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Uni form congruence  schemes  

E. FRIED, G. GP, XTZER, AND R. QUAC~E~USH* 

1. Introduction 

Mal 'cev 's  L e m m a  (see [8]) gives a description of principal congruence relations 

in universal algebras. The general scheme contains many  parameters ;  we define 
below a Congruence Scheme to formalize this and we shall say that  an equational 
class K has a Uniform Congruence Scheme if in the whole class Mal 'cev 's  L e m m a  
applies with the same scheme. 

We shall examine the consequences of the assumption that  an equational class 
has a Uniform Congruence Scheme. The  most  important  one is that  congruence 
relations of a direct product  can be described by the congruence relations of the 
direct factors .  

We  shall also relate Uniform Congruence Schemes and the Congruence 
Extension Property.  

These lead to a close relationship between Uniform Congruence Schemes and 

the concepts of filtrality and ideal congruences of R. Magari (see [14]). This 
relationship will be explored more  fully in w 

2. Congruence schemes 

Let  us restate Mal 'cev 's  Lemma:  

2.1. M A L ' C E V ' S  L E M M A  ([8] and [16]). Let 9A be a (finitary) algebra and 

a, b, c, d ~ A .  Let @(a, b) denote the smallest congruence relation under which 

a=--b. Then c - d ( @ ( a , b ) )  iff there exists an integer n>- l ,  a sequence c =  

eo . . . . .  e,, = d of elements of A ,  and a sequence Po . . . . .  P,-1 of  unary algebraic 

functions such that {p~(a), p~(b)}={ei, ei~_~}, for i = O, 1 . . . . .  n -  1. 
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O u r  basic definitions are mot iva ted  by 2.1: 

2.2. D E F I N I T I O N .  A Congruence Scheme S for a given type 1- is given by 

two integers n and m, n ~ 2 ,  m - 1, by  n m - a r y  polynomials  Po . . . . .  p ,_ t ,  and by a 

funct ion f : {0 ,  1 . . . . .  n -1}- - ->{0,  1}. 

2.3. D E F I N I T I O N .  Let  S be a Congruence  Scheme as given in 2 .2 ;  let 2l be 

an algebra whose type includes -r, and let ao, al,bo, b l ~ A .  W e  say that 

(a0, at ,  bo, b~) is in S-relation in 91 (or S(ao, at, bo, b~) holds in 91) iff t he re  exist 

c~ . . . . .  c~ ~ A satisfying 

bo = po( Cqr cl . . . . .  c,,), 

pi(al-r  cx . . . . .  c,,) = pi+l(af(~+t), cl . . . . .  c,,) for  0 - i - n - 2 ,  

p . - t ( a t - f ( ~ - t ) ,  cl  . . . . .  Cm) = bn-l. 

2.4. C O R O L L A R Y .  Let q~ be a homomorphism of 91 into 23 and let S be given 
as in 2.2. If S(ao, at, bo, b~) holds in 91 then S(aoq~, argo, boq~, btq~) holds in 23. 

Proof. Indeed,  it does,  using c~q~ . . . . .  c,q~. 

2.5. C O R O L L A R Y .  Let 91 be an algebra and let a, b, c, d c A .  Then c =- 
d( O(a, b )) iff there exists a Congruence Scheme S such that S(a, b, c, d) holds in 91. 

Proof. This is a res ta tement  of  2.1. 

2.6. E X A M P L E .  Le t  D deno te  the class of  distributive lattices. Cons ide r  the 

fol lowing 5-ary polynomials  in the variables z, xo, xl, Yo, Y~: 

Po = (Yo v y i)/x (Yo v (Xo/x z)), 

Pl = (yoV yl)A(yoVXoVZ),  

p2 = y lv (y0A(XoV Z)), 

P3 = Yl V (yOA X0A 2:), 

and let S be the Congruence  Scheme with n = 4, m = 5, Po . . . .  , P3 as given,  and 

f ( 0 ) = f ( 2 ) = l ,  f ( 1 ) = f ( 3 ) = 0 .  T h e n  (see [9] and also [11]) for  any  L e D  and 
a , b , c , d ~ L ,  c=-d(O)(a,b)) iff S ( a , b , c , d )  in L. 

This gives us the mot iva t ion  for  the next  definition. 

2.7. D E F I N I T I O N .  Let  K be a class of  algebras of the same type.  T h e n  K is 

said to have a Uniform Congruence Scheme (UCS, for  short)  iff t he re  exists a 
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Congruence Scheme S of the same type satisfying the following condition: 

For any ~ K  and a , b , c , d ~ A ,  c--d(~9(a,b)) iff S ( a , b , c , d )  holds in ~. 

Thus 2.6 shows that the class of D has a Uniform Congruence Scheme. It is 

not difficult to see that if K is an equational class having permutable congruence 

relations and K has a UCS, then K has a UCS S with n = 1 and, conversely, if K 

has a UCS S with n = 1, then K has permutable congruences. 

It  is easily seen that the class G of all groups and the class A of all abelian 

groups have no UCS-s. Further examples shall be given in the next section. 

3. Equational definability and factor determined congruences 

The following description of O(a, b) in distributive lattices (see [9]) is much 

simpler than the one given in 2.6: 

c=d(6) (a ,b ) )  iff a A b A c = a A b A d  and a v b v c = a v b v d .  

This motivates the following definition: 

3.1. DEFINITION.  Let K be a class of algebras of the same type. K has 

F_.quationaUy Definable Principal Congruences (EDPC, for short) iff there is a set 

of equations { p ~ = q i l i ~ I }  such that for any ~ K  and a ,b , c ,  d e A ,  c-= 

d((gfa, b)) is equivalent to the existence of eo, et . . . .  ~ A  such that 

pi(a, b, c, d, eo, e~ . . . .  ) =q~(a, b, c, d, eo, e~ . . . .  ) for all i~1. 

3.2. EXAMPLE.  The class of distributive lattices with pseudocomplementa-  

tion. It was shown in [13] by H. Lakser that if ~ = ( L ;  v,  A,*) is a distributive 

lattice with pseudocomplementation and a, b, c, d ~ L, then c ~d(~gfa,  b)) iff 

c Aa = d A a  and ( c v b ) A t a *  Ab)* = ( d v b ) A ( a *  Ab)*. 

Now we are ready to state our first result. 

3.3. T H E O R E M .  Let K be an equational class. Then K has a Universal 
Congruence Scheme if] K has EquationaUy Definable Principal Congruences. 

Before we prove this theorem we consider some more concepts. 
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3.4. DEFINITION.  A class K of algebras of the same type has Factor 
Determined Principal Congruences (FDPC, for short) on Direct Products iff 
whenever 92~ e K  for i e l ,  a~, b~, q, ~ eA~ and c~ ~- d~(O(o~, b,)), then in the direct 
product  92=f/(92~ l i e / )  there holds c=-d(O(a, b)), where a =(ah [i e I ) ,  b = 
(b~ [ i e I), c = (c~ [ i e I), and d = (d~ ] i e I). 

3.5. T H E O R E M .  Let K be an equational class. Then K has a Universal 
Congruence Scheme iff K has Factor Determined Principal Congruences on Direct 
Products. 

We shall consider one more property of an equational class K: 

(F) There exists an algebra ~2l in K and elements a, b, c, d e A such that 

c --- d(6)(a, b)) and for any algebra ~3 e K and elements a ' ,  b', c ' ,  d' e/3 if 
c'--=--d'(O(a', b')), then there is a homomorphism q~ of 92 into ~ satisfying 
aq~ = a ' ,  b~ = b', cq~ = c', and dq~ = d'. 

Proof of 3.3 and 3.5. We prove that the three conditions in 3.3 and 3.5 (UCS, 
EDPC,  FDPC (on Direct Products)) are equivalent to each other and to (F) for an 
equational class K. 

UCS implies EDPC. This is trivial. 
EDPC implies FDPC on Direct Products. This is also trivial. 
FDPC on Direct Products implies (F). Let  Kf be a set of algebras of K 

containing, up to isomorphism, all the finitely generated algebras of K. Consider 
all sequences: (92~,ai, b~,ci,~), i e I ,  where 92~eKe, a~,b~,c~,d~eA~, and q-= 
d,(O(a,, b,)). Set 92 = /7(~ ,  l i e l ) ,  a =(a, l i e I ) ,  b =(b, l i e I ) ,  c = (c~ l i e l ) ,  and 
d = ( ~ [ i e l ) .  Then by FDPC on Direct Products, we have c---d(O(a,b)). We 
claim that 92 and a, b, c, d satisfy (F) in K. The first clause is trivial; to verify the 
second clause let ~ e K  and a', b', c', d ' eB ,  c'=- d'(~9(a', b')). It is clear from 2.5 
that there exists a finitely generated subalgebra ~31 of ~3 such that a ' ,  b', c', d'  e B1 
and c'=-d'(O(a', b')) in ~ : .  By the definition of K s, there is a ( $ e K f  and an 
isomorphism t ) : ~ - - > ~ l .  Since ~ e K f  and c'$-~--d'$-l(O(a' tk  -:, b '~- l ) )  in ~, 
the sequence (~, a'q~ -l, b'$ -~, c 'q f  ~, d'tk-:) is of the form (N,, a,, b~, q, dl). Thus if 
-n-~ is the i-th projection, -rr~tk is the homomorphism satisfying the second clause of 
(F). 

(F) implies UCS. Let  the Congruence Scheme S satisfy S(a, b, c, d) in 92, 
where 92 and a, b, c, d are given in (F). By 2.4 and (F), S(a', b', c',  d') holds 
whenever a' ,  b', c', d ' e B  and ~3eK and c'---d'(O(a', b')). 

This completes the proofs of Theorems 3.3 and 3.5. 
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3.6. C O R O L L A R Y .  Let K be an equational class of algebras having EDPC 
and let p~ = q~, i ~ I be a set of equations defining the principal congruences in K. 
Then there exists a finite subset I1 of I such that p~ = q~, i e 11 defines the principal 
congruences in K. 

Proof. Consider the algebra 92 and a, b, c, d ~ A which exists in K by (F). Let  
us expand the type of K by adding nuUary operations denoted  by 
a, b, c, d, ea, e2 . . . .  so the equations p~ =q~, i e I turn into identities. Let  Id(K) 
denote  the identities holding in K and set ~ = ID(K) hi {p~ = q~ [ i e I}. 

Now consider the algebra 92 and a, b, c, d ~ A as given by (1=). By EDPC,  there 
exist el, e2 . . . .  c A  such that p~(a, b, c, d, ei, e2 . . . .  ) =q~(a, b, c, d, el, e2 . . . .  ) for all 
i e L Hence the same holds in 921, the subalgebra generated by a, b, c, d, el, e~_ . . . . .  
With the obvious interpretation of constants, H l satisfies ~. 

Let  S be a Congruence Scheme satisfying S(a, b, c, d) in 921 with the auxiliary 
element  ci . . . . .  cm. Since Cl . . . . .  c,, ~ AI,  they are all polynomials of constants, 
hence the equations of 2.3 turn into a finite set of identities f2. 2 implies O, hence 
there is a finite subset ~i  of ~ that implies s by the Compactness Theorem for 
Equational Logic. Thus Id(K) and {p~ =q~[i ~ I } f q ~ l  ={p~ =q, Ii e/ i} imply f2. 
But f2 is sufficient to prove that S is a UCS which now easily yields that 
p~ = q~, i e Ii is a finite equational definition of principal congruences. 

The following result provides some nontrivial examples of equational classes 
having a UCS. 

3.7. T H E O R E M .  Let K be a congruence permutable and congruence distribu- 
tive variety generated by finitely many finite algebras 921 . . . . .  92,. Furthermore, let 
every subalgebra of each 92~ be a subdirect product of simple algebras. Then K has a 
UCS. 

Proof. By the well-known theorem of B. J6nsson [12], the subdirectly irreduc- 
ible algebras in K are all in HS(92~ . . . . .  92,). Now if .92 ~ 92i, then the congruence 
lattice of 92 is Boolean. Hence all subdirectly irreducible algebras in K are simple. 
Since K is congruence permutable,  all finite algebras in K are direct products of 
simple algebras. Let  (~i ;  a~, b~, c~, ~) ,  i e I be all sequences where ~ e K is simple, 
a,, b~, c~, d~ eBb, and c~ - d~(~9(a~, b~)). Note that q -d~(~9(ai, b~)) iff ei ther a~ = b~ 
and q = ~ or a ~  b~, and that III is finite. Let  ~ = r / ( ~  I i e I ) ,  a =(a~ [i e I), 
b = ( b i l i e I ) ,  c =(c~ [i~I), d =(4 [ i~ I ) .  We claim that c--d(~9(a,  b)). To see 
this, first note that each congruence of ~ is the kernel of a projection onto the 
product  of a subset of {~,li ~13. But then ~9(a, b) corresponds to the subset 
E(a ,b )={ i [a~=b~} .  On the other  hand, a~=b~ implies q = d ~  so E(a,b)~_ 
E(c, d); hence c - d ( 6 ) ( a ,  b)). Next we claim that ~ and a, b, c, d satisfy (F). For 
this, let ~ e K ,  a' ,  b', c', d ' e  C, and c ' - -d ' (6)(a ' ,  b')). Without loss of generality 
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we may assume that ~ is finitely generated. Hence f~ ~/7(CSj I J e J) where  each 
~i is simple. For ] , k ~ J  define j ~ k  iff a i = a ~ ,  b~=bE, c~=c~, d~=d~.  Let  
C ' = { e ~ C l e j = e k  if j~k};  then ~' is a subalgebra of ~. In fact ~ ' ~  
H ( ~  }j~J') for some J'~_J. But it is also clear that ~ '=-H(~ i l i~ I ' )  for some 
I'c_ L Hence there is a homomorphism ~ : ~ - - ~  such that ~ ( a ) =  a', q~(b)= b', 
~(c) = c', ~(d) = d'. Thus, as in the proof of 3.4, K has UCS. 

3.8. EXAMPLE.  Varieties generated by finitely many finite simple Kirkrnan 
algebras (see [19]). In [19] the third author introduced the concept of  a near- 
Boolean algebra (that is, an algebra of type (2, 3, l, 0, 0) satisfying all 2-variable 
identities true in Boolean algebras). Thus the variety of all near-Boolean algebras 
is congruence permutable and congruence distributive. Among the near-Boolean 
algebras are the simple Kirkman algebras; for each Steiner triple system of order 

n->7 there is a simple Kirkman algebra of order 2 n + 2 .  Moreover,  each sub- 
algebra of a simple Kirkman algebra is again a simple Kirkman algebra or is a 
Boolean algebra. Hence by 3.7 a variety generated by finitely many finite simple 

Kirkman algebras has a UCS. 

4. Congruence extension property 

We start with a definition (see [10]) and a result of A. Day. 

4.1. DEFINITION.  Let K be a class of algebras of the same type. K is said to 
have the Congruence Extension Property (CEP, for short) iff for any algebra ~ ~ K, 
subalgebra ~ of N, and congruence relation O of ~ ,  there exists a congruence 
relation �9 of 91 whose restriction to ~3 is 19. In other  words, every congruence 

relation of ~ can be extended to N. 

4.3. EXAMPLES.  The class of distributive lattices has CEP (see [8]). The 
K has CEP iff for any ~ K  and a , b , c , d ~ A ,  c-'-d(19(a,b)) in ~ if[ c=- 
d(19(a, b)) holds in the subalgebra of ~ generated by a, b, c, and d. 

4.3. EXAMPLES.  The class of distributive lattices has CEP (see [8]). The 
class of distributive lattices with pseudocomplementat ion has CEP (see [10]). 

4.2 gives us guidance as to how to modify the definitions of w167 and 3 to 

accommodate CEP. 

4.4. DEFINITIONS.  A Restricted Congruence Scheme S is a Congruence 
Scheme (as in 2.2) with m = 5 ;  the relation S(a, b, c, d) is defined as in 2.3 with 
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the restriction that cl = a, c2 = b, c3 =c ,  c4 = d. URCS stands for Uniform Re- 
stricted Congruence Scheme. If in 3.1 the p~ and qi are 4-ary, then K is said to 
have REDPC.  If 3.4 is required to hold for any subalgebra of 92, we say that K 
has FDPC for Subdirect Products. Finally, (RF) stands for (F) with the additional 
hypothesis that 9 / i s  generated by a, b, c, and d. 

4.5. T H E O R E M .  Let K be an equational class of algebras. Then the following 
conditions are equivalent: 

(i) K has a UCS and K has CEP; 
(ii) K has a URCS; 

(iii) K has REDPC;  
(iv) K has FDPC for Subdirect Products; 
(v) K satisfies (RF). 

Proof. The proof of this result is very similar to the proofs presented in w 
one  only has to observe that if 23 is a subalgebra of 9 /and  a, b, c, d ~ B, then CEP 
implies that c--d(O(a,  b)) in 9 /exac t ly  if c----d(q)(a, b)) in 23. 

4.6. EXAMPLE.  A simple Kirkman algebra contains an 8-element Boolean 
algebra which, of cOurse, is not simple. Thus a variety generated by finitely many 
finite s imple Kirkman algebras has a UCS but not CEP and so has no URCS. 

5. Ideal congruences and filtrality 

In the previous section we have seen how principal congruences in a (sub) 
direct product  are determined by the factors. Now we extend this to arbitrary 
congruences. The  underlying idea is due to R. Magari [14]. 

5.1. DEFINITIONS.  Let  9.1 = 1-I(9/il j ~ J) and let I be an ideal of the join- 
semilattice H(Comp 9/i[J ~ J), where Comp 9/j is the join-semilattice of compact 
congruence relations of 9/j. We define a congruence relation Or on 9 /by  the rule 

a - b ( O r )  iit there is a 0 = ( 1 9  i I j ~ J ) ~ I  satisfying ai--bj(6) j) for all j ~ J ,  

where a = (aj I J 6 J) and b = (b i I J ~ J). 
K is said to have Ideal Congruences for Direct Products iff for  all 9/~ K and for 

all direct product  representations of 92, all congruences of 9 / a r e  of the form Or. K 
is said to have Ideal Congruences for Subdirect Products iff the same condition 
holds for all subdirect representations. 

This definition is slightly different from, but  equivalent to, that of R. Magari 
[14]. 
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5.2. T H E O R E M .  A n  equational class K has a Uniform Congruence Scheme 
iff K has Ideal Congruences for Direct Products. 

Proof. Let  K have Ideal  Congruences  for  Direc t  Products  and  let  91= 
H ( 9 1 i l j ~ J ) ,  a = ( a i [ j ~ J )  . . . .  , d = ( d i . [ j ~ J ) ~ A .  T h e n  19(a ,b)=19r  fo r  some 
ideal I of H ( C o m p  91j [ i ~ Jr). Thus  there  is a 19 = (19i ] J ~ J)  ~ I such tha t  a~ 
bi(19j), for  all j ~ J and so 19(a~, bj) --< 19i- We  conclude that  q --- di(19(a ~, bj)), for  all 
j ~ J ,  implies tha t  ci-dj (19 j) and so c - d ( 1 9 i ) ,  that  is c=-d(19(a, b)). Thus  K has 
Fac tor  D e t e r m i n e d  Principal Congruences  on  Direc t  Products ,  hence  by T h e o r e m  
3.5, K has a Universal  Congruence  Scheme.  

Conversely ,  let  K have a Universal  Congruence  Scheme or,  equivalent ly  by 
3.5, Factor  D e t e r m i n e d  Principal Congruences  on  Direc t  Products .  Le t  91= 
H(91 i [ j ~ J)  ~ K and a = (a i [ j ~ J), b = (b i [ j ~ J) ~ A. T h e n  19(a, b) = 19~, where  
I = (19] and t9 = (O(ai,  b i) [ j ~ J). Now let q~ = (q~i [ J ~ J )  ~ H ( C o m p  91j [ j ~ J),  let 
I = (q~], and take the e lements  ao = (aoj [ j ~ J )  and al  = (all  [ j ~ J)  ~ A. W e  wish to 
show that  Or v 19(ao, al)  = ~gr, where  I '  = ( ( r  O(aoi, a~j)t j ~ J)].  Clearly, 
19rv@(ao, aO<--19r so let bo~b~(19r). We form 91'=91/19t and for  x ~ A  let x'  
deno te  the image of  x in 91'. T h e n  91/19~---=-II(91i/q~ i [ j ~ J ) .  It  is obvious  that  
19r/19~ = O(a~,  a~). Thus  b~--b'~(19(a~, a'~)) and so there  exists a Congruence  
Scheme S ( a s  given in 2.2 and 2.3) satisfying S(a~, a'~, b~, b'~) in 91'; tha t  is, there  
exist c~ . . . . .  c ~ A '  satisfying the equat ions  in 2.3. Thus  in 91 we have  

bo=-po(afco~, Cl . . . . .  c.,)(19,), 

p~(ar~ o, c~ . . . . .  c.,)-pda~_~(~, Cl . . . . .  c~)(19(ao, ax)), 

pi(al-f(1), cl . . . . .  cm) ~ p~+l(oq(i+l), Cl . . . .  , cm)(19x), 

pn_l(ax_f(._a), e l ,  . . . , C m )  ~ b~(19,). 

for  O--<i--<n-2,  

for  O~i - - - - -n -2 ,  

Thus ,  b o -  bl(Or v O(ao,  al)),  proving the equality.  
This implies tha t  every  compact  congruence  relat ion is of  the  fo rm Or with a 

principal ideal L Since every  congruence  re la t ion is a set  un ion  of  compac t  ones it 
follows readily tha t  every  congruence  re la t ion is of  the fo rm  19t. This comple tes  
the p roof  of  the theorem.  

The  analogue of  5.2 for  subdirect  products  is as follows. 

5.3. D E F I N I T I O N .  An  equat iona l  class K has Ideal Congruences for Sub- 
direct Products iff wheneve r  91 ~ K has a subdirect  r epresen ta t ion  as a subalgebra  
of  a direct  p roduc t  H(91il] e J) ,  then  every  congruence  re la t ion of  91 is the 

restr ict ion of  a suitable Or of  II(91il ] ~ J). 
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5.4. T H E O R E M .  A n  equational class K has a Uniform Restricted Congruence 
Scheme if[ K has Ideal Congruences for Subdirect Products. 

Proof. If K has URCS, then K has CEP by 4.5, and K has Ideal Congruences 
for Direct Products by 5.2, thus K has Ideal Congruences for Subdirect Products. 
Conversely, suppose K has Ideal Congruences for Subdirect Products. Let  
(%, a t, b~, q, d j ) , j ~J ,  be all algebras in K, up to isomorphism, satisfying q-= 

di(O(ai, bj)) and Aj=[aj ,  bj, q, dj]. Then we form H(92 i [ j ~ J ) ,  a =  
(c~. [ j ~ J )  . . . . .  d = ( ~  [ ] e J )  and A =[a ,  b, c ,d] ,  92 a subalgebra of H(92j [ l ~ J ) .  
Thus there exists an ideal I such that O(a, b) is the restriction of O! to 92. Since 
a - b ( O t ) ,  there is a (O r [ j ~ J } ~ I  satisfying ai=--bi(Oi) for all j ~J .  Therefore,  
c i ----- di(O i) for all j ~ J and, by the definition of O~, c -- d(Or). Thus c =- d(O(a,  b)). 
We have verified that 92 and a, b, c, d satisfy (RF) and so by 4.5, K has a URCS, 
completing the proof of the theorem. 

5.2 is especially interesting in special classes: 

5.5. DEFINITION.  Let  K be an- equational class. K is semisimple iff all 
subdirectly irreducible algebras in K are simple. Let  K be a semisimple equational 
class, 92~K, and let 92 be represented as a subdirect product  of the simple 

algebras 92i, J E J, A c_ H ( A  i [ j E J). For  a = (a/[ j ~ J), b = (b i [ j ~ J)  ~ A, set 
E(a,  b)={ j  [ ai =bi}~J ,  the equalizer of a and b. For a filter F over  I (that is, a 
dual ideal of the lattice of all subsets of I) we define a relation OF on A : a  =- 
b(Ov) iff E(a,  b) ~ F, and call OF a filtral congruence on 92. We call 92 filtral iff 
every congruence on 92 is filtral (for any subdirect decomposition into subdirecfly 
irreducible algebras). A semisimple equational class K is filtral iff all 9 /e  K are 
filtral. 

5.6. C O R O L L A R Y .  Let K be a semisimple equational class. Then K is filtral 
if[ K has Ideal Congruences for Subdirect Products. 

Proof. This is obvious; the ideal I we get and the filter F are connected by 
X ~ I  iff J - X ~ F .  

The  concept of a filtral class is due to R. Magari [14]; see also G. M. Bergrnan 

[3]. 

5.7. T H E O R E M .  Let K be a semisimple equational class. Then K is filtral iff 
K has a Uniform Restricted Mal 'cev Scheme. 

Proof. By 5.6 and 5.4. 
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6. Congruence distributive equational classes with CEP 

The connection between CEP and URCS given in 4.5 is even closer for 
varieties with distributive congruence lattices. Our first result is equivalent to a 
weaker form of Theorem 1 in G. Mazzanti [17]: 

6.1. T H E O R E M .  Let K be a congruence-distributive equational class gener- 
ated by a finite algebra ~.  Then K has the Congruence Extension Property iff K has 
a Universal Restricted Congruence Scheme. 

Proof. Let  us assume that K has CEP. Construct 92 and a, b, c, d as in the 
proof "FDPC on Direct Products implies (F)" in w except that the 92~ (i ~ I) are 
generated by ai, b, c,  di. Since K is locally finite, I can be chosen finite. But 
congruence distributivity implies that every congruence relation on H(92~ I i ~ I) is 
of the form H(O~ [ i ~ I), where O~ is a congruence relation of 92~ (this remark is 

attributed to A. Hales in [6]). This implies immediately that O(a, b) is Factor 
Determined on this direct product, hence 92 and a, b, c, d satisfy (RF). Thus K has 
a URCS by 4.5. The converse is contained in 4.5. 

Variou s stronger forms of 6.1 are easily found. For instance, it is not necessary 
to assume that K is generated by a finite algebra; it is sufficient that FK(4) be 
finite. However,  the hypothesis of congruence distributivity cannot be dropped.  

In contrast to this, R. N. McKenzie [18] has recently shown that the only 
equational classes of lattices which have definable principal congruences are the 
classes of distributive lattices and one element lattices (a class of algebras K has 
definable principal congruences if there is a first order  formula ~(x,  y, u, v) with 
free variables x, y, u, v such that for any 92~K and any a, b , c , d~92 ,  c 
d(O(a, b)) iff ~ (a ,  b, c, d) holds in 92). Not coincidentally, these are the only 
equational classes of lattices with CEP. Hence CEP seems to play a crucial role. 
Note also that the equational class generated by the two element  group has CEP, 
does not have distributive congruences and does not have UCS. Thus it is the 
combination of CEP and distributive congruences which give us positive results. 
In a recent paper, B. A. Davey [4] has prov.ed the following important  result: 

T H E O R E M  6.2 (B. A. Davey [4]). Let K be a congruence distributive 
equational class and let Si(K) be the class of subdirectly irreducible algebras in K. 
Assume that Si(K) is axiomatic (i.e., definable by a set of first order sentences). Then 
K has CEP if/Si(K) has CEP. 

The crucial step in the proof of this theorem is J6nsson's Lemma,  the key to 
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all structure theorems about congruence distributive varieties: 

T H E O R E M  6.3 (B. J6nsson [12]). Let 91c_ II{9111i ~ I} and assume that the 
congruence lattice of 91 is distributive. Let r be a congruence on 91 such that 91/0 is 
subdirectly irreducible. Then there is an ultrafilter F on I such that Or: restricted to 91 
is contained in (9. 

T H E O R E M  6.4. Let K be a congruence distributive equational class such that 
Si(K) is axiomatic, has CEP and has definable principal congruences. Then K has 
a URCS. 

Proof. By 4.5 we need only show that K satisfies (RF). Note that by 6.2, K has 
CEP. Consider all sequences (91i, al, b~, q, ~ )  for i ~ I  where 911 ~ Si(K) is gener- 
ated by {a,,b~,c~,~} and ci--~(O(a~,bi)) .  Let  91 be the subalgebra of 91'= 
rl{91,[i ~ 1} generated by the corresponding a, b, c, d. First we wish to show that 
c - d ( ( 9 ( a ,  b)). By CEP it is sufficient to show that c- -d( (9(a ,  b)) in 91'. Now 
19( a, b) =/~ {(9 i [ j ~ J} where each 91'/0 i is subdirectly irreducible. Thus we need 
only show that c--'-d(O i) for each j ~J .  By 6.3 there is an ultrafilter F on I such 
that Or:--<O i. Hence (gFvO(a,b)<--O r But since 91'/(9r: is an ultraproduct of 
members of Si(K), and S~(K) is axiomatic, we conclude that 91'/19F~Si(K). 
Moreover,  Si(K) has definable principle congruences and F is an ultrafilter, hence 
c ~d((gF~/(9(a, b)); thus c - d ( 6 )  i) as claimed. Next let a' ,  b', c', d '~  B, ~ 6 K  with 
c ' - -d ' ( (9 (a ' ,  b'). By CEP we may assume that ~ is generated by {a', b', c', d'}. 
Now a modification of the argument in the proof of 3.7 shows that the mapping 
a ~ a', b --~ b', c ~ c', d --~ d' induces a homomorphism from 91 onto ~ .  Thus K 

satisfies (RF) and so has a u R c s .  

C O R O L L A R Y  6.5. Let K be a congruence distributive equational class and 
Sire(K) the class of simple algebras in K; let K' be the equational class generated by 
Sire(K). Then K' is filtrat iff S im(K)  is a universal class (that is, definable by a set 
of universally quantified first order sentences). 

Proof. In [3] G. Bergman shows that Sire(K) is a universal class for  any fi_Itral 
variety K. Conversely if Sire(K) is universal, then it obviously has CEP; 
moreover,  principal congruences in Sire(K) are easily seen to be definable. 

E X A M P L E  6.6. UBP-s. In [7] the first author  introduced the class of UBP-s: 
weakly associative lattices with the unique bound property (that is, for  all a, b in 
the UBP 91, a v b is the only common upper bound of a and b and dually for 
a A b ) .  For example, let ~Rn be the n element  lattice with n - 2  atoms. In its 
partial ordering replace 0 <  1 with 1 < 0 .  Then  the algebra so obtained,  ~]92~*, is a 
UBP. It was proved in [7] that each UBP  is simple and that the class of UBP-s is 
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characterized as those weakly associative lattices that contain no three element 
chains. Thus 6.5 tells us that the equational class generated by all UBP-s is filtral. 

Let  us now return to Example 3.8. Here  we have congruence distributive 
equational classes each having a UCS but without CEP. We now give a generali- 
zation of 3.7. To see that it is indeed a generalization, note that in [18] R. N. 
McKenzie proves that if K is a congruence permutable equational class generated 
by its finite subdirectly irreducible algebras which are finite in number  and all 
simple, then K has definable principal congruences. 

T H E O R E M  6.9. I f  K is a congruence distributive equational class and has 
definable principal congruences, then K has a UCS. 

Proof. We will show that K satisfies (F). Construct 92 and a, b, c, d as in the 
proof that FDPC on direct products implies (F). Now verify that c =--d(O(a, b)) as 
in the proof of 6.5 and then proceed as in the proof that FDPC on direct products 

implies (F). 

7. Comments and questions 

1. The concepts of ideal congruences and filtral congruences have been 
developed extensively by R. Magari and his school; the most accessible reference 
is [14]. The concept of an ideal congruence is a natural generalization of that of a 
filtral congruence; the latter is a formalization of some ideas developed by A. 
Foster, often in collaboration with A. Pixley (see [8] for an extensive bibliography 

of Foster 's papers). 
2. Magari defines ideal congruences and filtral congruences for arbitrary 

classes rather than just for varieties. This means that condition (F) cannot  be 
formulated, and condition (F) is the linchpin connecting ideal congruences and 
factor determined congruences on the one hand with uniform congruence schemes 

on the other. 
3. In [15] Magari gives a characterization of when a class K has ideal 

congruences; this characterization involves the concept of "good n-families" of 
polynomials. Essentially, a UCS is a good 1-family of polynomials. 

4. Two other  references to definable principal congruences are [1] and [2]. In 
fact, ( i i ) ~  (i) of 4.5 is proved in [1], and it is implicit in [2]. Also in [2] it was 
proved that a locally finite equational class with CEP has definable principal 
congruences. Thus 6.8 is a generalization of 6.1 (by way of 6.2). 

5. Is every fi_ltral variety congruence distributive? All examples in this paper 
of varieties with a UCS are also congruence distributive. It is easily seen that if 
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is filtral and ~;~(3) is firtite, then the congruence lattice of ~x(3)  is boolean and so 
is congruence distributive. (Added in proof: An affirmative answer was given by 

P. K~hler and D. Pigozzi.) 
6. Finally, the authors thank Joel Berman and Walter Taylor for their helpful 

comments. 
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