TI ON 1.5. Let  L and M be complete lattices, S c L, P, Q posets, 
T c Q  a n d X a s e t .  

(a) A map r : P ---> Q is called an embedding if for all x, y ~ P, x <-y if and only 
if r162 Note that r must be injective. If Q=2 x, we say ~ is an X- 
embedding. 

(b) A map /:P---> Q is called residuated (dually residuated) if the inverse 
image of a principal (dual) ideal of Q is a principal (dual) ideal of P. Note that an 
injective (dually) residuated map is an embedding. Note that if P and Q are 
complete lattices and f:P---~ Q then f is residuated (dually residuated) iff f 
preserves arbitrary sups (infs). See [3] for further details. 

(c) A map ~ : M----> L is called a sup-embedding (inf-embedding) if ~ preserves 
arbitrary sups(infs) and is injective. Note that in this case r is also an embedding, 
since it is an injective (dually) residuated map. If L = 2 x, we call ~ an X-sup- 
embedding (X-inf-embedding). 

(d) T is a representation of P if T is order isomorphic to P. If Q = 2 x, we refer 
to it as an X-representation. 

(e) S is a sup-representation (an inf-representation) of M if S is a sup- 
sublattice (inf-sublattice) of L and S is isomorphic to M. If L = 2 x, we call S an 
X-sup-representation ( X-inf -representation ). 

(f) T sup-spans (inf-spans) Q if for all w ~ Q, there exists T w c  T such that 

w = sup Tw (w = inf Tw). 
(g) By the sup-rank (inf-rank) of Q, we mean the smallest cardinality for 

which a sup-spanning (inf-spanning) set of that cardinality exists. This notion is 
well-defined since Q sup-spans (inf-spans) itself. 

(h) By the distributive lattice generated by P, D(P), we mean the set { T c  
P I for all x e T, y ~ P, x --- y implies y ~ T}. Note that 9 ~ D(P). Sups in D(P) are 
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simply unions and infs are intersections. Note that there is a natural embedding, i, 
of P into D(P) given by i ( x )={y~P]  y-<x}. 

(i) x e Q is sup-irreducible (inf-irreducible) if whenever x = sup T (x = inf T) 
for some T c Q, x e T. 

Remarks. It is easy to see that the image of a sup-embedding (inf-embedding) 
is a sup-representation (inf-representation). 

We also note that any sup-spanning (inf-spanning) set must contain all 
sup-irreducible (inf-irreducible) elements. Furthermore, for lattices of finite 
length, sup-irreducible (inf-irreducible) elements are simply the join-irreducible 
(meet-irreducible) elements. Thus for lattices of finite length, the sup-rank 
(inf-rank) is simply the cardinality of the set of all sup-irreducibles (inf- 
irreducibles). 

We conclude this section by describing the relationship between a poset P and 
D(P). 

THEOREM 1.6. Let P be a poset and i: P---~ D(P) the map described in 
Definition 1.5(h) and let S = i(P). Furthermore, let g:P---~ D(P) be given by 
g(x) ={yee] y~x} and T =  g(P). 

(a) For all i(x) e S (g(x) ~ T) and X c D(P), i(x) -< sup X(g(x) -> inf X) implies 
that there exists A e X  such that i(x)-<A(g(x)>--A). 

(b) S(T) is exactly the set of all sup-irreducibles (inf-irreducibles) of D(P). 
(c) The maps i and g are embeddings of P into D(P). 
(d) Let L be any complete lattice and f : S - - ~ L  (f:T---~L) any isotone (i.e., 

order-preserving) map. Then there exists a unique sup-preserving (inf-preserving) 
map/:D(P)---~ L such that f [  S = f ( f [  T= f). 

Proof. We will just sketch the proofs for S. The proofs for T are dual. 
(a) From the hypothesis, we have that x ~ i(x)--<sup X = U a~x A. Thus x e Ao. 

Since A o e D(P), i(x)-< A o. 
(b) (a) implies that everything in S is sup-irreducible. For all Y ~ D ( P ) ,  

Y =  t.Jx~ v i(x), so that any element not in S is sup-reducible. Note that, for all 
Y e D ( P ) ,  Y =  N~,vg(x).  

(c) Trivial. 
(d) Uniqueness follows from (b) since if f is sup-preserving, f ( Y ) =  

sup {f(i(x)) ] x e Y}. It is straightforward to verify that [ is indeed sup-preserving. 

2. The basic duality results and applications 

NOTATION 2.1. Let P and Q be posets. We will use the following notation: 
Res (P, Q) will denote the set of all residuated maps from P to Q; ResI (P, Q) the 
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injective elements of Res (P ,Q) ;  ResS(P ,Q)  the surjective elements of 
Res(P, Q); DRes(P,  Q) the set of all dually residuated maps from P to Q; 
DResI (P, Q) the set of all injective elements of DRes (P, Q); DResS (P, Q) the 
set of all surjective elements of DRes (P, Q). 

Remark. We consider the above sets to be posets with respect to the pointwise 
ordering. In particular, if P and Q are complete lattices so are the sets above. The 
reader should always bear in mind that if P and Q are complete lattices 
Res (P, Q) and DRes(P,  Q) are the lattices of all sup-preserving and inf- 
preserving maps respectively. The following theorem will be used as a starting 
point for our representation results. It is an instance of the adjoint functor 
theorem [14; p. 93]. Variants of it also occur in [3; p. 12], [7], [8] [10] and [22] so 
we will omit the proof. 

THEOREM 2.2. Let P and O be posers. Then F:  Res (P, Q) ---) DRes (P, Q) 
and F * : D R e s ( Q , P ) - ~ R e s ( Q , P )  given by F( f ) (q )=supe f - l ( [ - ,q] )  and 
F.(g)(p)=inf  ~ g-1([p, _]) are poser antiisomorphisms and are inverses of one 
another. 

Furthermore, the images of ResI (P, Q) and ResS (P, Q) by F are DResS (Q, P) 
and DResI (Q, P) respectively. In addition, for all f ~ R e s  (P, Q), g e D R e s  (Q, P), 
F(f)~ and foF(f)<--ido from which it follows that f o F ( f ) o f = f  and 
g o F*(g) o g = g. I f f  is surjective f o F(f) = ido, while i f f  is injective, F(f) o f = ide. 

Remark. Note that an X-sup-embedding of a complete lattice L is just a 
member of ResI (L, 2 • (see Definition 1.5(b)). By Theorem 2.2, we can construct 
each member of ResI (L, 2 x) if we know DResS (2 x, L). However, 2 x =  D(X) 
where we consider X to be the poset in which any two distinct elements are 
incomparable. 

Theorem 1.6 implies that any element of DRes (2 x, L) corresponds uniquely 
to an isotone map of the inf-irreducible elements of 2 x into L. For x ~ X, let 
mx= {y ~ X I y ~  x} = X - { x }  be the inf-irreducible associated with x in Theorem 
1.6. As in Theorem 1.6, the set M = {rex ] x ~ X} is order-isomorphic to X, where 
M is ordered by set inclusion. Since M has no order relations to preserve other 
than reflexivity, an arbitrary map of M into L is isotone. 

Given f:M---> L, the inf-preserving map f :  2x--> L generated by f (Theorem 
1.6(d)) is given by f(Y) = infL {f(mx)I x~ y}. Clearly, if f is to be surjective, f(M) 
must inf-span L. Thus if L is finite, f(M) must include all the meet-irreducible 
elements. This discussion leads to the following result. 

THEOREM 2.3. Let L be a complete lattice and X a set. Then ResI (L, 2 x) # O 
(DResI (L, 2 x) # O) if and only if IXI is greater than or equal to the inf-rank 
(sup-rank) of L. If  L is finite, the result states that ResI(L, 2X)~O 



178 GEORGE MARKOWSKY ALGEBRA UNIV. 

DResI (L, 2 x) # ~) if and only if Ix l  is greater than or equal to the number of 
meet-irreducible (join-irreducible) elements in L. 

Remark. Theorem 2.3 was also proved by Zaretskii [23] in response to a 
question by Campbell (see [1, p. 32, Ex. 5]) as to the smallest cardinality of X for 
which an X-inf-embedding exists. However, our techniques allow us to generalize 
Theorem 2.3 immediately to the case of arbitrary posets. 

THEOREM 2.4. Let P and O be posers. I f  ResI (P, Q) # ~ (DResI (P, Q) # ~), 
then the inf-rank (sup-rank) of O is greater than or equal to the inf-rank 
(sup-rank) of P. 

Proof. By Theorem 2.2, ResI (P, Q) is isomorphic to DResS (O, P). Take any 
inf-spanning subset X c  Q and g e DResS (O, P). We claim that g(X) inf-spans P. 

Since g is surjective, for all p c  P, we can find q a g-l(p). There exists z~ c X 
such that q = inf A. Since g is isotone, p--< g(x) for all x ~ A. Let t be any lower 
bound of g(zl) in P. Then for some t*~Q,  A c [ t * , - ] = g - l ( [ t , - ] ) .  Whence 
q e It*, - ]  and g(q)= p>_ t. Thus p =infe g(zl). The other result is dual. 

THEOREM 2.5. Let L be a finite lattice and n a positive integer. Suppose L has 
j join-irreducible elements and m meet-irreducible elements. 

(a) IRes (L, 2")1= IRes (2", L ) [=  I DRes (L, 2*) [ 

= ]DRes (2", Z) l= ILl'. 

i = 0  

i = l  

(d) lim I ResI (L, 2 ~) I I DResI (L, 2") I= 1. 
---~ IRes (L, 2*) I = l im I DRe s (L, 2*) I 

(Note: the sums in (b) and (c) above are equal to 0 if n < m  or n < j  
respectively. For m = n or j = n the sums are both equal to n!.) 

(e) The number of n-sup-representations (n-inf-representations) of L is 
(1/1Aut (L)D [ResI (L, 2") I ((1/I mut (L) 1) [ DResI (L, 2 ~) [), where Aut (L) is the 
automorphism group of L 

Proof. (a)- That IRes (2", L) [= [ DRes (2% L) [= ILl n follows from Theorem 
1.6 and the remark following Theorem 2.2. The rest of the result follows from 
Theorem 2.2. 
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(b) From the remark following Theorem 2.2, it is clear the IDReS (2", L)[ is 
equal to the number of mappings from n into L such that the m meet-irreducible 
elements are in the image. Thus we want to know the number of mappings from a 
set with n elements into a set of ILl elements of which m elements have been 
singled out to always to be in the image. This number can be gotten by a simple 
application of the principle of inclusion and exclusion (see [13; especially p. 101]). 
The rest of the result follows from Theorem 2.2. 

(c) Similar to (b). 
(d) Clear from (a), (b) and (c). 
(e) For each element in ResI (L, 2 n) (DResI (L, 2")) there are clearly IAut (L)I 

elements in ResI (L, 2") DResI (L, 2n)) having the same image. 

Remark. Theorem 2.5 (b) and (c) was discovered in a semigroup context by 
Butler, Brandon and Hardy, and Markowsky [4] independently. 

We conclude this section by giving a useful sup-embedding and inf-embedding 
for any finite lattice. These embeddings are easily seen to be "minimal" by 
reference to Theorem 2.3 or 2.5. 

T H E O R E M  2.6. Let L be a finite lattice, J its set of loin-irreducibles and M its 
set of meet-irreducibles. 

(a) f :  L ~ 2 M given by f (a)  = {y ~ M[ y ~  a} is a sup-embedding of L into 2 M. 
(b) g : L --~ 2 ~ given by g(a) = {x ~ J [ x <-- a} is an inf-embedding of L into 2 ~. 

Pro@ We leave the details of the reader since they are straightforward. The 
key fact is that every element in L is a sup of join-irreducibles and inf of 
meet-irreducibles. 

Remark. The representations in Theorem 2.6 above are related to the rep- 
resentation by principal dual ideas used by Birkhoff and Frink [2]. 

3. A new characterization ot finite distributive and locally distributive lattices 

The following theorem provides a simple test which can be applied to the 
Hasse diagram of a lattice to check for distributivity. It is well known (see 1; p. 
58)] that any distributive lattice of length n satisfies the Jordan-Dedekind chain 
condition, has n join-irreducible elements and n meet-irreducible elements. The 
next theorem shows that these conditions are also sufficient for distributivity. 
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T H E O R E M  3.1. Let L be a finite lattice. The following are equivalent. 
(1) L is distributive and has n join-irreducible elements. 
(2) L has n loin-irreducible elements, n meet-irreducible elements, and every 

connected chain between 1 and 0 has length n. 
(3) L has length n, satisfies the Jordan-Dedekind chain condition, has n 

loin-irreducible elements and n meet-irreducible elements. 

Proof. It is easy to see that (2) and (3) are equivalent and it is well known that 
(1) implies (3). Hence,  we need only show that (3) implies (1). By Theorem 2.6, L 
can be considered a sup-sublattice of 2 n. L ' ( the dual lattice) has exactly the same 
properties listed in (3) as L does. Consequently, by Theorem 2.6 and the fact that 
2 x - - 2  Y if X and Y have the same cardinalities, we can consider L '  as a 
sup-sublattice of 2 n also. We wish to show that L and L'  are sublattices of 2" and 
hence distributive. Let  [ :  L ~ L '  be an anti-isomorphism of L into L '  where we 
consider both as sup-lattices of 2 ~. Let  a e 2 ~, by O(o~) we mean the cardinality of 
a. Observe that since L and L '  satisfy the Jordan-Dedekind chain condition, have 
length n, and are sup-sublattices of 2* (which has length n) the height of a e L or 
~, e L '  is equal to O(a). We now make a number  of claims from which our  main 
result follows. 

(1) Off(v))= n - o ( v )  for all v e L ,  since a connected chain from 0 to v is 
mapped into a connected chain from f(v)  to 1 and the height of a ( a e L  or 
ote L') = p(ot). 

(2) p f f ( y ) ) -  Off(x) ̂ t-,f(y)) = p ( x ) -  O(x n y) for all x, y e L. 
p f f ( y ) ) -  pff(X) ^t.'f(Y)) = (n -- p ( y ) ) -  (n - O(X O y)) 
= p(x u y ) -  p(y) = p ( x ) -  o(x n y). 

. (3) Off(Y))- Off(x) n f(y))  = o(x ) -  p(x ^L Y) for all x, y e L. 

0ff(y))- 0ff(x) n [(y)) = 0ff(x) u f (y))-  off(x)) 
= ( n -  o(x ^,_ y ) ) -  ( n -  o(x)) = o ( x ) -  o(x ^,_ y). 

(Recall that O = VL = Yr., since L and L '  are sup-sublattices). 
We know that for all x, y e L, x At.y--< X n y and f(x)At.,f(y)--< f ( x )n  f(y) .  Thus 

off(y)) - off(x)  n f(y)) _ o f f ( y ) ) -  of f (x)^L,f (y)) .  From (2) and (3) we get O(x)- 
O ( X A L y ) - o ( x ) - O ( x  O y) which implies that O(XALy) >- O(X N y) and hence that 
x ^LY = X N y. Thus L is a sublattice of 2". Hence,  both L and L'  are distributive 
as was to be shown. 

Remark. Theorem 3.1 can be rewritten as follows: a finite lattice L with n 
join-irreducible elements is distributive iff (i) it satisfies the Jordan-Dedekind 
chain condition, (ii) the number of meet-irreducible elements equals the number  
of join irreducible elements, (iii) the length of L is equal to the number  of 
join-irreducible elements. The following three examples show the independence 
of conditions (i), (ii), and (iii). 
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(a) (b) 

Here n = 3. (a) satisfies (i) and (ii) only, (b) (i) and (iii) only, and (c) (ii) and (iii) 
only. 

C O R O L L A R Y  3.2. A finite modular lattice is distributive iff its length is equal 
to its sup-rank (inf-rank). 

Proof. It is well known that modular lattices satisfy the Jordan-Dedekind 
chain condition. Also Dilworth has shown [1; p. 103] that the sup-rank and 
inf-rank of any finite modular lattice are equal. Thus the corollary follows directly 
from Theorem 3.1 and these additional facts. 

Greene and Markowsky [11] have shown that a finite lattice, L, satisfying (i) 
and (iii) is lower locally distributive, i.e., for each x ~ L, if x* = inf {y ~ L ] x covers 
y}, then the interval [x*, x] is a Boolean algebra. Of course, if (i) and the dual of 
(iii) hold for a finite lattice, it must be upper locally distributive. We present their 
proof below. 

NOTATION 3.3. If L is a finite lattice we use h(L) to denote the height of L, 
J(L) to denote the set of join-irreducible elements of L and M(L) to denote the 
set of meet-irreducible elements of L. 

Let L be a finite lattice. Since every element of L is a join of join-irreducibles, 
it follows immediately that, if a chain length k, then its elements dominate at least 
k join-irreducibles. Hence we have: 

L E M M A  3.4. For any finite lattice L, 

h(L) <--I1(L)l. Dually, h(L) <-IM(L)I. 

T H E O R E M  3.5. If  L is a finite lattice in which all maximal chains have the 
same length, then the [ollowing conditions are equivalent: 

(a) h(L)= lJ(L)l; 
(b) There exists an inf-preserving, rank-preserving embedding of L into a finite 

distributive lattice; 
(c) L is (lower) locally distributive. 
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Proof. We give a cyclic proof that the three conditions are equivalent: 
A : ~ B  First observe tha t ,  if x c L  and O ( x ) = { p c J ( L ) l p < - - x } ,  then 

to(x)l-- r(x), where r(x) is the rank of x. For  r(x)<-Je(x)j by Lemma 3.4, and it is 
easy to see that h(L)-r(x)  is at most the number of join-irreducibles not  
dominated by x. Hence h(L) -  r(x) <--J/(L)[-le(x)l, which together with h(L) = 
P(L)I implies that r(x)= l e(x)l.  Hence the injeetive, inf-preserving map x--~ O(x) 
of Theorem 2.6 from L to the lattice of subsets of J(L) is also rank-preserving. 

g ::> C We may suppose that L is an inf-sublattice of a finite distributive 
lattice D, such that every x ~ L has the same rank in both L and D. If x ~ L, the 
elements covered by x in L are also covered by x in D. Since D is distributive, 
these elements generate an interval [x*, x] in D which is a Boolean algebra, and 
every element of this interval is a meet  of elements in L. Hence [x*, x] is an 
interval of L, and L is locally distributive. 

C : : ~ A  As before,  we define O ( x ) = { p ~ J ( L ) [ p c x } .  We will prove by 
induction on r(x) that IO(x)l=r(x) for all x~L.  This is obviously true for 
elements of rank 1, so we assume that r ( x ) >  1 and also that r (y )=  IO(y)l for all 
y < x. If x itself is join-irreducible, then x* is the unique element convered by x, 
and so le(x)l = le(x*)l + 1 -- r (x*)+ 1 = r(x).  Otherwise, every element  p c  gl(x) is 
less than x. If we define C(x)={ylx  covers y}, then p c  19(x) implies p c  @(y) for 
some y ~ C(x). Moreover ,  if p ~ ~9(y) for each y in some subset A c C(x), then 
p c O(Ay,A y). An easy inclusion-exclusion argument shows ]O(x)[ = 
~(--1)lAl-llO(Ay~Ay)l (where) the sum is over all nonempty A cC(x)).  If we 
define YA = Ay~AY, then local distributivity implies that r(yA)= r(x)-Iml. Hence,  
the above sum becomes IO(x)l=~(-1)lAl-~(r(x)-lAl)=r(x) (where the sum is 
over all nonempty A c C(x)) by elementary binomial manipulation. This proves 

that le(x)l---r(x) for each x ~ L, and hence, IJ(L)l---le(x)l = r(1)--h(L),  where 1 
is the top element of L. 

Remark. Dilworth [9; Corollary 1.4] showed that a lattice which is both upper 
and lower locally distributive is distributive. Thus the result and Theorem 3.5 can 
be used to give a different proof of Theorem 3.1. Local distributivity is also 
discussed in [6]. 

4. Binary relations and lattices 

In this section we will show how binary relations can be thought of as arising 
from a sup-embedding of a complete lattice and a sup-embedding of its dual. We 
will also indicate how some of the preceding results can be obtained from this 
viewpoint. The  following theorem is a key result in this section. 
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T H E O R E M  4.1. Let X and Y be sets and A ~ 2 x• Then the map [: C(A) 
R(A)  given by f ( A T ) = ( X - A T ) A  and the map g:R(A)---~C(A) given by 
g(SA) = A ( Y -  SA ) are anti-isomorphisms of complete lattices and are inverses of 
one another. 

Proof. Clearly f and g are order-inverting. We will now show that g f f (AT))=  
A T  for all T ~  Y. x~g(~(AT)) c:~ x A f q ( Y - f ( A T ) ) ~ O  C~ x A g t f ( A T ) =  
( X - A T ) A  r x ~ X - A T  r x ~ A T .  

The proof that for all S c X, f(g(SA)) = SA, is similar. Thus f and g are order 
reversing bijections, which implies that they are lattice anti-isomorphisms. 

Remark. The reader familiar with the concept of Galois connection [1; p. 
124], might recognize that we essentially have a Galois connection here. This 
construction is closely related to the concept of a polarity [1; p. 122] and was used 
in the case X = Y by Zaretski [24] in his work on the structure of the semigroup 
of binary relations. Variants of Theorem 4.1 can be found in [3; p. 35, exercise 
4.15], [7], [8], [10], [20; Theorem 10]. We will now show how to derive part of 
Theorem 2.3 from Theorem 4.1. 

T H E O R E M  4.2. Let L be a complete lattice and X a set. If ResI (L, 2 x) ~ 0, 
then IxI is greater than or equal to the inf-runk of L. Of course the dual statement is 
also true. 

Proof. Let f ~  ResI (L, 2x). Let A I c L • X be given by (a, x) ~ A t if and only if 
x ~f(a). Since f is sup-preserving, R(As) = f(L) = L. Note that C(Ar) = L' by 
Theorem 4.1 where L'  is the dual of L. Note that the set {Ar I Y ~ X} sup-spans 
L'. From the anti-isomorphism given in Theorem 4.1 we can now construct a set 
of cardinality ---IXI which inf-spans L. 

With the use of Theorem 2.6 we can also derive Theorem 2.4 for complete 
lattices L1 and L2o 

Alternative proof of Theorem 2.4. Take a set Y of smallest cardinality which 
inf-spans L2. By Theorem 2.6 we can sup-embed L2 in 2 Y. Since compositions of 
sup-embeddings are sup-embeddings, L1 can be sup-embedded in 2 v. The result 
now follows from Theorem 4.2. The rest follows by duality. 

The next lemma relates the results of Theorem 4.1 to sup-embeddings of a 
lattice L. 

LEMMA 4.3. Let A c X x Y and L a complete lattice isomorphic to C( A ) via 
~. Let L' be the lattice dual to L and let r:L'--~ L be any anti-isomorphism. Let 
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~' : L'  --* R ( A )  be the isomorphism given by ~' = f~r where f is the map of Theorem 
4.1. F6r x ~ X (y ~ Y)  let /~ = supL {l e L I x~ ~(l)} (k~ = SUpL, {k e L'I y~ g'(k)}). 
Then for all x ~ X (y e Y) x A  = g'(r-l(/~)) = fg( l , ) (Ay = ~r(kv)). 

Proof. Let g be as in Theorem 4.1. Since f and g are inverses , /g(xA) = xA.  
However, g (xA)=  A ( Y - x A ) .  We claim that A ( Y - x A ) =  ~(l~). 

Note that x ~ A ( Y - x A ) .  Thus A ( Y - x A ) < - ~ ( l ~ ) .  
Now ~(l~)~ C(A) ,  i.e., ~ ( I ~ ) = A T  for some T ~  Y. Note that T N x A  = Oe l s e  

x ~ A T = ( , ( l ~ ) .  Since ~ is sup-preserving, xCg(/~), whence T ~ Y - x A ,  which 
implies that ~(l~) ----- A ( Y -  xA) .  

Arguing as above, we see that for all y ~ Y, f(Ay) = ~(ky), thus Ay = gf(Ay) = 
= = r ( k , ) .  

L E M M A  4.4. Let (, : L ~ 2Xbe an X-sup-embedding of the complete lattice L 
and ~': L'---> 2 Y a Y-sup-embedding of its dual. Let r : L'---> L be any anti- 
isomorphism and A c X x  Y be given by (x, y ) ~ A  if and only if yeg ' r - l ( lx )  (or 
equivalently x ~ ~r(ky)). Then C(A)  = ~(L) and R ( A )  = ~'(L'). 

Proof. We claim that (x, y) ~ A if and only if x e ~r(ky). This follows from the 
fact that x ~ r ( k y )  r162 r ( k y ) ~ l  x r ky>-r-l(Ix) ~ y~ ~'r-l(lx). 

Observe that for all x ~ X (y e Y )  x A  = ~'(r-~(/~)) ~ ~ ' (L ' ) ( (Ay-  ~r(ky) ~ ~(L)). 
Thus R ( A ) =  g'(L') and C ( A ) = ~ ( L ) .  

Let l o l L ,  we will show that ( , ( l o )=A(Y-~ ' r - i ( l o ) ) .  If x ~ A ( Y - ~ ' r - l ( l o ) ) ,  
then x ~ Ay = ~r(kv) for some y~ g'r-~(lo). But y~ ~'r-l(lo) ~ r-l(lo)----- ky ~ lo--- 
r(k~) ~ ~(lo)>- ~r(ky) ~ x ~ ff(lo). Let  x ~ ~(10) and recall that x~ g(Ix). Thus 
Ix~ lo ::~ r-~(lx) ~ r-l(lo). Let y ~ ~'r-~(l~) - ~'r-a(lo). Then (x, y) ~ A and y ~ Y -  
~'r-~(lo). Thus x ~ A ( Y -  (,'r-~(lo)). Thus C ( A )  ~ ~(L). Similarly, R ( A )  ~ ~'(L'). 

Remark. Lemma 4.4 shows that we can "glue" together a sup-representation 
of L and one of its dual to get a binary relation from which both representations 
can be recovered. The reader will note that the "glueing" process involves a 
choice of an anti-isomorphism between L and L'. Thus there would seem to be at 
least I Aut  (L) I binary relations which could be obtained. The next theorem 
pursues this  point further. 

T H E O R E M  4.5. Let ~ and 0 be X-sup-embeddings of a complete lattice L and 
~' a Y-sup-embedding of its dual L'.  Let A c X x  Y be such that C ( A )  = r and 
R ( A )  = ~'(L') ( A  exists by Lemma 4.4) and let 1"~ = {B c X x Y [ C(B)  = O(L)  and 
R(B) --" ~'(L')}. Then the map FA :Aut  (g(L)) ~ O, given by (x, y) ~ FA(f) if and 
only if x ~ @f[-l(Ay), is a bi]ection. 
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Of course, a dual result holds where we have two embeddings of L '  and one of 
L and we change R(A).  

Proof. Let  r : L '  --~ L be any anti-isomorphism. By Lemma 4.3, Ay  = ?;r(ky) for 
all y ~ Y. Thus (x, y) ~ FA(f) if and only if x ~ Ofr(kv). Note that fr : L'---~ L is an 
anti-isomorphism. By Lemma 4.4, C(FA(f)) = O(L) and R(FA([)) = ~'(L'). Thus 
FA is well defined. 

FA is injective, since for all y ~ Y, FA(f)y = Of~-l(Ay).  If FA(f) = FA(g), then 
for all y we would have g - l f r  = r  Since {~-l(Ay) ] y ~ Y} sup-spans 
L, g - t f  must be the identity. 

It remains to show that FA is surjective. Let  B ~ s and 8 :L  ~ O(L) be given 

by B(1) = supo(L) {By [ ~-~(Ay) <- 1}. 
We first show that for all A,za', k.Jy~,xAy c tJyE,x,Ay if and only if tA yEa By c 

tAy,aBy. Suppose U ~ a A y c t A y ~ a ,  Ay, but Uy~,,ByeUy~a,  By. Then there 

exists yoeA and xo~Byo such that for all y e A ' ,  xo~By. Thus y o e x o B  and 
xoB N A' = ~. Since xoB ~ R(B) --- R(A) ,  there exists xt e X such that Yo ~ x tA  c 
xoB. Then we have x t e A y o  C U~,~aAy, but x l~Uy~a ,  Ay, since x t A N A ' c  
xoB f'l A' = 9. Clearly, the same argument works in the other direction. 

It now follows that for all l, l*~L, l<-l * if and only if 8(1)<-~(l*). Thus 8 is a 
lattice isomorphism between L and O(L) and is thus an X-sup-embedding of L. 
Let  f =  ~O-~8 ~Aut  (~(L)). Clearly, FA(f)=B. 

Remark. In the case X = Y, the results in this section imply many things about 
the structure of the semigroup of binary relations. The last result (when O = r 
can be extended to a dual group isomorphism between Aut  (L) and the Schutzen- 
berger group of the H-class of A. For  additional details and applications, see 
[5, 18, 24]. 

One of the referees noted that the material in Lemmas 4.3, 4.4 and Theorem 
4.5 could be derived and put in a more general context using the correspondence 
between binary relations on X x Y and Res (2 x, 2 v) and the material in [3; espe- 
cially p. 36, exercise 4.17]. We will not pursue this point further. 

The numerical results of Theorem 2.5 can be derived from Theorem 4.5. 
However,  we shall omit this derivation. 

5. Embeddings of posets into complete lattices 

In this section, we shall be concerned with the question of the number of 
embeddings of a poset  in a complete lattice. We will be especially interested in the 
number of embeddings of a finite poset in 2" for n a positive integer. Abraham 
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Hillman [12] studied this problem for posets with 4 or fewer elements. We believe 
that the technique presented here gives greater insight into the problem of 
representing posets than Hillman's techniques. We will study the problem of 
embedding one lattice into another from a different point of view in the next 
section. 

The first theorem characterizes poset embeddings in terms of lattice sup- 
embeddings. This is a fairly natural approach since we have already developed a 
fair amount of material in this case. The following definition is a key step in the 
transition. 

DEFINITION 5.1. Let L be a complete lattice and S r L. Naturally, we think 
of S as a poset with respect to the induced order. By the sup-sublattice generated 
by S, Ls, we mean {SUpL T[ T c S}. 

THEOREM 5.2. Let L be a complete lattice and S c  L. Let f:Ls--~ D(S) be 
given by f( a ) = {x ~ S I x <-- a}. 

(a) f eDRes I  (Ls, D(S)). Thus f(Ls) is an inf-sublattice of D(S) isomorphic to 
Ls. 

(b) Let i be the map of Definition 1.5(h). Then i(S)c f(.Ls) and i(S) sup-spans 
f(Ls). 

Proof. (a) Clearly f is well-defined, isotone and injective. Let A c Ls and 
a =infL~A. Then for all x~S, x--<a if and only if x--b  for all b o A ,  since 
a = SUpL {X ~ S [ X --< b for all b ~ B}. Thus f(a) = N b~A f(b) = info(s) f (A).  

(b) For each x eS, f(x)= i(x). Since i(S) sup-spans D(S), it certainly sup- 
spans f(Ls). 

Remark. The point of Theorem 5.2 is that in order to get all the representa- 
tions of a poset, P, we need to know the inf-sublattices of D(P) which contains 
i(P). Finding these inf-sublattices may be difficult in general. However, the 
theorem implies that all representations of a poset can be classified depending on 
which type of Ls is generated. Thus, there are a fixed finite number of "types" of 
possible representations of a finite poser regardless of the lattice into which we 
wish to embed the poset. 

While finding all the inf-sublattices of D(P) may be hard in general, the 
technique described above will enable us to calculate the asymptotic number of 
representations of a poset by subsets of n as n ~ o0. Before proceeding to this and 
similar results, we shall first introduce some additional notation. 

NOTATION 5.3. Let L and M be complete lattices and P a poset. We will 
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use RS(M, L) to denote the set of all sup-representations of M in L. We use 
R(P,  L) to denote all representations of P in L and R*(P,  L) to denote all 
representations of P in L which sup-span L. If L = 2", we simply write RS(M, n), 
ROP, n) and R*(P,  n). 

We use Z(P)  to denote the set of all inf-sublattices of D(P) which contain 
i(P). Finally, we let ZE(P)  be a set which contains exactly one element  from each 
lattice-isomorphism class of Z(P). 

Remark. Note that I R e s I ( M , L ) [ = [ R S ( M , L ) x A u t ( M ) I .  Note  also that 
Theorem 2.5(e) allows us to calculate RS(M, n). 

T H E O R E M  5.4. Let P be a poser and L a complete lattice. 

(a) IR(P, L)I = ~. ]RS(M, L) x R*(P, M)I. 
M~ZE(P) 

(b) ResI ( D( P), L) I<--IR(P, L) • Aut (P)I ~1 Res ( D( P), L )[. 

(c) If P is finite, then lim IR(P' n)lxl Aut (n) l= 1. 
~-- ,~ ID(P)p 

Proof. (a) The easiest way to prove this is to construct a bijection between the 
sets. Let  F :  U ~zE(P)  RS(M, L) x R*(P, M) --~ R (P, L ). For each M ~ ZE(P) and 
N ~ RS(M, L) pick an isomorphism hM,~ : M ~ N c L. For N ~ RS(M, L) and 
zi ~R*(P, M), let F(N, A)= hM, r~(zi ). It follows from Theorem 5.2 that F is a 

surjection. Suppose A g~ h~,~,(Ax) = hM2,~(A2) ~ B. Then N1 = LA = La = N2 and 

MI=M2~ZE(P) .  Thus MI=M2 . Since h~,N~(A1)=h~,.N~(A2), and h~,N, is a 
bijection, A~ =/12. 

(b) It is easy to see that R(P, L) x Aut (P) corresponds in a natural way to the 
set of all embeddings of P into L. Since any f ~  ResI (D(P), L) gives rise to the 
embedding fi of P into L, and these embeddings are all distinct, 
I ResI (D(P), L) [<--IR(P, L) x Aut(P)[. 

To get the other inequality we observe that the set of all embeddings of P into 
L is a subset of all isotone maps from P to L. By Theorem 1.6(d) this last set has 

the same cardinality as Res (D(P), L). 
(c) This follows from (b) and Theorem 2.5. 

Remark. We will now consider the representations of specific families of 
posets. Abraham Hillman [12] calculated R(P, n) for all P such that IPI---4. 
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His work can be duplicated using our basic approach (see [15]). However, we 
will concentrate on those cases which will best display our techniques. 

NOTATION 5.5. Let  k be a positive integer. 
(a) Let Ck denote a k-element chain. 
(b) Let Ak denote the k-element totally unordered poset, i.e., a-----b if and 

only if a = b. 
(c) Let Dk = k x2 ,  ordered as follows (kl,  al)>-(k2, a2) if and only if (kl,  a l )=  

(k2, a2) or kl > k2. 

Remark. It should be clear what the Hasse diagrams of A t  and Ck look like. 
Below is the Hasse diagram of DK. 

! 

k i 
I 

T H E O R E M  5.6. Let k be a positive integer. 

j=O,k j=O,k-1 

(c) As n ~ ,  ]R(Ak, n)[---~-.~ - k ,i.e., 

the ratio of any two of the quantities goes to 1 as n -~ ~. 

Pro@ (a) D(Ck) = Ck+~. It is easy to see that ZE(C~) = {Ck, Ck+l}. The  result 
now follows from Theorem 2.5. 

(b) D(Dk)  looks like 

�9 
4, 
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A little reflections shows that ZE(P)={D(Dk)}.  The result now follows from 
Theorem 2.5. 

(c) D(Ak)= 2 ~. The result now follows from Theorem 5.4. 

Remark. Theorem 5.6 gives some idea of the families of posets for which it is 
comparatively simple to calculate the number of representations. We note that (a) 
of Theorem 5.6 was calculated by Hillman [12]. 

IR(Ak, n)l is the number of anti-chains of size k in 2". Thus Theorem 5.6(c) 
asserts that for n large and k fixed almost every k element subset of 2" is an 
anti-chain. Calculating the quantity IR(Ak, n)l is difficult because of the large 
number of elements in ZE(Ak). ZE(A4) has more than 37 elements. Hillman [12] 
has calculated IR(A~, n)[ for k ~4  and Riviere [21] has calculated IR(Ak, n)l for 
k e 3. However, neither one makes any statement about the asymptotic behavior 
of [R(Ak, n)l. 

The following obvious theorem has some interesting implications which we 
will briefly discuss after the theorem. 

T H E O R E M  5.7. Let P be a poser and P' its dual and L be a complete, 
self-dual lattice. Then, IR(P, L)] = IR ( P', L )I. In particular, IR ( P, n )t = [R ( P', n) i. 

Remark. The interesting thing is that if one tries to prove Theorem 5.7 
starting from Theorem 5.4, one runs into difficulties right from the start. The 
reason being that the cardinalities of ZE(P)  and ZE(P')  are in general different 
and there is no obvious relationship between the lattices occurring there. 

Let P be the poset represented by " ~ ?  and P' its dual. One can quickly 
I t  

calculate that ZE(P)  has exactly 10 elements and for each element IR*(P, M)[ = 1. 
However, ZE(P')  has 9 elements, 7 with IR*(P, M)] = 1, 1 with ]R*(P, M)] = 2 and 
1 with IR*(P, M) I = 3. Investigating the exact nature of the relationship between 
ZE(P)  and ZE(P')  might prove quite interesting. 

6. Embeddings of complete lattices into complete lattices 

In this section we present a simply necessary and sufficient condition for one 
complete lattice to be capable of being embedded into another. We then interpret 
this result in terms of binary relations. This last interpretation connects naturally 
with the bidigraph representation of a lattice by a sup-spanning subset and an 
inf-spanning subset introduced by the author in [15, 16]. 

T H E O R E M  6.1. Let L and P be complete lattices, X, Y subsets of L and A, B 
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subsets of P such that X ( Y )  sup-spans (inf-spans) L and A ( B )  sup-spans 
(inf-spans) P. Then the following are equivalent. 

(i) There exists an embedding (9 : P---> L. 
(ii) There exists maps f:  A ---> 2 x and g : B ---> 2 Y such that for all a ~ A,  b ~ B, 

a ~ b  if] there exists x ~ f(a),  y ~ g(b) such that x ~  y. 

Proof. ( i )~ ( i i )  Let f be given by f(a)={x~X I x ~ ( 9 ( a ) }  and g by g(b)= 
Y-{Y~ YI y ~  (9(a)for  some a ~ A  such that a<--b}. 

Suppose there exist x e l (a ) ,  y ~ g(b) such that xN y. Since y ~ g(b), y -> (9(ti) 
for all ~i ~ A such that ~ -- b. However, x ~ f(a) implies x <-- (9(a) and since x;a y, 
(9(a);ay. Thus aNb.  

Conversely, if aN b, (9(a)N (9(b). Since X sup-spans L and Y inf-spans L, 
there exist x ~ X ,  y~  Y such that x<--(9(a), (9(b)-----y and xNy. Clearly, x e f ( a )  
and y ~ g(b). 

( i i )~ ( i )  Let (9 be given by (9(p)=sup U,~,pf(a). If p<--q, then clearly 
(9(p) <-- (9(q). 

Suppose pNq,  then there exist a s A ,  b ~ B  such that a<--p, q<--b and aNb.  
Thus there exist x e f ( a ) ,  y~g(b)  for which x;~y. Note that x<---(9(p)Ny. We 
claim that y---(9(q). If not, for some t i e A  such that g--~q, y;~supf(~i). Thus 
there exists x '6 f (g)  for which x';~y. By (ii) we would have ~i;ab which is 
impossible since g --< q <- b. Since y - (9(q) and y ~  (9(p), (9(q) ;~ (9(p) and (9 is an 
embedding. 

THEOREM 6.2. Let X, Y, A and B be sets, 12c X x Y, M c A x B .  The 
following are equivalent. 

(i) There exists an embedding (9 : R ( M ) - *  R(12). 
(ii) There exists maps f:  A ~ 2 x and g : B ~ 2 Y such that for all a ~ A,  b ~ B, 

aMb if and only if f(a)12 n g(b) ~ O. 

Proof. (i) ~ (ii) For a ~ A, let f(a) = {x ~ X]  x12 <- O(aM)}. Thus f(a)12 = 
(9(aM). For b ~ B ,  let g ( b ) = Y - U a ~ v a ,  O(dM). Clearly if f ( a ) 1 2 n g ( b ) =  
@(aM) O g(b) ~ 0, aMb. 

Suppose aMb, but O(aM) O g(b) = 0. Then O(aM) -< U a~r,a, (9(riM) <-- (9(SM), 
where S = A - M b ,  since SM>_ d M  for all d ~ S and since (9 is isotone. Since (9 is 
an embedding, a M < . S M  which is impossible since aMb but br  Thus 
f(a)12 n g(b) ~ 0. 

( i i )~ ( i )  For S = A,  let O(SM) = U,~f(a )12  where $ = {a e A l a M ~ S M } .  
If SM < TM, S <-- T and (9(SM) ~-- (9(TM). 

Suppose (9 (SM)~(9(TM) .  If b e S M ,  then ( 9 ( S M ) n g ( b ) ~ O  and thus 
(9(TM) n g(b) ~ 0. Hence for some a ~ 7", b ~ aM<-- TM. Thus S M  ~ - TM. 
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R e m a r k .  T h e  connec t ion  b e t w e e n  T h e o r e m s  6.1 and  6.2 is exac t ly  t he  no t ion  

of Q ( X ,  Y,  L )  in [16]. T h e o r e m  6.1 in pa r t i cu la r  shows tha t  P can b e  e m b e d d e d  

into L if and  only  the  b id ig r aph  Q ( A ,  B,  P) can be e m b e d d e d  as a b i d i g r a p h  into  

Q ( L - { O } ,  L - { 1 } ,  L) .  Since  we d o n ' t  wan t  to in t roduce  all  the  resul ts  of  [16], we 

leave  the  ver i f ica t ion of this fact  to the  r eade r .  

Re la t i onsh ips  b e t w e e n  the  e m b e d d i n g  t h e o r e m s  in this sec t ion  and  p r o b l e m s  

in b i o m a t h e m a t i c s  and  c o m p u t e r  science are  exp lo red  in [19]. 
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