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Summary

For a given fractional 2™ factorial (2™-FF) design 7T, the constitu-
tion of a block plan to divide T into k (2" '<k=2") blocks with » block
factors each at two levels is proposed and investigated. The well-known
three norms of the confounding matrix are used as measures for deter-
mining a “good” block plan. Some theorems concerning the constitu-
tion of a block plan are derived for a 2™-FF design of odd or even
resolution. Two norms which may be preferred over the other norm
are slightly modified. For each value of N assemblies with 1< N<26,
optimum block plans for k=2 blocks with block sizes [N/2] and N—[N/2]
minimizing the two norms are presented for A-optimal balanced 2+-FF
designs of resolution V given by Srivastava and Chopra (Technometrics,
13, 257-269).

1. introduction

Consider a 2™ factorial experiment with m factors. An assembly
(or treatment combination) is represented by an m-rowed vector (j,, 7,
-+, Jm), where j, (level of tth factor) is equal to 0 or 1. As unknown
effects, 6, 0, and in general, 4, ..., denote the general mean, main effect
of tth factor, and k-factor interaction of #,,- - -, t,th factors, respectively.
For a fixed integer I (1ZI<m), let @ be the v X1 vector composed of

l
effects up to l-factor interactions, where v=§) <?>, i.e.,

0,’__‘—(00; 61) 02; ] 0m; 012; ct 0m—lm; 012---“ ftty 0",,_.”.1...-,,,,) .

Assume throughout this paper that (I+41)-factor and higher order inter-
actions are negligible and that the m factors are different from block
factors. Let T be a fractional 2™ factorial (2=-FF) design which is a
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suitable set of N assemblies. Note that the assemblies in T are not
always distinct. Using a design T, we consider the estimation of a
vy X 1 vector of linear parametric functions §,=C8 for some y; Xy matrix
C. For an Nx1 observation vector y, of T (whose observations are
assumed to be independent random variables with common variance o%),
consider the model

(1.1) E(y,)=Ef

where E(-) stands for an expected value and E is the NxXy design
matrix with elements +1 (see, e.g., Yamamoto, Shirakura and Kuwada
[18]). Suppose that there exists a u,X» matrix K satisfying KM=C
(i.e., rank M=rank [M: C'"]), which is equivalent to the estimability of
6,, where M=F'FE is called the information matrix of T. The Dbest
linear unbiased estimate of 6, can then be given by

(1.2) éo-—':.KE,yT .

When 8,=86, i.e., C=I (identity matrix of appropriate order) and v,=v,
T corresponds to a 2™-FF design of resolution 2/4+1. In this case, note
that the nonsingularity of M is assumed. On the other hand, when
Ov=001,+,0n; 3 0piets >ty Om_iyoem)s 1€, C=[0:1:0] (0 and O are
respectively zero vector and zero matrix of appropriate orders) and v,

=u~1-—<7ln>, T corresponds to a design of resolution 2/ (see Box and

Hunter [1]).
In order to get 8, in (1.2), it is required to make the plots of N
assemblies under conditions as homogeneous as possible for the m factors.

After planning a design T for 6,, however, it may occur that N ob-
servations for T can not be yielded simultaneously by physical, chemi-
cal and/or economical reasons, etec. For example, consider an experi-
ment of a certain reaction for a mixture of m raw materials each at
two levels. Then, after accomodating the N mixtures in a given T,
it may occur that each reaction of them can not be observed under a
homogeneous condition. Therefore we consider an arrangement of T
in some blocks. The less is the number of assemblies in which we have
to experiment simultaneously, the larger is the possibility that we ob-
tain a homogeneous condition. Of course, the number of blocks (say k)
should be small compared to N. The problem is to constitute the %

blocks such that the estimate 6, is not sensitive to the block division.
The present paper discusses this problem under special situations. For
the k blocks, we use a 2" design with r factors each at two levels
which consists of % distinct assemblies (2"'<k=2"). As block factors,
for example, consider experimenter, day and place. Our situation is
then the case where the N observations in a given T have to be yielded
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by two experimenters, in two days and/or at two places. As measures
of the insensitivity to block effects, we use well-known three norms of
a confounding matrix of 7. In Section 2, we introduce the three norms
of a confounding matrix for r block factors and present a procedure
for the constitution of k& (2'<k=2") blocks with some block sizes for
a design T. For a 2™-FF design of resolution 2] or 2/4+1, we give the
constitution of the %k blocks such that the norms have appropriate values
and that the confounding matrix has a certain desirable pattern. In
particular, it is shown that for a 2"-FF design of even resolution, there
exist the blocks for which the three norms are zero (i.e., its confound-
ing matrix is zero). Section 3 deals with the constitution of k=2 blocks
for a balanced fractional 2™ factorial (2=-BFF') design of resolution 2I+1.
Balanced designs (including orthogonal designs) have various desirable
properties and wide applications. A 2™-BFF design of resolution V (=
2) was first discussed by Srivastava [9] and a design of resolution 2041
has been generalized by Yamamoto, Shirakura and Kuwada [13], [14].
Some properties of the preferable two norms are presented for 2»-BFF
designs of resolution 2l+1. Also, the norms are slightly modified. For
A-optimal 2*-BFF designs of resolution V given by Srivastava and Chopra
[10], the constitutions of 2 blocks with block sizes [N/2] and N—[N/2]
minimizing the modified norms are presented for the values of N satis-
fying 11<N<26.

For the case where one knows in advance that block factors are
explicitly needed for the estimation of &,, a design should be planned
such that the effect 6, is unconfounded with block effects. For the case
of 6,=80, however, it is in general difficult to plan such a design and
even if we do it, a larger number of assemblies are required. If the
effects of block factors may not be so large as effects in @ and not be
so neglected as higher order interactions, the methods given in this
paper would be also useful.

2. Constitution of a confounding block plan

Let T be a 2"-FF design with N assemblies whose ath assembly is
given by (5, 75, --, 7%) for a=1,---, N. For 2"< N, consider another
2" design D with r factors and N assemblies whose ath assembly is
given by (d{», d§®,- .-, d) for a=1,-.., N. Suppose k (2" '<k=<2") dis-
tinct assemblies are exactly included in D. Further let [T; D] be a
set of assemblies obtained by juxtaposing T and D in a way such that
its ath assembly is (5¢9,..-, J&@;d®,. .., d*®) for a=1,---, N. The set
[T; D] can be considered as a 2™*"-FF design with m+r factors. How-
ever, the r factors play here the role of block factors and D gives a
block plan for 7. That is, k& blocks Bg,...a, for T are constituted in a
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way such that the ath assembly of [T'; D] is (5{2,---, 5%; d,-- ., di)
if and only if the ath assembly of T belongs to Byw..qw,. Then the
number of times an assembly (d;,- - -, d,) occurs in D, k(d,---d,), is call-
ed a block size for B(d;---d,). Consider now the NX1 observation
vector y;r.p; of [T; D]. According to model (1.1), we then have the
following model :

(2.1) E Yrin)=E0+X(D)y ,

where 9'=(y,-++, 7,), (3, is the main effects of tth block factor), and
X(D) is the Nxr design matrix for 9 of D with elements +1. Assume
that there are no interactions between the m factors and » block fac-
tors, and between the r block factors. Note that the level of jth fae-
tor for the ath assembly in D is 0 and 1 if and only if the (e, 7) ele-

ment of X(D) is —1 and 1, respectively. We still insist on using 8,
in (1.2) for the estimation of 8, because T is a design which is in ad-

vance planned to obtain §,. Under model (2.1), the expected value of
6y, (yr in 6, is replaced with Ycr.py), becomes

(2.2) E (6)=6,+A(D)y ,

where A(D)=KE'X(D) is said to be a confounding matrix of D. As

measures how E(éo) in (2.2) can be close to 8,, the following three
norms of A(D) may be considered:

() IAD)h=max {3 o]}
@3) () JAD)={r@ADrADN =S Tal

(i) | AD)l=max {3 aylf

where a;; are the (i, j) elements of A(D).
Under (2.1), the mean square error of 6, for 8, is given by

MSE (8,)=KMK’s*+ A(D)py’' A(DY .

Tt is seen that for a given design 7, MSE (§,) is dependent on A(D)
only through A(D)yp%'A(D), because ¢ and 3 are constant. Therefore
it is reasonable to be considered that minimizing each norm in (2.3)
may also reflect decreasing a magnitude of MSE(6,). In particular,
this is more obvious for the norm ||A(D)|, for the case r=1 which will
be treated later, since

(2.4) tr (MSE (6,))=0* tr (KMK")+ 72| A(D)|} .
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Let Df.q,...e,» denote the collection of all possible D with N assem-
blies in which the assembly (d,,---, d,) occurs k(d;---d,) times. For a
given T, D in Dfq,..4, is said to be a confounding block (CB) plan
when D is selected in a consideration of the norm |A(D)|,, (i=1, 2, 3).
A plan D is said to be an optimum confounding block (OCB) plan (with
block sizes k(d,- - -d,)) for T with respect to the norm ||A(D)|; if ||A(D)|;
is a2 minimum in the class Df,.... 5 for each 1=1,2,3. Also the set
By, (ia,-.a,n 0f the corresponding blocks By,....» is said to be an optimum
block for 7. This idea is due to Hedayat, Raktoe and Federer [4].
However they have proposed the norm [[A||=(tr (A'4))* of alias matrix
A as a measure in selecting a design T.

2m-FF designs of resolution 2! or 2[+1 are particularly important
for our practical uses. Therefore we shall discuss some properties of
the norms in (2.3) for these designs.

THEOREM 2.1. Let T be a 2™FF design of resolution 2l. Suppose
an N Xxr submatrixz of E whose r columns correspond to r l-factor inter-
actions has k (2'<k<27) distinct rows. Then there exists an OCB plan
D€ Dia,ay for T such that |A(D)|.=0, (2=1,2,3), i.e., AD) is a
zero matrix, where k(d,---d,) is the number of row vectors (2d,—1,---
2d,.—1) occurring in the submatriz.

b

Proor. Denote the submatrix by Y. Assume that the » [-factor
interactions are at the s;th, s,th,---, s,th positions of 8 and let Z be
the v X r matrix in which the ith element of s,th row is 1 and 0 else-
where. Then Y=FEZ holds. Consider D satisfying X(D)=Y. Then,
from the assumption, D€ Dfq,.... . Also, A(D)=KE'X(D)y=KMZ=CZ
=0. This completes the proof.

THEOREM 2.2. Let T be a 2"-FF design of resolution 21+1. Con-
sider the same submatriz and Dfiq,...a s in Theorem 2.1. Then, there
exists a CB plan D € Diiq,...a,y for T such that [A(D)|l,=1, (=1, 3), and
TA(D)|;=+7. Moreover, in the plan D, every effect up to (I—1)-factor
interactions s unconfounded with block effects 7.

ProOOF. Consider the same matrices Y and Z, and the plan D¢
Df,...s,n as in Proof of Theorem 2.1. Then A(D)=Z, since C=1. From
the structure of Z, || Z|;=1, (:=1, 3), ||Z|;=+ 7, and furthermore from

(2.2), E (6,)=0+Zn, which completes the proof.

In what follows, (optimum) CB plans with two blocks (i.e., r=1)
are constituted for designs. Note that A(D) and X(D) become column
vectors. In view of Theorem 2.1, we can easily obtain an OCB plan
with two blocks for some 2"-FF design of even resolution. The follow-
ing theorem implies that for a 2"-FF design of odd resolution, there
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exists a CB plan better than one in Theorem 2.2 w.r.t. the norm || A(D)||,:

THEOREM 2.3. Let 25I<m—2. Then there exists a CB plan D in
Diiay, (k(dy) are certain block sizes), for a 2™-FF design of resolu-
tion 2l+1 such that ||A(D)|,=1/2 holds. Moreover, in the plan D,
any effects up to (I—1)-factor interactions are unconfounded with block
effect 7.

PROOF. Since 2=I<m—2, there exist two distinet main effects 4,
and 6, such that ¢, ¢ ¢ {t,---, ¢y, 8,- -+, t/_;} for some two distinet ({—1)-
factor interactions 6, ..., and 6,.., . Denote a column vector of E
corresponding to an effect 4, in @ by é,. Consider the Nx1 veetor x
given as follows:

1
x='§'{e¢ * (etl"'tl—l-}-e‘;"'ti—l)+e" * (etln'tl—l—el{"'t;—l)} .

where * denotes the product operation defined by (ay, as,- - -, @)’ * (b, b,
-, b)) =(aby, aby,- - -, ab,). Then it is easy to verify that x is a vee-
tor with elements 1 or —1. From the property of design matrix E,
X can also be writen by

1
x—-é- (eg ‘1”"l—l+e£ c;...;{_l"i‘e;’ gl...gl__l_e;’ 3{...:{_) .

This means that x can be expressed as a linear combination of columns
of E corresponding to the four Il-factor interactions @,,..._, 0.y
Ou by, and 6,,...; . Suppose now z is a vx1 vector with elements
0, 1 or —1 obtained from & by replacing the above first three I-factor
interactions with 1, the last one with —1, and the other effects with
0. Further consider D given by X(D)=x. Then we have X(D)=Ez/2.
Therefore, A(D)=M"E'X(D)=z/2, since K=M". Hence ||A(D)|;=1/2.
This completes the proof.

It is remarked that the block sizes k(0) and k(1) of the plan D in
the above theorem are equal to the numbers of —1 and 1 in x, re-
spectively.

Ezxample 1. Consider

T ={£(5, 0), 2(5, 2), 2(5, 4)} ,

where 2(m, k), (0<h<m), is the set of <7}f’> distinct assemblies with

weight A (number of 1’s). Then it is easy to see that T is a 2-FF
design of resolution V ({=2) with N=16 assemblies such that M=16L
This design is called an orthogonal design which is the most popular
design. T can be expressed by the 16 x5 matrix
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001111000000i11110
01000111000/11101
T'=00100100110i{11011 ¢,
00001001010110111
|0000100101101111

whose ath row denotes the oth assembly. Suppose two main effects
are 0, and 6,, and the other main effects are 4,, 4; (i.e., t=2, t'=38, t,=4
and t/=>5) in Proof of Theorem 2.3. Therefore x=(ey+ey+ey,—ey)/2=
@;-1,1,-1,1, -1, -1,1,1, -1, —-1;1, —1,1, —-1,1). Thus we have
the plan D={x+(1,1,---, 1)}/2 € D} pyus,scy=8y With [|A(D)|;=1/2. The
corresponding blocks B, and B, are given by

B(o)z {(1, 1, 0, 0, O), (1, 0; 0; 1; 0); (Oy 1; 1’ 0; 0), (O, 1) 0’ 1: 0),
0,0,1,0,1),(0,0,0,1,1),(1,1,1,0,1),(1,0,1, 1, 1)},

B(1>= T"Bm) .

In fact, the above plan D turns out to be an OCB plan over Diis r1y-s
w.r.t. |AD)|;-

As compared with the norms [|A(D)|l. and ||A(D)|;, the decrease of
IAD)|l; directly acts to reduce the bias for each estimate in 6, In
the sense, ||A(D)|; is preferred over ||A(D)|, and |A(D)|;- Also, for
the present case r=1, ||A(D)|; is mathematically preferred over |A(D)||;
and ||A(D)||; in view of (2.4). For reference, note that ||A(D)|;=1 and
JA(D)ls;=2 for the plan D in Theorem 2.3. We are henceforth inter-
ested in an OCB plan with two blocks w.r.t. ||A(D)|;, (2=1, 2).

3. OCB plans for balanced designs

CB plans in Dy, (N=k(0)+k(1)), are developed for 2"-BFF de-
signs of resolution 2[4+1. We first define a balanced design. A 2°-FF
design of resolution 2[+1 is called balanced if the covariance matrix

Var (6)=M"'s* of 6=6, in (1.2) is invariant under any permutation of
m factors, i.e., if for two estimates 951...,14 and 5,;...4 in 8,

Var (ﬁAtl...tu):Var (é,(;l...gu)) )

(3.1) . . R .
Cov (0,1.,.%, 0,;...¢;)=COV (0r(tl'--tu)’ Ooilenntt)

where Var(-) and Cov (-, -) stand for variance and covariance of esti-
mates, respectively, and r is an element of the symmetric group C=

. i 2 «iem . . '
{r, r-<1_(1) 1(2)__.T(m)>} of order m. In practice, for a given m, u'-
factor interactions (m/2<u’'<m) are often assumed to be negligible.
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Therefore, we here give the restriction 2l<m. It is known from
Srivastava [9] and Yamamoto, Shirakura and Kuwada [13] that a 2~-
BFF design of resolution 2/4+1 with N assemblies is equivalent to a
balanced array of size N, m constraints, strength 2 and index set qJ
={pto, pt1,***» pui}, (simply, B-array [N, m,2l, U]), provided M is non-
singular. For the save of space, see the above papers for the definition
of a balanced array. In particular, a B-array [N, m, 2], U] is called
an orthogonal array with index 1 if A=py=pg,=---=p,, which is equiv-
alent to an orthogonal 2"-FF design of resolution 2/+1 with M=2%J
(see Example 1).

Now, for a vXx1 vector ¢, attach the same subindices as the effects
of @ to the elements of ¢, i.e.,

C=(Co; € " » Cn3 Cias” "5 Contm3* * * 3 Clteets® * *y Crupgtieem) -
Further consider a vx1 vector z(c) for = € C defined by
7(€) =(Co; Cetrys* * *s Cotmd Cotttrr* * *» Cotmetmd s * * 3 Ceizeortdr® * * Cotmatttoeemd) -
Then, we have the following lemma which can easily be proved:
LemMMA 3.1. For any v €C,
cir(c)=t""(c)'c,
holds where ¢, and ¢, are v X1 vectors.

THEOREM 8.2. Let T be a 2™BFF design of resolution 2l+1 with
N assemblies and D be a plan in Diy- Then, for any z€C,

IAD:=I1A D).,  +=1,2
hold where A{(D)=M-'t(E'X(D)).

PROOF. For 7, r,€(C, suppose V(z,(8), 746))s® is the covariance
matrix for # in which the row and column orders correspond to z,(8)
and r746), respectively. In particular, note that V(8, 8)=M"' since

Var (6)=M-'s*. Tt follows from Lemma 3.1 that
A(D)=M"'(E'X(D))=V (0, 6)c(E'X(D))=V (8, <-4 (O))(E'X(D)) .
Therefore, we have
tHA(D)=V(c7(6), =" HON(E'X(D)) .
From (3.1), V(8, 8)=V(z~4(8), =(8)) holds. Hence we have
A D)=l (A D)= M E" X(D)|;=|| AD)]; .

A design T is called a simple array with parameters 2, ;,--+, 4n,



BLOCK PLAN FOR A FRACTIONAL 2m FACTORIAL DESIGN 153

(simply, S-array [m; Ay, A1,- -+, 4,)]), if the assemblies in 7' can be ob-
tained by 21, repetitions of the set £(m,h) for each h=0,1,---, m,
where 2(m, h) are explained in Example 1 in Section 2. It is easily
seen that an S-array [m; 4,---, 1,] is a B-array [N, m, 2l, U], where

1=0,1,---,2].

As will be seen from Chopra [2], Chopra and Srivastava [3], Shirakura
6], [7], Srivastava and Chopra [10], {11], etc., most of balanced arrays
are of simple types for practical values of m and N. Therefore, it is
desirable to study CB plans for 2»-BFF designs derivable from simple
arrays.

THEOREM 3.3. Let T be an S-array [m, 2,---, 2,] with N=§ Ane

h=0
<7;Z’> Then, for any D€ Df,y and t€C, there exists Dy in Dfiapy,
such that
(B’ X(D)=E'X(D,) .
PrOOF. The design matrix E is represented by

E=(eo; (TR - - IT YRR W Pl 7 RO PR em—L+1---m) '

where e, is defined in Proof of Theorem 2.3. Suppose z(E) is the NXv
matrix obtained from E by exchanging e, with e.,. (In particular,
e.n=eg,) Further define the Nxm matrices

Ei=(ey, -, en) and t(E)=(e.ws* " €tm) -
Since T is a simple array, both E| and z(E|) then include just i, ma-

trices of size (G?)x'm with elements +1 composed of <7:> distinet m-

rowed vectors in which the numbers of 1’s are k for each =0,1,---,
m. Therefore, there exists a permutation matrix P, of order N such
that

(3.2) (BE)=P.E, .
On the other hand, we have
er(tl tZ-"tu)=er(tl) * er(lz) ¥ oeee Xk er(tu) ]

where * denotes the product operator in Theorem 2.3. By (3.2), e.
=P.e, hold for i=1,-.-,u. Thus it can be shown that
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er(tltz-ntu):(Pretl) ¥ oeee X (Pretu)=Pr(ecl koo ok e;u)=P,e,1...,u .

Also, e¢,=P.e,, since the elements of e, are all one. Therefore, the
matrix P, satisfies «(E)=PFP.E. This means that

(B'X(D))=7(E)X(D)=E'P!X(D) .

From the one-to-one correspondence of X(D) and D, there exists D, in
D{i,y satisfying X(D,)=P/X(D). This completes the proof.

Theorems 3.2 and 3.3 are useful in determining an OCB plan D for
a design T in which [A(D)||, (¢=1,2), has a minimum over Dfy-
Suppose €=(y; C***) Cni* s Cmetprom) =E'X(D) and consider DEf =
{DeDfiuy; ase:<---=c,}. Now let D* be an OCB plan over Di,-
Further consider a permutation z € C such that (¢¥,.--, ¢¥) transforms
(C%ps -+ +» CXny)y, Where c*=E'X(D*)=(c¥; ct¥,---, ¢k, c¥_1p1..m) and c¥,
Sc¥pS - - Sc¥n. Then, by Theorems 3.2 and 3.8, there exists Df ¢ Dl
satisfying [|A(D*)|,=]A(D*|;=[ADH]|l;. This means that D¥ is also
an OCB plan over Df,. That is, an OCB plan over D, can be
selected in DY, .

Consider the subclass of Dfi s

S"={De D?;(dl)); k(1)=[NJ2j} .

where [x] denotes the greatest integer less than or equal to z. Also
we take no interest in the confounding of the general mean and block
effect. Therefore, the following slightly modified norms may be intro-
duced :

(i) |A*D)li= max |af|,

(i) |A*(D).= {tr (AX(DY AX(D)}'",

where A*(D) is the (v—1)x1 vector obtained by removing the first
element of A(D) and aX's are the elements of A*(D). Our interest
now lies in a CB plan such that ||A*(D)|l; is a minimum over S¥. The
vector A*(D) can be written by A¥(D)=M*E'X(D), where M* is the
(v—1)Xv matrix obtained by removing the first row of M~!. Argu-
ments similar to Proofs of Theorems 3.2 and 3.4 give the following
two theorems:

THEOREM 3.4. Consider the design T and plan D of Theorem 3.2.
Then, for any t<€C,

IA*D)[l.=lA*D)., 1=1,2,
where A¥(D)=M*c(E'X(D)).

THEOREM 3.5. Consider the simple array T of Theorem 3.3. Then,
for any DeSY and €, there exists D, e S¥ such that
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«(E'X(D)=E'X(Dy) .

From the above theorems, we observe similarly that an OCB plan
(w.r.t. ||A*(D)|.) over S¥ can also be selected in the subclass

S*N'—'—-— {D € SN; De D?;czgdl))} .

On the other hand, the calculation of ||A(D)|; or |A*(D)||; requires the
inverse of v X v matrix M. However, Yamamoto, Shirakura and Kuwada
[13] have shown that for a 2™-BFF design of resolution 2/+1, M~ has

at most <H?:3> distinct elements. Furthermore, Shirakura and Kuwada

[14] have given an explicit expression of these elements.

In Table, optimum blocks By (= By, uw,») corresponding to OCB plans
w.r.t. ||A*¥(D)|, and/or [|A*(D)||. over S are listed for A-optimal 2-BFF
designs T of resolution V (minimizing tr M) for the values of N with
11<N<26. The A-optimal balanced designs have been already given
by Srivastava and Chopra [10]. Note that a B-array [N, m=4, 4, U
={pe p1r p2 s> pta}] is equivalent to an S-array [m=4; A, 1, 45, 43, A,
where N=2,+44,+62,+44,+2, and p,=1, (¢=0,1,2,3,4). Therefore,
2¢-BFF designs of resolution V can be represented by the sets 2(m=
4,h), (h=0,1, 2,3, 4), of assemblies. Briefly, we write T={1,2(0), 1.2(1),
2:82(2), 2,82(3), 2,2(4)}, where 2(h)=£2(4, k) for h=0,-..,4. In Table, note
that the other set By, can be obtained by B ,=T—B, for each T.
Fortunately, it turns out that relatively many optimum blocks B, are
simply expressed by 2(h) and that the optimum blocks w.r.t. || A*(D)|l.-..;
are identical except for N=12, 14, 15 and 21. The values of JA*(D)||.=1.
are also given in the table for reference. From the above theorems,
it may be remarked that an OCB plan is not unique for a given design.
Furthermore, it is easily seen that if D is an OCB plan for T, then it

is also so for 7, where T is the design obtained by an interchange of
0 and 1 in T. By the interchange, the most of properties for T are
preserved (e.g., balanced property or A-, D-, E-optimalities). The fol-
lowing example is helpful in referring to Table.

Erample 2.

(i) Consider a B-array [N=12, m=4, 4, U={1,0,1,1,1}] given
by

T={2(0), 2(2), 2(3), 2D} ,

which is a 2*-BFF design of resolution V with 12 assemblies. Then, T
can be rewritten by the 12x4 matrix
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whose ath row denotes the ath assembly in 7. Let D;=(1; 0,0,0,0,
0,0; 1,1,1,1; 1) and D,=(1; 1,0,0,0,0,0; 1,1,1,1; 0) be CB plans in
S¥, whose ath elements denote the ath assemblies in D, and D,, respec-
tively. Then ||A*(D)|;=0.25, [|A*(D)|l.=0.7181, |[A*(D,)|,=0.56 and
| A*(D,)||,=0.7071. This means that D, is a CB plan better than D,
w.r.t. ||[A¥(D)|l, and D, is one better than D, w.r.t. [[A*(D)|, for T.
In fact, ||A*(D)|, and ||A*(D,)|; have minimum values over S”. Hence
D, and D, are OCB plans w.r.t. ||[A*(D)|, and ||A*(D)||,, respectively.
An optimum bloek corresponding to D, is

B, ={Bw={2(2)}, By,=1{2(0), 2(3), 2(4)}} .
An optimum block to D, is By={Bw, B}, Where

- O

000i1
1101
1011
0110

O
e O

11
10
01
00

B(0)= {(1! 07 1) O)y (17 0; 0, 1)7 (0, 17 17 0);
(0,1,0,1),(0,0,1,1), (1,1,1, 1)},

By»=1{(0,0,0,0),(1,1,0,0), 23)} .

This is the indication of Table for N=12.
(il) Consider a B-array [20, 4, 4, {1,2,1,1,1}] given by

T = {2(0), 22(1), 2(2), 2(3), 2(4)} ,

which is a 2:-BFF design of resolution V with 20 assemblies. Similarly,
T can be rewritten by the following

0
0
) H
= 0
0

O OO
HOOO
O H OO

rooo
- o o

0
1
1
0

H O O
o HHOoO
O O
=
b O
e e O
[

1
0
1
0

PoR=

0
1
0
0

oo o
coro
oo o

Let D=(1;0,1,0,0; 1,0,0,0; 1,1,1,1,1,1; 0,0; 1)eS¥. Then,
|A*(D)|l;=0.1429 and ||A*(D)||;=0.2474, which have minimum values
over S¥. Hence D is an OCB plan for T w.r.t. the two norms and
the corresponding optimum block B;={Bq, B}, where
By=1{(1,0,0,0),(0,0,1,0),(0,0,0,1),
0,1,0,0),(0,0,1,0),(0,0,0,1), 23)},

Ba,={£(0), (0, 1, 0, 0), (1, 0, 0, 0), £2(2), 2(4)} .

Remark. For r=2, in general, it is an enormous amount of work
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to find an OCB plan D in Dfy,...,y W.r.t. each norm for a design T.
In the case where block factors rise in turn for the complete experi-
ment of a design T, we can consider a successive block division. For
simplicity, consider the case of r=2 and k=4. This is the case where
after the division of two blocks for one factor (experimenter), both of
the two blocks must be divided into two blocks for a new factor (day).
First we find an optimum block By o).z ={Bw> Bw} W.r.t. each norm
for the block effect . Next we find the set By, o010 k0o =
{Bw,0»» Baw,1» Baws Bap} of blocks minimizing the norm for the effect 7,,
where Bg,,, and By, (s=0,1), are two divisions of By, and B, re-
spectively, and k(q)=k(q, 0)+k(q, 1) for ¢=0,1. If N=16 and k(0, 0)=
- =k(1,1)=4, and if the assemblies in T are all distinct, then the
total number of plans in D4, is 16!/(4!)'=63,063,000, whereas the

plan in the above procedure is chosen among (186) + ( 2 > ( Z ) =17,770

plans.
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