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Z e t a  F u n c t i o n s  f o r  G e r m s  o f  M e r o m o r p h i c  F u n c t i o n s ,  

a n d  N e w t o n  D i a g r a m s *  

S. M. Guse in -Zade ,  I. Luengo,  and  A. Mel le-Hernf indez  UDC 517.9 

w G e r m s  of  M e r o m o r p h i c  Func t ions  

A polynomial f of degree d in n + 1 complex variables determines a meromorphic function f on the 
projective space CP n+l. If one wants to understand the behavior of f at infinity, it is natural to consider 
germs of the meromorphic function f at the points from the hyperplane at infinity CP~  C C]P n+l. In local 
analytic coordinates Zo, zl, . . . ,  z~ centered at a point p E CP~ such that the hyperplane at infinity CP~ 
is given by the equation {z0 -- 0}, the germ of the function f at p has the form f = P ( z 0 , . . . ,  z,~)/z d. 
Let us consider germs of meromorphic functions of general form. 

Def in i t ion  1. A germ of a meromorphic function on (C n+l , 0) is a fraction f = P /Q,  where P and Q 
are germs of holomorphic functions (C '*+1 , 0) --+ (C, 0). Two germs of meromorphic functions f = P/Q 
and f '  = P~/Q' are said to be equal if there exists a germ of a holomorphic function U: (C '*+1 , 0) -4 C 
such that U(0) ~ 0, P~ = U - P ,  and Q'-= U . Q .  

R e m a r k s .  1. For convenience, we do not consider here functions of the type 1/Q(z) or P(z) /1 .  
2. According to the definition, we have x / y  • x2/xy, but x / y  = x exp(x) /y  exp (x). 

Recently, Arnold [2] classified simple germs of meromorphic functions for certain equivalence relations. 
In what follows, we will methodically use resolutions of germs of meromorphic functions. 

Def in i t ion  2. A resolution of the germ f is a modification of the space (C '*+1, 0) (i.e., a proper 
analytic mapping ~r: 5~'--~ ~" of a smooth analytic manifold ~ onto a neighborhood ~ of the origin in 
C ~+1 that is an isomorphism outside a proper analytic subspace in agz) such that the total transform 
~ - I ( H )  of the hypersurface H = {P=O} U {Q =0} is a normal crossing divisor at each point of the 
manifold ~'.  

The fact that ~r-l(H) is a normal crossing divisor means that, in a neighborhood of any point of it, 

there exists a local system of coordinates Y0, Y l , . . . ,  Yn such that the liftings b ___ p o 7r and Q = Q o ~r of 
. ~ l o ~  l l  I,~ the functions P and Q to the space ~r'of the resolution are equal to uyko~ ~ . . . . .y~- and ~Y0 Y~ "--.'Y~ , 

respectively, where u(0) r 0, v(0) r 0, and k~ and li are nonnegative. 
Let B~ be the closed ball of radius E with center at the origin in C ~+1, where e is sufficiently small, 

so that representatives of the functions P and Q are defined in B~ and, for any positive e' < e, the 
sphere S~, = OB~, intersects the analytic spaces { P = 0 } ,  {Q=0} ,  and {P=Q-=O} transversally (from 
the standpoint of stratification). We choose a sufficiently small 5 > 0 and consider the ball B~ C C 2 of 
radius 5 centered at the origin. 

Def in i t ion  3. By the O-Milnor fiber of the germ f we mean the set 

. /s  = {z �9 B~ : (P(z), Q(z)) �9 B~ C C 2, f (z)  = P(z) /Q(z)  = c} 

for nonzero c �9 C with sufficiently small modulus IIc]l. In the same way, by the oo-Milnor fiber of the 
germ f we mean the set 
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J4  F = {z �9 B~ : (P(z), Q(z)) e B~ C C 2, f(z)  = P(z)/Q(z) = c} 

for c �9 C with sufficiently large modulus [[cl]. 

L e m m a  1. The notion of O- (oo-)Milnor fiber is well defined, i.e., for a suJ~ciently small Ilcl], 0 < 
[]c[[ << 5 << E (for sufficiently large []c[I , I[c[] -1 < 5 << e), the differentiable type of the manifold d,f~ 
(..~o) does not depend on ~, 5, and c. 

P r o o f .  Let Ir : 5~'-+ ~" be a resolution of the germ f tha t  is an isomorphism outside the hypersurface 
H =  { P = 0 } u { Q = 0 } .  Let r : C  n+l - + R  be the function r(z) = I[z[[ 2 and let 7== r o l r :  ~ - + R  be 
the lifting of the function r to the space ~ of the resolution. For a sufficiently small e > 0, the 
hypersurface Se = {~=~2} (i.e., the preimage of the sphere S~ C E ~+1) is transversal to all s t ra ta  of 
the total  t ransform ~r- l (H)  of the hypersurface H.  At each point  of ~r - l (H) ,  in a local coordinate  
system, one has P o  ~" = uYo~. . . .  �9 yk~ and Q o ~r = Vylo~ �9 y~ with u(0) r 0 and v(0) r 0. Thus,  
f o 7r = w y ~ ~  �9 y ~  with w(0) r 0. The real hypersurface S~ is transversal to all coordinate subspaces 
(of different dimensions).  We can readily see tha t  this implies the transversality of the hypersurface S~ to 
the (complex) hypersurfaces (wy '~~  �9 y '~  = c} for a sufficiently small llcll r 0 and for a sufficiently 
large Ilcll. Now the proof  follows from the s tandard reasoning. 

R e m a r k s .  1. The  definition means that  . / / t]  or ./s is equal to 

{z �9 Be:  (P(z), Q(z)) �9 B6 C C 2, P(z) = cQ(z), P(z) r O} 

and thus the Milnor fibers of the functions P/Q and RP/ (RQ)  with R(0) = 0 differ in general. 
2. For f = P / Q ,  let f - 1  = Q / p .  We can readily see tha t  j / g / 0  __ ,/.g~o and .//g~o __ ,~,/0. Jus t  the  

same properties hold for the monodromy transformations and for their zeta functions considered below. 
3. I t  is possible (and sometimes more convenient) to define the Milnor fibers as follows: 

= {z  �9 B e :  IlQ(z)ll < 5, P(z) = cQ(z) # 0} ,  

= {z �9 B e :  [[P(z)[[ <_ 5, P(z) = cQ(z) # 0} ,  

0 < Ilcll << 5 << 

llci1-1 << 5 << e .  

The  meromorphic  function f determines a mapping  from Be \ {P  = Q = 0} to the projective line C P  1 
(z ~ (P(z) : Q(z))). We denote  this mapping by f again. By Lemma  1, this mapp ing  is a locally trivial 
fibration over punc tu red  neighborhoods of the points 0 --- (0 : 1) and co = (1 : 0) of the projective 
line CP 1 . 

D e f i n i t i o n  4. By the O-monodromy transformation h~ I (co-monodromy transformation h~ ~ ) of the 
germ f we mean  the monodromy  transformation of the fibration f over the loop c- exp (2 t i t ) ,  t E [0, 1], 
with a sufficiently small (large) IIcll r 0. 

By the 0- or oo-monodromy operator  we mean the action of the corresponding monodromy transfor- 
mat ion in a homology group of the Milnor fiber. We want to apply the results for meromorphic  functions 
to calculate the zeta function of a polynomial  at infinity. Therefore, we consider the zeta functions ~ ( t )  
and ~ (t) of the corresponding monodromy transformations:  

~; = H {det[id-th~'[iI.(.~r ;c) ]}(-Oq 
q>0 

coincides with that  used in [3, 5] and differs on the sign in the exponent  (- = 0 or co). This  definition 
from tha t  used in [1]. 

w R e s o l u t i o n  of  S i n g u l a r i t i e s  a n d  t h e  A ' C a m p o  
F o r m u l a  for  G e r m s  of  M e r o m o r p h i c  F u n c t i o n s  

Let f = P/Q be a germ of a meromorphic  function on (C ~+1 , 0) and let ~: ~ - +  ~" be a resolution of 
the germ f .  The  preimage ~ -- ~ - l ( 0 )  of the origin of C T M  is a normal  crossing divisor. Let Sk,l be the 
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set of points of the divisor ~ in whose neighborhoods, in some local coordinates, the liftings P o 7r and 
Q o rr of the functions P and Q have the form Uyko and vyZo, respectively (u(0) r 0, v(0) r 0). A slight 
modification of the arguments of A'Campo [1] permits one to obtain the following version of his formula 
for the zeta function of the monodromy of a meromorphic function. 

T h e o r e m  1. Let a resolution 7r : 9s o~ be an isomorphism outside the hypersurface H = {P = 0} 12 
{Q = 0 } .  In this case, 

(~(t) = 1- I (1- - tk - ' )x (Sk" ) ,  ~?( t )  = I - [ (1-- t ' - -k)X(Sk") .  
k>l k<l  

R e m a r k .  A resolution r of the germ f '  = R P / ( R Q )  is also a resolution of the germ f = P / Q .  
Moreover, the multiplicities of any component C of the exceptional divisor in the zero divisors of the 
liftings ( R P )  o ~r and (RQ)  o 7r of the germs R P  and R Q  are obtained from those for the germs P and Q 
by adding the same integer, namely, the multiplicity rn = re(C) of the component C in the zero divisor 
of the lifting of the germ R.  Nevertheless, the meromorphic functions f and f '  can have different zeta 
functions. The formulas from the previous theorem can give different results for j' and ] '  because if an 
open part  of the component  C belongs to S~, t ( f ) ,  then, generally speaking, the part  of this component 
that  belongs to Sk+rn,Z+,n(f') can be strictly smaller. 

w Z e t a  F u n c t i o n s  o f  M e r o m o r p h i c  F u n c t i o n s  in T e r m s  o f  P a r t i a l  R e s o l u t i o n s  

Let f = P / Q  be a germ of a meromorphic function on (C n+l , 0) and let 7r: (oT, ~)  -+ (C n+l, 0) 
be an arbitrary modification of the space (C n+l, 0) that  is an isomorphism outside the hypersurface 
H = {P = 0} U {Q = 0} (i.e., ~r need not be a resolution). Let qo -- f o 7r be the lifting of the germ f to 
the space o~ of the modification, i.e., the meromorphic function P o  r / ( Q  oTr). For a point x E r - t ( H ) ,  
let (~ and ~ ,~ ( t )  be the zeta functions of the 0- and co-monodromies of the germ of the function ~o 
at the point x .  Let Y---- {E} be a prestratification of the space 9 -- 7r-1(0) ( that  is, a partitioning into 
semi-analytic subspaces without any regularity conditions) such that ,  for each s t ra tum E of 5 ~, the zeta 
functions ~~ ) and ~ ,= ( t )  do not depend on x for x E 2 .  We denote these zeta functions by ~~ 
and r  respectively. The  argqlments used in [5] yield the following assertion. 

T h e o r e m  2. For �9 = 0 or ~ ,  

el(t) = 1"I [r 
~ E J  

w Z e t a  F u n c t i o n s  in T e r m s  o f  N e w t o n  D i a g r a m s  

By the Newton diagram F = F(R) of a germ R(x )  = Y~ akx k of a holomorphic function (C n+l , 0) -+ 
(C, 0) (k = (ko, kl ,  k . )  x ~ _ko~k, k. �9 - - ,  , = -~o "~1 " - - - . x ~  ) we mean the union of the compact faces of the 
polytope F+ = r+(R) = c o n v e x  hull of the set [.Jk: akr k + R~ +1) C R~. +1 . 

Let f = P / Q  be a germ of a meromorphic function on (C "+1 , 0) and let 1`1 -- r ( P )  and F2 = 1`(q) 
be the Newton diagrams of the germs P and Q.  The pair A = (F1, F2) of Newton diagrams F1 and 
1`2 is called the Newton pair of the germ f .  The germ of the meromorphic function f is said to be 
nondegenerate with respect to its Newton pair A = (I'1, F2) if the pair of germs (P,  Q) is nondegenerate 
with respect to the pair A = (F1, I'2) in the sense of the definition in [8] (which is an adaptation of the 
definition by Khovanskii [6] for germs of complete intersections). 

Let us define the zeta functions ~~ and ~ ( t )  for a Newton pair A = (1'1,1'2). Let 1 < I < n + 1 
and let J be a subset of the set {0, 1 , . . . ,  n} with the number of elements # J  equal to I. Let L j  
be the coordinate subspace, L r  = {k E IR ~+1 : ki = 0 for i ~ J } ,  and let F i , j  = 1 ' iNL.r  C L j .  
Let L~r be the space dual to L j  and let L~+  be the positive octant of L~r (the set of covectors that  
take positive values on L j > 0  = {k E L j  : ki > 0 for i E J } ) .  For a primitive integral covector 
a E (R'*+I)~_ (i.e., for an indivisible element of the dual integral lattice), set re(a, F) = minzEr(a,  x) and 
A(a ,  1') = {x E 1' : (a, x) ---- re(a, 1')}. We denote by m y  and A r  the corresponding objects for the 
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diagram F r  and a primitive integer covector a E L:r Let E-C be the set of primitive integral covectors 
a E L:r such that  d im(A(a ,  F1) + A(a,  F2)) = l - 1 (the Minkowski sum /k~ + A 2 of two polytopes s 
and A 2 is the polytope {x = xl +x2  : Xl E A1, x2 E A2}). There exist only finitely many such covectors. 
For a E E.c, we set A1 = A(a ,  F1), A2 = A(a,  F2), and 

l - - 1  

v, = Z v,-~(,~,  --., ~ , ,  ~ ,  -.-, a ~ , ) - .  
s = 0  s 1-- 1 - - s  

The definition of the (Minkowski) mixed volume V ( A 1 , . . . ,  Am) can be found, e.g., in [4] or [8]; the 
( l  - 1)-dimensional volume in a rational (l - 1)-dimensional affine subspace of L-C has to be normalized 
so tha t  the volume of the unit cube spanned by any integral basis of the corresponding linear subspace is 
equal to one. Recall that  Vm( A , . . . ,  A ) is the ordinary m-dimensional volume of the polytope A.  We 

must assume that  Vo(nothing) = 1 (this is necessary to define V~ for l = 1 ) .  We write 

C~(t) ---- H (I - t~(~'r')-m(a'r')) q-D'v" , 
aEE r : m(a,rx)>m(a,r2) 

C~(t) = H (1 - t~ca'r')-mc~'r*)) (l-D'v" , 
aEEj : m(a,r,)<m(a, r2) 

C(t) = 1-I G(t) ,  
-c :  # ( - c ) = ~  

where �9 = 0 or oo. 

n + l  

el(t) = 1 - I ( c ( t ) ) ( - " - ' ,  
/ = 1  

T h e o r e m  3. Let f = P /Q be a germ of a meromorphic function on (C ~+1, 0) that is nondegenerate 
with respect to its Newton pair A = (1`1,1`2). In this case, 

;~(t)  = r  ; ? ( t )  = r  

P r o o f .  Let E be a unimodular  simplicial subdivision of the octant  R~+01 tha t  corresponds to the pair 
(I'1,1'2) of Newton diagrams in the sense of [8, Sec. 4]. This subdivision is consistent with each of the 
Newton diagrams r l  and 1`2 in the sense of [9]. 

Let ~r: (2~', ~)  --+ (C "+1 , 0) be the toroidal modification corresponding to E (see, e.g., [3]). Since the 
pair (P ,  Q) is nondegenerate with respect to the pair (1`1, F2), it follows tha t  7r is a resolution of the 
germ f = P/Q [8]. We have Sk,z = Sk(P)ASI(Q) .  The description of the sets Sk(P) and SI(Q) can be 
found in [9, Sec. 7]. Each of these sets consists of open parts of certain complex tori of various dimensions. 

The tori of dimension n correspond to one-dimensional cones of E that  are positive (i.e., belong to 
(R"+I)~_). The multiplicity of the function P o 7r (respectively, Q o lr) along such a torus is equal to 
re(a, 1`1) (respectively, rn(a, F2)) for the primitive integer covector a that  spans the corresponding cone. 

The tori of dimension l - 1 correspond to positive simplicial (n + 2 - / ) -d imens iona l  cones of E that  
have a face which is a cone of the form 

= {a e (~"+1);o  : aj > 0 for j r J ,  a~ = 0 for j e J }  

with # ( J )  = l (these faces are elements of the subdivision E themselves). In turn, these cones correspond 
to one-dimensional cones of a parti t ion of the octane L-c>__0 that  is consistent with the Newton diagram 
Fi,-c = Fi N L-C C L-C. The multiplicities of the functions P o ~r and Q o 7r along such a torus are equal 
to m-c(a, F1,-c) and m-c(a, F2,-c), respectively, where a is the primitive integer coveetor spanning the 
corresponding one-dimensional cone. 

In order to apply Theorem 1, we have to calculate the Euler characteristic of the corresponding par t  of 
an (l - 1)-dimensional torns T ,  namely, of the complement to the intersection with the strict t ransform 
of the hypersurface H = {P = 0} t0 {Q = 0}. Let a (B,  respectively) be the intersection of the torus T 
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with the strict t ransform of the hypersurface {P = 0} ({Q = 0}, respectively). Let Ai := zl(a, r s  
follows from the results of Khovanskii [7] that  the Euler characteristic of A (of B) is equal to 

(-1)t(/- I)!V~_:(A:, ..., A~) (to ( - : ) ' ( t  - : ) ! v ~ _ : ( ~ ,  . . . ,  n ~ ) ) ,  

and the Euler characteristic of the hypersurface A N B is equal to 

( - : ) ' - : ( l  - :)! [v ,_ , ( ,~ : ,  . . . ,  ~ ,  ~ )  + V,_l ( ,~: ,  . . . ,  : ~ ,  z ~ ,  :~) + . .  + v , _ : ( A : ,  :~, . . . ,  :2.)]. 
,22 $3 ,_~ 

Thus,  the Euler characteristic of the complement  of A LJ B in the torus T is equal to 

x ( T )  - x ( A )  - x ( B )  + x ( A  A B)  

= ( - 1 ) ' - I ( l -  1)! [ V t - l ( ~ l , . . . ,  A~) + V I - I ( A I , . . . ,  A~, As) + . . .  + V t - I ( A 2 , . . . ,  A2)] ,  

l--'l z-2 z::  

which proves the  assertion. [] 

It 

w A V a r c h e n k o - T y p e  F o r m u l a  for  f --  P/Z~o 
As we have ment ioned at the beginning of the paper, in the s tudy of the behavior of polynomials at 

infinity, the germs of meromorphic  functions of the form P(zo,  z : , . . . ,  zn)/zdo are of interest. In this case, 
the formulas for the zeta functions (~  and (~~ are considerably reduced. Let us reformulate the 
definition of these zeta functions for the case in which the Newton diagram F2 consists of a single point  
(d, 0, . . . ,  0) (in terms of the Newton diagram r := F:  of the germ P) .  The  description is as follows. 

Let 1 < l < n + 1 and let J be a subset of the set { 1 , . . . ,  n} with the number  of elements # J  equal 
t o l - 1  L e t ' y ~ , . .  J �9 . ,  q,~(.r be all (l - 1)-dimensional faces of the diagram F.r let a j ,  t ,  . . . ,  a j j ( . r  

be the corresponding primitive covectors (normal to 71J, . .  J a ~ �9 -),j(.r let .r be the zeroth coordinate of 
the covector a.r and let rn, (~r = (a.q,s, k) for k e "y~. In this case, 

r  = 17[ 
l < s ~ j ( J )  : rn~, ( J ) > d . a ~ 1 6 2  

r = 1=[ 

r = I-[  
J C { 1 , . . . , n }  : # J = l - - i  

(1 - t'n~ (l-1)!~-~('v~) , 

(I - ta"~'.,-"'('/)) (~- :)w'-`(~'~) , 

n-i-1 

�9 I ] ( v (  r  r = t ) ) ( - x )  ' - '  

I=1  

(* = 0 or cx~), where Vt-:(V~) is the (ordinary) (l - 1)-dimensional volume of the face 7 ~  (in the 
hyperplane spanned by this face in L:u{0}).  

w Exomples 

E x a m p l e  1. Let f = (x 3 - x y ) / y .  The Milnor fiber J/g'? (respectively, ./~.~o) is equal to {(x, y) : 
It( x,  Y)[I < r ( x3 - x y ,  y) e B~, x 3 - x y  = cy} \ {(0, 0)}, where licit r 0 is sufficiently small (large). The  
equat ion x 3 - x y  = cy yields y = x3/ (x  + c), and thus the Milnor fiber J/t/~ is diffeomorphic to the disk 

in the x-plane with two deleted points, namely, - c  and the origin. In the same way, the Milnor fiber 
dr ~ is diffeomorphic to the punctured disk 9* .  We can readily see tha t  the action of the monodromy 
t ransformat ion in the homology groups is trivial in bo th  cases. Thus, 

C~(t) = (i - t) -~, (~(t) = i. 

97 



(0,1) 
(1,1) 

(3,0) 

F ig .  1 

Now let us calculate these zeta functions via the Newton diagrams (Fig. 1). 
We have ~1" (t) = 1 because each coordinate axis intersects only one Newton diagram. There is only 

one linear function (namely, a = kx + 2k , )  such tha t  d imACa,  F : )  = 1. The  one-dimensional volume 
V~(A(a,F:)) of the  face A(a , r : )  is equal to 1, and V~(A(a,I'~))= 0. We have m(a , r : )  = 3 and 
re(a, 1"2) ---- 2. Thus,  r176 = 1 -  t ,  (~~ = i ,  (~r, ,r:) (t) = ( 1 -  t ) - : ,  and ((~ = 1, which 
coincides with the above formulas. 

E x a m p l e  2. Let P = x y z + x  p + y q + z  ~ be a Tp,q,r singularity, 1 / p + l / q + l / r  < 1, and let 
Q = x d + yd + z d be a homogeneous polynomial  of degree d. Suppose tha t  p > q > r > d > 3 and tha t  
p ,  q, and r are pairwise coprime. Let us compute  the zeta functions of the germ f = P / Q  by using 
Theorems 2 and 3. 

(a) It  is clear tha t  the germ f is nondegenerate with respect to its Newton pair A = (F: ,  F2). Thus,  

(.~ (/:) -- ~,: (t) ---- (:I (C'2")-I(3 ( �9 = 0 o r  co). 

One has (~o = (~o = 1, and a unique covector which is necessary to compute  (~o is a = (1, 1, 1). In this 
case, re(a, F:)  = 3,  re(a, F2) = d,  A(a,  F:)  = {(1, 1, 1)}, and A(a ,  F2) is the simplex { k x + k ~ + k z  = d, 

kx > 0, ky > 0, kz k 0} whose two-dimensional volume is equal to d2/2. Thus,  ( ;o = (1 - td-3) ~2 . 

We have 

(i 0 = (1 -- tP--d)(l -- tq--d)(1 -- if-d), 

(o = (I - F(q-~))(l - t'O'-d))(l - tq(p-d))(l -- t'-d)2d(1 -- tq-d) d. 

To compute  (s o , one has to  take into account bo th  the three covectors ( r q -  q -  r ,  r ,  q), (r,  pr  - p -  r ,  p) ,  
and (q, P, q P - P - q )  t ha t  correspond to the two-dimensional faces of the diagram F:  and the three covectors 
(1, r - 2, 1), (r - 2, 1, 1), and Ca - 2, 1, 1) tha t  correspond to the pairs of the form Cone-dimensional 
face of the d iagram F : ,  one-dimensional face of the d iagram F2). For instance, for a -- (1, r - 2, 1), the 
face A(a,  F:)  (the face ACa, F2)) is the segment between the points (0, 0, r) and (1, 1, 1) (between the 
points (d, 0, 0) and (0, 0, d) ,  respectively). Note the "absence of symmetry"  : the last three covectors are 
not  obtained from each other  by permut ing  the coordinates and the numbers  p ,  q, and r .  Thus,  

(:sO = (I - F(q-d))(l -- t~O'-d))(l -- tq@-d))(l -- t~-~)2d(l -- tq-d) d, 
(~ = (I -- tP-d)(l - tq-d)(l -- if_d). 

(b) To compute  the zeta functions of the germ f .with the help of Theorem 2, for a modification 
~: (~K, ~) --+ (C 3 , 0) we take blowing-up of the origin in C 3. Let %0 be the lifting f o r of the germ f to 
the space ~ .  The  exceptional divisor ~ of the modification is the complex projective plane CF 2 . Let H:  
a n d / / 2  be the strict  t ransforms of the hypersurfaces {P  = 0} and {Q = 0} and let D~ = ~NH~.  The  curve 
D:  consists of three transversal lines l : ,  12, and 13 and has three singular points  S:  = 12 N 13 -- (0, 0, 1), 
$2 = l:Nl3 = (0, 1 ,0 ) ,  and $3 = l:Nl2 = (1 ,0 ,  0). The curve D2 is smooth  and of degree d. It intersects 
D:  transversally at  3d different nonsingular points { P : , . . . ,  P3d}. 

One has the following natural  stratification of the exceptional divisor ~ :  
(i) the zero-dimensional s t ra ta  A ~ (i = 1 , 2 , 3 )  each of which consists of a single point  Si ; 

(ii) the zero-dimensional s t ra ta  -i=~ each of which consists of a single point  P~ ( i = 1, . . . ,  3d); 
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(iii) the one-dimensional strata _~=1 = l~ \ {D~ t2 lj U lk} (i = 1,2, 3) and =4 ~ = D2 \ D I  
(iv) the two-dimensional strata 22 = ~ \ (D1 t2 D2). 

We can readily see that ~~ 2- (t) = 1 and ~c~(t) = 1 - t d-3  and that, for each stratum -~ from -i=~ 
(1 < i < 34) or from -~=1 (1 < i < 4), one has ~_-" (t) = 1 (.  = 0 or oo). 

In what follows, we assume that the exceptional divisor ~ is locally given by the equation u = 0. 
At the point $1, the germ of the lifting ~o of the function f is of the form (u3xlyl -b u r -b X~luP + 
y ~ u q ) / ( u d x  d + udyal + ud ) .  This germ has the same Newton pair as the germ ( u 3 x l y l  + u r ) / u  d. Using 
Theorem 3, one has ~ = 1 and ~ = 1 - t  r - d  . At the point $2, the germ of the function ~ has the form 

(U3XlZl-~-z~ur+X~llUPAt-Uq)/(udxd-~Itd-~--zd~td ) . It has the same Newton pair as ( u 3 x l z l  + z ~ u  ~ + u a ) / u  a . By 
Theorem 3, ~ ( t ) =  1 and r176  1 - t q - a .  We can similarly see that ~ ( t ) =  1 and r176 1 - t  p - a .  

Combining these computations, we obtain the above result (without using a partial resolution). 
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