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Summary 

Let X be a positive random variable with the survival function _P 
and the density f .  Let X have the moments g = E ( X )  and g~=E(X ~) 

and put ~=]1-~2/2#21. Put  q(x)=f(x)/F'(x) and q,(x)--l~'(x)/Ic'P(u)du. 
/ 3  

It  is proved that  the following inequalities hold: J l~(x)-e-~/,i<= ~/(1-ze), 

for all x>0 ,  if q(x) is monotone and that  f~ ]l~(x)-e-=/"ldx~-2~[~' if ql(x) 

is monotone. It  is also shown that  Brown's inequality I F ( x ) - e - ~ / . l ~  / 
(1+ ~) which holds whenever ql(x) is increasing is not valid in general 
when ql is decreasing. 

1. Introduction 

A positive random variable X or its distribution is said to have 
decreasing (or increasing) mean residual life if 

R(x) = E (X-- x I X > x) 

exists and monotone decreasing (or increasing) for 0__<x<w(F)=sup {x[ 
F (x )< l} .  Here and in the following the term "decreasing" and "in- 
creasing" are used to mean "non-increasing ", and "non-decreasing ", 

respectively. If F(x )=l -F(x )  is the survival function of F, then the 
ratio 

ql(x)= f: p(u)du 
is defined for O<x<o~(F) and is equal to the reciprocal of R(z). If F 
has a pdf f(x), then the ratio 
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q (z ) -  f(x)___ 
F(x) 

is called the hazard rate. The distribution F is said to have increas- 
ing hazard rate (IHR) (or decreasing hazard rate (DHR)) if the ratio 
q(z) is increasing (or decreasing) in x. I t  is easy to show tha t  IHR 
(or DHR) implies the decreasing (or increasing) mean residual life (see 
Lemma 2 below). 

The class ~ /  of the  distributions having IHR or DHR includes the  
Polya type 2 distributions (IHR) [9] and the  scale mixtures of exponen- 
tial distributions (DHR) [2]. The implication of the  property of mono- 
tone hazard rate has been well invest igated (see e.g., [2], [3], [6], and 
[7]). In particular, it is known tha t  such distributions satisfy some 
moment  inequalities, and the  exponential distribution is characterized 
in the  class ~ /  as the one which satisfies the condition ,u~=k!,a ~, or 
more specifically, the condition ,uJ2,u~= 1, where/~ = E (X) and ~ =  E (Xg.  

As the exponential distribution is the  simplest and most important  
distribution in the class .24, it is natural  and interest ing to ask how 
close is a distribution F in the  class ~ /  to the exponential distribution 
when the  ratio g2/2g ~ is nearly equal to one. The purpose of the  pre- 
sent article is to give bounds on the  distance between a distribution 
in the  class J g  and the exponential distribution in term of r =11-~z /2 / I .  
Heyde and Leslie [4] showed tha t  if F is a scale mixture of the  ex- 
ponential distribution, then 

l[ ' (x)-e-~/~l<3.74~ , x > 0 .  

Hall [5] improved the r ight  hand side to 2.77~. Azlarov and Volodin 
[1] obtained a fur ther  improvement  ; They showed tha t  if F has a mono- 
tone hazard rate, then, 

( 1 ) I_P(x)- e-~l=< J ~ ,  x > 0 .  

Quite recentry,  Brown [4] obtained the  sharp bound 

( 2 )  sup ]~'(x)--e-~/~]~_ ~ =1- -  2/~ , 
I+~ ~ 

for a distribution F with a increasing mean residual life. 
In this article we shall give further results on this problem. In 

particular, the following inequalities will be proved for a distribution 
with monotone hazard rate or monotone mean residual life. 

( 3 ) sup IP(x)--e-~/~l~(1--~e)-', if q(z) is increasing 

( 4 )  I ~ ]P(z ) -e -~ /" ldx~2~ ,a ,  if qi(x) is monotone and also 
j o  



INEQUALITIES FOR A DISTRIBUTION WITH MONOTONE HAZARD RATE 197 

( 5 )  e-~_F(x)~_ql~e -~/~ , for all x > 0 ,  if q~(x)~q (<oo) .  

I t  will be shown, by an example, tha t  the inequality (2) does not  
valid in the  case of IHR. In fact, the  bound from above can not be 
less than s +  s~/6. 

2. Preliminary lemmas 

By the very definition of the  hazard rate q(x), the survival func- 

tion F(x) can be wri t ten as 

t 
I t  is easy, therefore, to verify tha t  _P(x) approaches to zero as quickly 
as an exponential function if q(x) is increasing and that  (o(F)=c~ if 
q(x) is decreasing. In particular, F(x) has moments  of all orders if 
q(x) is increasing. 

Now, suppose that  the distribution F has the moments  ,a=E (X) 
and g~=E (X~), k=l ,  2 , . . . ,  K (a necessary and a sufficient conditions 
for this is given in Barlow, Marshall and Proschan [2], Theorem 6.2), 
and let {S~(x)}, k=O, 1 , . . . ,  K, be the  sequence of decreasing functions 
defined by 

So(x)=F(x) and S~(x)=i:Sk_,(u)du 

=f: p(x+y ) (k-li! dy. 

Let S_l(x)=f(x) be the pdf of F if it exists. I t  is easy to see that  

(7)  S~(x)=pk/k!, and S'(x)=-S~_~(x), for k = 0 , 1 , 2 , . . . , K .  

Also the ratio S~(x)/S~(O) is a survival function of a distribution and 

q~(x) = S~_l(x)/S~(x)  

is its hazard rate. The following lemma, which is of some independent 
interest,  is essentially given in [2] (see Theorem 4.2 and Lemma 6.5). 

LEMMA 1. Suppose q~(x) is monotone increasing (or decreasing) for 
some j (0%j<K). Then q's are also increasing (or decreasing) both in 
x and in k. 

We can use the lemma to prove the  following well-known charac- 
terization theorem for the exponential distribution in the class of dis- 
tributions with monotone mean residual life. The proof is straight-  
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forward  and we omit the  details. For  more general forms of inequal- 
ities under  less restr ic t ive conditions on F,  see Marshall and Proschan 
[8], Theorems 4.1 and 4.2. 

LEMMA 2. I f  qo(X) is increasing (F is IHR), then 

( 8 ) f(O)=qo(O)~_l~-l<~qo(c~). 

I f  ql(x) is increasing (F has decreasing mean residual life), then 

2 >  ( 9 ) (k--l-- 1)~,~_- k,a~+l,a,~_~. 

In particular, we have 

(10) i>_ tt~ > /~3 . .>_ . . .>  #~ 
- -  2 1 ~  = 3 ! ~ 3  - -  = K ! ~ r  

All the inequality signs are reversed i f  qo(x) or q~(x) is decreasing. I f  
any one of the inequality signs becomes an equality, then the distribution 

F must be exponential : F(x)=e -~/". 

LEMMA 3. I f  the distribution F has decreasing mean residual life, 
then 

(11) S~(x)~Sk(O)e -~/" , k = l ,  2, . . .  , 

and 

(12) Sk(x) ~-/~S~_,(0)e -=/" - (gS~_ 1(0) - S~(0)), k = 2, 3, . - -  . 

I f  F has increasing mean residual life, then the inequality signs are 
reversed. 

PZOOF. Suppose tha t  q~(x) is increasing. Then we have for k ~ l  

R(x)  = ~S~_~(x ) -  S~(x) >= O . 

Solving the  differential equation gS~(x) +S~(x) = - R ( x ) ,  we obtain 

S~(x)=S'(O)e-X/"-t~-'e-~/" I: e~/'R(u)du " 

The inequali ty (11) is clear f rom this and R(x)~O. To prove (12), let  
k ~ 2 ,  and note  tha t  R'(x)=-t~S~_2(x)+S~_~(x)~_O for all x, which im- 
plies O~_R(x)~R(O)=zS~_~(O)-S~(O) for  all x. I t  follows tha t  

e~/,du 

-~/" R 0 . = u S , _ , ( 0 ) e  - ( ) 

A similar a rgument  can apply when  q(x) is decreasing. 
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The inequality (11) with k = l  was obtained by Marshall and Pros- 
chan [8], Theorem 4.6, under less restrictive condition that  F is new 
better  than used in expectation, which is equivalent to qdx)~qdO) for 
all x>=0. 

3. The main results 

In this section we shall prove some stability theorems of the 
characterizations of the exponential distribution stated in Lemma 2. 
The following theorem gives slightly bet ter  bounds than (1) when ~ is 
sufficiently small. 

THEOREM 1. 
~ e -~, then 

(13) 

I f  F has increasing hazard rate and i f  ~ - l - - y d 2 y  2 

- ~ < P(x)  - e -~/. < (1 - ~e)-'~. 

PHOOF. Suppose qo(X) is increasing. The first inequality of (13) 
easily follows from Lemmas 1-3: 

W l = S - ~ t ~ = - ~ t  Ye- - y  ~=e-  ' - ~ .  

The lemmas can also be used to show that  for x=Ky 

,32kX) ,a~e -~/~' -- ~2e 

Let x~ ( ~ y )  be the positive number defined by 

xl=sup {uIF'(x)<=e-~/"+(1-ze)-lz, for x<=u} . 

We have only to show that x ~ ( F ) .  Assume the contrary and put g(z) 

=-F(x)--e -~/'. Then g(x~)=(1-~e)-'~, and we can find a sequence of 
positive numbers G such that  3~--~ 0 and g(x~+ G)>=g(xl). This means 

(P(x~+3~)-P(xO)lG>=e-~Vffe-~/"-l)/3~. Letting n - *  oo, we obtain f(x~ 
+ 0)_<_ y-'e-~/". Therefore, 

(14) q0(x,)= f (x , )  _< ~-~e-'J" 
F(xl) - e -~ / "+(1 -  ae)-'a 

~(1--6e)/~.  

On the other hand, as qo(X) is increasing, we have qo(x)<=qo(Xl) or f(x) 
~_qo(xl)F(x) for all x<=yGxl. Integrating, 

fl dx f~ f(u)du~_qo(xl) f: dx f~ F(u)du , or 



200 RYOICHI SHIMIZU 

S~(g)~_qo(Xl){S2(lJ)+~,u~}. But by Lemma 2, we have, unless F is ex- 
ponential, S,(,u)>S~(I~)/,a. Therefore, applying Lemma 2 again 

q0(xl)> S2(,a)/,u >=(1-~e)//~. 

This contradicts (14). 

I t  is hard to expect that  the inequalities (13) give the sharp bounds, 
but,  as we shall see later, the inequality (2), which holds for a distribu- 
tion with DHR is not valid in the  case of IHR. See Example 2 below. 

We can prove the following somewhat  s tronger result. 

THEOREM 2. I f  F has decreasing mean residual life, then for  0<= 

1 -- 3,u (]/2~ " 

In particular, 

(16) J(O)=f~ IP(~)-e-~l.ldx<=4-2z 1-  ~' 
21 l, �9 

Inequality (16) also holds true when F has increasing mean residual 
life. I f  F has decreasing hazard rate, then we have 

(17) I : -  2 '  lF(x)-e-~/~ldx~_2t~(1--~)  <=J(O) . 

Let A be the set of positive numbers  x such tha t  F(x)=< PROOF. 

e -~/". Then 

= 2 ( ~  - ~ - ' s ~ ( o ) )  = 2 ~ ( 1  - ~ / 2 ~ ) .  

A similar reasoning can apply when F has increasing mean residual 
life. To prove (17), let F have decreasing hazard rate. Then there  

exists an a>=/~ such that  the inequality F(x)<=e -~/, or F(x)>__e -~/, holds 
according as x ~ a  or x>-a. Therefore, 

f :  IP(x)-e-~/"]dx=2 i :  (P(x)-e-~/")dx=2(Sl(a)- f~e-~/") " 

But, according to theorem (iii) of Brown [4], Sl(x) is bounded from 
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above by z(e-~/~+ 1 - - ~  ), where ~ = - 1 + ~ 2 / 2 ~  2, which implies (17). To 

prove (15), let again F have decreasing mean residual life. Then for 
k>__l, we have as before, 

J~= f ~ IF(x)--e-~/"lx~dx~tc! {Z ~+~ + S~+~(0)-- 2p-~S~+~(0)}. 

Therefore, 

~ a  ~ ~, 
J(a) = ~0 -~.J~<=Jo+ ~=1 &~ {/~+1 + S~+~(0) - 2/~-ISk+2(0)} 

=Jo+~z2(1-~)- '+~s~(o)+ 1-7-~z ~ 

~_J0 + ~ z 2 ( 1 -  ~ ) - ~  + ~ ~2, 

as was to be proved. Note that  1 - 2 / 3 / ~ - 1 .  

Finally we prove the following theorem, which gives better esti- 

mates for ]F(x)-e-~/" I when x is large. 

THEOREM 3. I f  F has decreasing mean residual life and i f  q= 
lira q~(x) < ~ ,  then 

(18) max (e -q~, {1-- (q-- g-~)x} e -~/~) <= F(x) ~_qze -~/" . 

I f  F has increasing mean residual life and i f  q=lim qL(x)>O, then the 
inequalities are reversed. 

PROOF. By l'Hopital's rule and Lemma 1 

-1=q~(O) <=q~(x)= ~ l i m  q~(x)--q . 
~Itx) 

The second inequality of (18) follows from this and Lemma 3. For /~-~ 
_< c ~ q, put R~(x) = So(x)- cSl(x) (~_ ( q -  c)S~(x)). Then 

p(x)>_flSl(x)= /~-~ [ ~e . . . .  e-= f ~ e~R~(u)du I 

Taking c=q  and then c=~ -~, we obtain 

F(x)>=e -~ , and 

_P(x) > e  -~/~ - (q - ~ - ~ ) e - ~ , x .  
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4. Examples 

If a non-exponential unimodal distribution F with /~=1 and with 
the  p.d.f,  f(x) continuous on (0, w(F)) has increasing hazard rate, then  

the  errors / { = s u p  (_P(x)-e -~) and K = s u p  (e-~-P(x)) are attained, re- 
spectively, by the  minimum and the  maximum zeros b and c of the  
function f ( x ) -e  -~. On the other  hand if a is the unique zero of the  

function -P(x)-e-5  then J= f: [P(x)-e-Xldx=2(e-~--S~(a)). Similar re- 

mark  can apply to a distribution wi th  decreasing hazard rate. Here 
are some examples. 
1) Uniform distribution : Let  X ,  2(2, . . . ,  X~ be a random sample from 
the uniform distribution on the  unit  interval (0, 1). The distribution 
F .  of the  random variable X = ( n + l ) . m i n  {X, X 2 , . . . ,  X~} has the  sur- 
vival function 

and 

[ 
moments  ff = 1 and 

1 x )~ 0 < x < n + l  
n + l  ' 

O, x ~ n + l  

ff2=2(n+l)/(n+2). For each n, the hazard 
rate qo(x)=n/(n+2-x) is defined and strictly increasing on the finite 
interval (0, n + l ) .  

Our bounds for _E~=sup (P~(x)-e -x) and K~=sup (e-x--P(x)) are 1/ 
( n + 2 - e )  and 1/(n+2), respectively. A numerical computation shows 

/{~0 = 0.02189, ~:~00 = 0.00229, -E~00o = 0.00023, K,0 = 0.00864, K,0~ = 0.00080 and 
Kl000=0.00008. In this example, b and c tend to 2+__~f2 as n - - .oo .  

(1--al(n+ l))~=e-% then J= l: lF'(x)-e-~ldx=2{e-~-(1-a/(n+ l))~} = If 

2e-~.a/(n+l). I t  is easy to show tha t  a lies in the  interval (1, 2) and 
tends to 2 as n - .  oo, so tha t  4e-2/(n+l)~_J<~2e-1/(n+l) and l i m n . J =  
4e -~. Our bound on J is 2/(n+2).  
2) Shifted exponential:  The distribution with the survival function 

-~(x)= / 1 if x~_b--l-~/1--2~ 

e - c * - b ) / ' ' - ~ "  if x>b 

has moments  g = l  and /~2=2(1-r Hazard rate is increasing and/{(~)  

=sup(_P(x)-e-~)=l-e -b (>_~+~3/6) and K(~)-sup(v-~-_P(x))--br -b (>= 
r are at tained at x=b, at which the  density is discontinuous and 

at x=c---(b-log ~/1-2~ ) / ~ / 1 - 2 ~ ,  respectively. Note tha t  /{(~) is 
greater  than Brown's bound e / ( l+~)  which is applicable to a distribu- 
tion with increasing mean residual life. As a = l  is the unique zero of 
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_~(x)--e -*, we have 

J-= v 

=2be -1 (>=2r . 

Our upper bound on J is 2~. 
3) Gamma distribution: The gamma distribution with the p.d.f. 

f ( x l -  ~ x~-le -~ . - - ~ - ~  , x>O 

has moments/~ =a/2 and/1~= a(a+ 1)/2~: The hazard rate qo(x) = f (x) /F(x)  
is increasing or decreasing according as a > l  or a < l .  Theorem 3 gives 

- ( ~ -  1 ) ! z e - ~ * / ~  < p ( x ) - e  -~x/~ <=(~- 1)e  - ~ / ~  , 

for a > l .  The inequalities should be reversed when a < l .  Theorem 2 
gives 

J ( a ) - f [  ]~'(x)-e-~*/~ldxKzl(a)- l a - l l  
- -  2 

Numerical computations show tha t  when 2=1,  J(0.95)=0.0164, J(0.96) 
=0.0131, J(0.97)=0.0099, J(0.98)=0.0066, J(0.99)=0.0033, J(1.01)= 
0.0033, J(1.02)=0.0067, J(1.03)=0.0101, J(1.04)=0.0135 and J(1.05)= 
0.0169. 
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