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Summary 

For a given fractional 2 ~ factorial  (2~-FF) design T, the  constitu- 
tion of a block plan to divide T into k (2r- '<k_~2 r) blocks with r block 
factors  each at  two levels is proposed and investigated.  The well-known 
three  norms of the confounding mat r ix  are  used as measures for deter-  
mining a "good" block plan. Some theorems concerning the constitu- 
tion of a block plan are derived for a 2~-FF design of odd or even 
resolution. Two norms which m a y  be p re fe r red  over the  o ther  norm 
are slightly modified. For each value of N assemblies wi th  1 1 ~ N ~ 2 6 ,  
opt imum block plans for k= 2 blocks wi th  block sizes [N]2] and N - [ N / 2 ]  
minimizing the  two norms are presented for A-optimal balanced 2~-FF 
designs of resolution V given by Srivastava and Chopra (Technometrics, 
13, 257-269). 

1. Introduction 

Consider a 2 ~ factorial exper iment  wi th  m factors. An assembly 
(or t r e a t m e n t  combination) is represented  by an m-rowed vector  (j,, 3"2, 
�9 - . ,  j~), where  j~ (level of t th  factor) is equal to 0 or 1. As unknown 
effects, 80, 8~, and in general, 8~1--.~ denote the  general  mean,  main effect 
of t th  factor,  and k-factor interact ion of tl,- �9 t~th factors, respectively. 
For  a fixed integer  1 ( l ~ / ~ m ) ,  let  @ be the  ~ •  vector  composed of 

effects up to /-factor interactions, where  ~ = ~  , i.e., 
f=O 

0'=(80;  8l, ~ , ' - ' ,  8~; 812,'--,  8~-1~;  8 ,2 . . . , - . . ,  8~-~+1 ....  ) �9 

Assume th roughout  this paper t h a t  ( l+  1)-factor and higher  order inter-  
actions are  negligible and tha t  the  m factors  are  different from block 
factors.  Le t  T be a fractional 2 ~ factorial  (2~-FF) design which is a 
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suitable set of N assemblies. Note tha t  the assemblies in T are not  
always distinct. Using a design T, we consider the estimation of a 
,D• vector of linear parametric functions 0o=C0 for some , 0 •  matr ix  
C. For an N x  i observation vector yr  of T (whose observations are 
assumed to be independent random variables with common variance a2), 
consider the  model 

(1.1) E (y r )=E8  

where  E (-) stands for an expected value and E is the N x ,  design 
matr ix  with elements +_1 (see, e.g., Yamamoto, Shirakura and Kuwada 
[13]). Suppose that  there exists a ,0X,  matr ix K satisfying K M = C  
(i.e., rank M = r a n k  [M: C]), which is equivalent to the estimability of 
00, where  M = E ' E  is called the  information matr ix  of T. The best  
linear unbiased estimate of 00 can then  be given by 

A 

(1.2) 0o= KE'yr  . 

When 00=8, i.e., C = I  (identity matr ix  of appropriate order) and ,0=~, 
T corresponds to a 2~-FF design of resolution 2/+1.  In this case, note 
tha t  the  nonsingularity of M is assumed. On the  other hand, when 
0 o = ( 8 , - . . ,  8 , ; . - . ;  8:~...~_,,..., 8~_~+2 .... )', i.e., C=[O : I :O]  (O and 0 are 
respectively zero vector and zero matr ix  of appropriate orders) and ,0 

= , - 1 - ( ~ ) ,  T corresponds t o n  design of resolution 21 (see Box and 
% g 

Hunter  [1]). 
In order to get  00 in (1.2), it  is required to make the  plots of N 

assemblies under conditions as homogeneous as possible for the m factors. 

After  planning a design T for 00, however, it may occur tha t  N ob- 
servations for T can not be yielded simultaneously by physical, chemi- 
cal and/or economical reasons, etc. For example, consider an experi- 
ment  of a certain reaction for a mixture  of m raw materials each at 
two levels. Then, after accomodating the N mixtures  in a given T, 
it may occur tha t  each reaction of them can not  be observed under a 
homogeneous condition. Therefore we consider an ar rangement  of T 
in some blocks. The less is the  number  of assemblies in which we have 
to exper iment  simultaneously, the  larger is the possibility tha t  we ob- 
tain a homogeneous condition. Of course, the number  of blocks (say k) 
should be small compared to N. The problem is to constitute the  k 

blocks such tha t  the estimate 00 is not  sensitive to the block division. 
The present  paper discusses this problem under special situations. For 
the  k blocks, we use a 2 ~ design wi th  r factors each at two levels 
which consists of k distinct assemblies (2"-'<k~_2~). As block factors, 
for example, consider experimenter ,  day and place. Our situation is 
then  the  case where the N observations in a given T have to be yielded 
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by two experimenters, in two days and/or at two places. As measures 
of the insensitivity to block effects, we use well-known three norms of 
a confounding matrix of T. In Section 2, we introduce the three norms 
of a confounding matrix for r block factors and present a procedure 
for the constitution of k (T-~<k_~2 ~) blocks with some block sizes for 
a design T. For a 2~-FF design of resolution 2l or 2/+1, we give the 
constitution of the k blocks such that  the norms have appropriate values 
and that  the confounding matrix has a certain desirable pattern. In 
particular, it is shown that  for a 2~-FF design of even resolution, there 
exist the blocks for which the three norms are zero (i.e., its confound- 
ing matrix is zero). Section 3 deals ~vith the constitution of k=2 blocks 
for a balanced fractional 2 ~ factorial (2~-BFF) design of resolution 2l+1. 
Balanced designs (including orthogonal designs) have various desirable 
properties and wide applications. A 2~-BFF design of resolution V (/= 
2) was first discussed by Srivastava [9] and a design of resolution 2/+1 
has been generalized by Yamamoto, Shirakura and Kuwada [13], [14]. 
Some properties of the preferable two norms are presented for 2~-BFF 
designs of resolution 2/+ 1. Also, the norms are slightly modified. For 
A-optimal 24-BFF designs of resolution V given by Srivastava and Chopra 
[10], the constitutions of 2 blocks with block sizes [N/2] and N-[N/2] 
minimizing the modified norms are presented for the values of N satis- 
fying 11~N~26 .  

For the case where one knows in advance that  block factors are 
explicitly needed for the estimation of 00, a design should be planned 
such that  the effect 00 is unconfounded with block effects. For the case 
of 0o=0, however, it is in general difficult to plan such a design and 
even if we do it, a larger number of assemblies are required. If the 
effects of block factors may not be so large as effects in 0 and not be 
so neglected as higher order interactions, the methods given in this 
paper would be also useful. 

2. Constitution of a confounding block plan 

Let T be a 2~-FF design with N assemblies whose ath assembly is 
given by (3"(~ ~ j~ ) , . . . ,  j~;)) for a - - i , . . . ,  N. For 2~<N, consider another 
2 ~ design D with r factors and N assemblies whose ath assembly is 
given by (d(~ ~), d(~'),..., d(7 )) for a = l , . . . ,  N. Suppose k (2~-1<k<2 r) dis- 
tinct assemblies are exactly included in D. Fur ther  let IT; D/ be a 
set of assemblies obtained by juxtaposing T and D in a way such that  
its ath assembly is ( j~) , . . . ,  j~); d(~),..., d~ ~ for a = l , . . . ,  N. The set 
IT; D/ can be considered as a 2~+~-FF design with m + r  factors. How- 
ever, the r factors play here the role of block factors and D gives a 
block plan for T. That is, k blocks B(~...~) for T are constituted in a 
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way such tha t  the  ath assembly of [T; D] is (#~=),..., #~); d~) , . . . ,  d(/)) 
if and only if the a th  assembly of T belongs to B~d~=,...~=,, Then the  
number  of t imes an assembly ( d , . . . ,  dr) occurs in D, k(d~...dr), is call- 
ed a block size for B(d~...dr). Consider now the N •  observation 
vector g~r~D~ of [T; D]. According to model (1.1), we then have the  
following model : 

(2.1) E (YEr ;~)=E0+X(D)~,  

where  ~ ' = ( v : , . . . ,  vr), (v~ is the  main effects of t th  block factor), and 
X(D) is the  N •  r design matr ix  for ~2 9 f D with elements _+ 1. Assume 
tha t  there  are no interactions between the m factors and r block fac- 
tors, and between the r block factors. Note tha t  the level of #th fac- 
tor for the a th  assembly in D is 0 and 1 if and only if the (a, 3") ele- 

men t  of X(D) is - 1  and 1, respectively. We still insist on using #0 
in (1.2) for the estimation of 80, because T is a design which is in ad- 

vance planned to obtain #0. Under  model (2.1), the expected value of 

#o, (Yr in #o is replaced with YEt;m), becomes 

(2.2) E (@0) = @0 § A(D)~, 

where  A(D)=KE'X(D) is said to be a confounding matr ix  of D. As 

measures how E(@0) in (2.2) can be close to 80, the following three  
norms of A(D) may be considered: 

( i ) I IA(D)l l , - -max la,jl , 
1< ~ 0  

(2.3) ( i i )  IIA(D)II~.= {tr(A(D)'A(D))} ~z2= ~, ab , 

l < j ~ r  kz=l 

where a~. are the  (i, #) elements of A(D). 
Under (2.1), the mean square error  of @0 for 00 is given by 

MSE (@0) = KMK ' a~ + A(D)TIT/A(D)' . 

I t  is seen tha t  for a given design T, MSE (@0) is dependent on A(D) 
only through A(D)~I'A(D)', because a: and ~ are constant. Therefore 
it  is reasonable to be considered tha t  minimizing each norm in (2.3) 

may also reflect decreasing a magni tude  of MSE (#0). In particular, 
this is more obvious for the norm HA(D)[],. for the  case r = l  which will 
be t reated later, since 

(2.4) t r  (MSE (#o))=a ~ t r  (KMK')+~IIA(D)II~.. 
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Let D ~ denote the  collection of all possible D with N assem- {~(dl""~r)} 
blies in which the assembly ( d , . - - ,  d,) occurs k(d~...d~) times. For a 
given T, D in D N is said to be a confounding block (CB) plan {~(d l . . . d r ) l  

when D is selected in a consideration of the  norm IIA(D)II, ( i=1 ,  2, 3). 
A plan D is said to be an opt imum confounding block (0CB) plan (with 
block sizes k(d~...d~)) for T with respect to the norm IIA(D)II~ if IIA(D)[I~ 

N is a minimum in the class D(~(a~...d~)! for each i = 1 ,  2, 3. Also the set 
Br,l<d~...~)~ of the corresponding blocks B%...d~) is said to be an opt imum 
block for T. This idea is due to Hedayat,  Raktoe and Federer  [4]. 
However they have proposed the  norm ilAIt=(tr (A'A)) ~/~ of alias matr ix  
A as a measure in selecting a design T. 

2~-FF designs of resolution 2l or 2 l+1 are particularly important  
for our practical uses. Therefore we shall discuss some properties of 
the  norms in (2.3) for these designs. 

THEOREM 2.1. Let T be a 2~-FF design of resolution 21. Suppose 
an N x r submatrix of E whose r columns correspond to r l-factor inter- 
actions has k (2~-~<k__<2 ~) distinct rows. Then there exists an OCB plan 
De  D N for T such that IIA(D)II~=0, (i--1, 2, 3), i.e. A(D) is a {k(d 1,-,dr)} 

zero matrix,  where k(d~...d~) is the number of  row vectors (2d1-1 , . . - ,  
2d~- l )  occurring in the submatrix. 

PROOF. Denote the submatr ix  by Y. Assume that  the r /-factor 
interactions are at the slth, s~th,--. ,  srth positions of @ and let Z be 
the  , x r matr ix  in which the  i th  e lement  of seth row is 1 and 0 else- 
where. Then Y = E Z  holds. Consider D satisfying X(D)=Y.  Then, 
from the assumption, D e D r Also, A ( D ) = K E ' X ( D ) = K M Z = C Z  [k(d l .* .dr )]  �9 

= 0 .  This completes the proof. 

THEOREM 2.2. Let T be a 2"-FF design of  resolution 2l+1. Con- 
sider the same submatrix and D -~ as in Theorem 2.1. Then, there {~(d 1-.-dr) } 

exists a CB plan D e D ~v for  T such that i]A(D)II,=I, ( i=l ,  3), and I~(d z..-dr)} 

IIA(D)II+=~/-V. Moreover, in the plan D, every effect up to (l-1)-factor 
interactions is unconfounded with block effects 7. 

PROOF. Consider the same matrices Y and Z, and the plan D e 
D N t<dr..~) ~ as in Proof of Theorem 2.1. Then A(D)=Z, since C=I. From 
the s t ructure  of Z, IIZII~=I, ( i=1 ,  3), IIZII2--~/7, and fur thermore  from 

(2.2), E(#0)=@+Z~, which completes the  proof. 

In wha t  follows, (optimum) CB plans with two blocks (i.e., r = l )  
are consti tuted for designs. Note  t ha t  A(D) and X(D) become column 
vectors. In view of Theorem 2.1, we can easily obtain an OCB plan 
with two blocks for some 2~-FF design of even resolution. The follow- 
ing theorem implies tha t  for a 2~-FF design of odd resolution, there  
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exists a CB plan be t t e r  than  one in Theorem 2.2 w.r . t ,  the norm HA(D)HI: 

THEOREM 2.3. Let 2<I<m--2 .  Then there exists a CB plan D in 
(<~l~J, (k(dl) are certain block sizes), for  a 2~-FF design of vesolu- 

t/o~ 2 l+1  such that HA(D)IIt=I/2 holds. Moreover, in the plan D, 
any effects up to (l-1)-factor interactions are unconfounded with block 
effect 7. 

PROOF. Since 2 ~ l _ < m - 2 ,  t he re  exist  two distinct main effects 0~ 
and 8,, such tha t  t, t' ~ {t l , . . . ,  t~_,, t~, . . - ,  tL~} for some two distinct ( / - 1 ) -  
factor  interact ions t~l...,~_ I and 8,~...,Lc Denote a column vector  of E 
corresponding to an effect t~ in 0 by  e~. Consider the N •  1 vector  x 
given as follows: 

x =--1 {e, * (e,c..,~_ ~ + e,I...,, ,) + ee * (e,~...,~_, - e,,...,~_)} . 
2 

where  �9 denotes the  product operation defined by (a ,  a~,.- . ,  a , ) ' .  (b, b~, 
�9 . - ,  b,)'=(a~bl, azbz,..., a,~b,,)'. Then it  is easy to ver i fy  tha t  x is a vec- 
tor  wi th  elements  I or --1. F rom the  proper ty  of design mat r ix  E,  
x can also be wr i ten  by 

z ' t P ' P p t .X=  - ~  [e~ tl...t,_~-t- e,  ~1...~_~ -t" e~ q.. . t t_ 1 -  er  tc..~_~) . 

This means tha t  x can be expressed as a linear combination of columns 
of E corresponding to the  four  l-factor interactions #~,c.-~-~, 0~,~'.',Lc 
0,,,~...,~_~ and Ot',I-.-,L~. Suppose now z is a u •  vector  with e lements  
0, 1 or - 1  obtained from 0 by replacing the  above first th ree  l-factor 
interactions wi th  1, the  last one wi th  --1, and the  other  effects wi th  
0. F u r t h e r  consider D given by X(D)=x .  Then we have X(D)=Ez/2.  
Therefore ,  A(D)=M-~E'X(D)=z/2, since K = M - k  Hence HA(D)II~=I/2. 
This completes the  proof. 

I t  is r emarked  tha t  the  block sizes k(0) and k(1) of the  plan D in 
the  above theorem are equal to the  numbers  of - 1  and 1 in x, re- 
spectively. 

Example 1. Consider 

T = {9(5, 0),/2(5, 2), ~(5, 4)}, 

where  I2(m,h), (O<h~m), is the  set of ( ~ )  distinct assemblies wi th  

weigh t  h (number  of l 's).  Then it  is easy to see tha t  T is a 2S-FF 
design of resolution V (l=2) wi th  N = 1 6  assemblies such tha t  M = 1 6 L  
This design is called an orthogonal design which is the  most popular 
design. T can be expressed by the  16 • 5 mat r ix  
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I 
O IIi 
0100 

T'= 0010 
0001 

[0 000 

whose a th  row denotes the 

1 0 0 0 0 0 011 1 1 1 0 
0 1 1 1 0 0 0 ! i  i 1 0 1 
0 1 0 0 1 1 Oi l  i 0 1 1 
0 0 1 0 1 0 i i i  0 1 1 1 
i 0 0 1 0 1 l i 0  1 1 1 1 

ath  assembly. Suppose two main effects 
are O~ and Os, and the other  main effects are #4, t~5 (i.e., t=2 ,  s  t~=4 
and t~=5) in Proof of Theorem 2.3. Therefore  x=(e~+e2s+e3~-e30/2= 
( 1 ; - 1 , 1 , - 1 , 1 , - 1 , - 1 , 1 , 1 , - 1 , - 1 ; 1 , - 1 , 1 , - 1 , 1 ) ' .  Thus we have 
the plan D =  {x+(1, 1 , . . . ,  1)'}/2 e D[Y<o)=,,,(o=,~ with llA(D)ll~=l/2. The 
corresponding blocks Be0) and B(,  are given by 

B~o,= {(1, 1, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 1, 0, 0), (0, 1, 0, 1, 0), 

(o, o, i ,  o, i) ,  (o, o, o, i ,  I), (i, I, I, O, i), (i, O, I, i ,  i ) } ,  

Bc,~ = T-- Bco~ �9 

In fact, the  above plan D turns  out to be an OCB plan over DI~(o)=8,~(o=8} 
w.r . t .  IIA(D)II,. 

As compared with the norms IIA(D)II~ and ]IA(D)Ih, the decrease of 

[IA(D)Itt directly acts to reduce the bias for each est imate in t~0. In 
the sense, I]A(D)I[~ is preferred over HA(D)I[2 and IIA(D)[I~. Also, for 
the present  case r = 1, I IA(D)[12 is mathemat ical ly  preferred over IIA(D) I I~ 
and IIA(D)Ih in view of (2.4). For reference,  note tha t  IIA(D)H2=I and 
I]A(D)II3=2 for the plan D in Theorem 2.3. We are hencefor th  inter- 
ested in an OCB plan with two blocks w.r . t .  HA(D)JI~, ( i=l ,  2). 

3. OCB plans for balanced designs 

CB plans in D y (N=k(O)+k(1)), are developed for 2~-BFF de- {k(gz)}, 

signs of resolution 2/+1.  We first define a balanced design. A 2~-FF 
design of resolution 2/+1 is called balanced if the covariance matr ix  

Vat  (#)=M-~a 2 of t~=#0 in (1.2) is invar iant  under  any permutat ion of 

m factors, i.e., if for two est imates  t~,l..., ~ and #,,...,~ in t~, 

Var (0tr . .~)=Var (t~<~r..,~)) , 
(3.1) 

Coy (~i...~, 6,...,,)= Coy (6~c~...t~, #:~+..~,~0 

where  Var  (-) and Coy (. ,  .) s tand for variance and covariance of esti- 
mates, respectively, and r is an e lement  of the symmetr ic  group C =  

{r; r = ( r ~ l )  r(2)2-...r(m)m )} of order  ~n. In practice, for a given m, u'- 

factor interactions ( ~ n ] 2 K u ' ~ n )  are often assumed to be negligible. 
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Therefore ,  we here  give the  restr ic t ion 2l~_m. I t  is known f rom 
Srivastava [9] and Yamamoto,  Shi rakura  and Kuwada [13] tha t  a 2 ~- 
BFF design of resolution 2 l+1 wi th  N assemblies is equivalent to a 
balanced a r r ay  of size N, m constraints,  s t r eng th  21 and index set cO" 
= {F0, F - " ' ,  F2~}, (simply, B-ar ray  [N, m, 2l, q_I]), provided M is non- 
singular. For  the  save of space, see the  above papers for the  definition 
of a balanced array.  In particular,  a B-ar ray  [N, m, 2l, q_l] is called 
an orthogonal a r r ay  with index ~ if ~=Fo=F1=...=F2z, which is equiv- 
alent to an orthogonal 2"-FF design of resolution 2 l+1 with M = 2 Z q I  
(see Example 1). 

Now, for a , x 1 vector  c, a t t ach  the  same subindices as the  effects 
of 8 to the  elements of c, i.e., 

C I ---- (C0 ; r  �9 " ,  C ~  ; C12," " " ,  C ~ _  1,~ ; "  " " ;  C13 . . . z , "  " " ,  C,~_ ~+ 1 . . . ~ )  �9 

F u r t h e r  consider a ~ ><1 vector  r(c) for r ~ C defined by 

r(c)'=(Co;C~(,,. . . ,  c~<~);c,(1~),..., c,~=_~);... ; c~(~z...~,--., c~_~+~ .... ~). 

Then, we have the  following lemma which can easily be proved:  

LEMMA 3.1. For any  r 6 C, 

C" C - -  - 1  C ~' 

holds where cl and c2 are ~ • 1 vectors. 

THEOREM 3.2. Let T be a 2~-BFF design o f  resolution 2l+1  with  
N assemblies and D be a plan in  D "v {k(~l) ! �9 

][A(D) H~= HA~(D)[I~, 

hold where A~(D)=M- l r (E 'X(D) ) .  

PROOF. For  rl, r zeC ,  suppose V(rl(8), v2(8))a z is the  

Then, f o r  any  r ~ C, 

i = 1 ,  2 

covariance 
mat r ix  for 8 in which the row and column orders correspond to r1(8) 
and r2(8), respectively.  In part icular ,  note tha t  V(8, 8 ) = M  -1 since 

V a r ( 8 ) = M - ~ a t  I t  follows from Lemma  3.1 tha t  

A'(D) = M-~r(E'X(D)) = V(0, 8)r(E'X(D)) = V(8, r-I(8)) (E'X(D)) . 

Therefore, we have 

r-I(A'(D)) = V(r-~(8), ~-~(8)) (E'X(D)) . 

From (3.1), V(8, 8)=V(v-I(8), r-I(8)) holds. Hence we have 

[] A~(D) I[~ = H r-l(A'(m))I]~ = [I M - I F ' X ( D )  H~ = H A(D)H~ . 

A design T is called a simple a r r ay  wi th  parameters  20, 2 , . . . ,  2=, 
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(simply, S-ar ray  [m; 20, ~ , . . . ,  ~ ] ) ,  if the  assemblies in T can be ob- 
tained by 2~ repetitions of the  set ~9(m, h) for each h--0,  1 , . . . ,  m, 
where  /2(m, h) are explained in Example 1 in Section 2. I t  is easily 
seen tha t  an S-array Ira; ~0,.-.,  ~ ]  is a B-ar ray  [N, m, 2l, cU], where  

~o ~\ h - i  ] ' i=O, 1 , . . . ,  2l. 

As will be seen from Chopra [2], Chopra and Srivastava [3], Shi rakura  
[6], [7], Srivastava and Chopra [10], [11], etc., most of balanced a r rays  
are of simple types for practical values of m and N. Therefore ,  it is 
desirable to s tudy CB plans for 2~-BFF designs derivable f rom simple 
arrays.  

THEOREM 3.3. Let T be an S-array  Ira, ~o , ' " ,  ~,~] with  N : ~  2~. 
k~O 

( ~ )  Then, f o r  any  D E D  N a n d r E  C, there exists Do in  D N �9 {k (d0}  {k(dl)} 

such that 

r (E 'X(D))- -E 'X(Do)  . 

PROOF. The design mat r ix  E is represented  by 

E - -  (e0; eL,- �9 ", e~; elz," �9 �9 e~_l~ ;. �9 �9 ; e~2...~, �9 �9 �9 e~_~+l...~) , 

where  ez is defined in Proof of Theorem 2.3. Suppose r (E)  is the  N x  
mat r ix  obtained from E by exchanging ez wi th  e~(~). (In particular,  
e~(0~=e0.) Fu r the r  define the  N x m  matr ices  

E l =  (et,. �9 e~) and r(E~) = (e~c,, �9 �9 �9 e~(~)) . 

Since T is a simple array,  both El and r(E,) then  include just  ]~ ma- 

trices of s i z e -  -..(~)xm with elements  _+1 composed of ( ~ ) d i s t i n c t  m- 

rowed vectors in which the  numbers  of l ' s  are  h for each h--O, 1 , . . . ,  
m. Therefore ,  there  exists a permuta t ion  mat r ix  P~ of order  N such 
tha t  

(3.2) r( El) -- P, Ez . 

On the  o ther  hand, we have 

e r ( t l t 2 . . . t u ) - - e ~ ( t i )  * e~(t 2) * �9 �9 . * e~ct u) , 

where  �9 denotes the  product  operator  in Theorem 2.3. 
--P~e~, hold for i - - i , . . . ,  u. Thus it  can be shown tha t  

By (3.2), e~%) 
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e~,,,2...~,,=(P.e, ) �9 . . .  �9 (P~e,~,)=P~(e, 1 * . . .  * e,,)=P,e,,..., . 

Also, eo=P~eo, since the  elements  of e0 are  all one. Therefore,  the  
mat r ix  P~ satisfies r ( E ) = P . E .  This means tha t  

r (E 'X(D) )  = v (E ) 'X (D)  = E ' P ; X ( D )  . 

From the  one-to-one correspondence of X(D)  and D, there  exists Do in 
Dt~<~p} sat isfying X ( D o ) = P / X ( D ) .  This completes the  proof. 

Theorems 3.2 and 3.3 are useful  in de termining  an OCB plan D for 
a design T in which IIA(D)II~, ( i=1 ,  2), has a minimum over D N (~(di) } �9 
Suppose e=(c ,"  c , . ,  . . ,  c~;...,c~_~+~ .... ) ' = E ' X ( D )  and consider D *N(~<~,>)-- 
{D e D~c~>j; e,~_cz~_..._~c,}. Now let  D* be an OCB plan over D{~<~pj. 
F u r t h e r  consider a permuta t ion  r 6 C such tha t  ( c* , . . . ,  c*) t ransforms 
(c~,>, ., c<~>), where  c * = E ' X ( D * ) = ( c * ;  c * , . . ,  c*;. * ' . . . . .  ,c~_~+i .... ) and c~,> 
_ _ � 9  D , N  ~ c ~ v ~  _--<c~>. Then, by Theorems 3.2 and 3.3, there  exists D* ~ (~c~i>) 

sat isfying )]A(D*)II,=]IA~(D*)II,=]IA(D*))I~. This means tha t  D* is also 
an OCB plan over D~c~p). That  is, an OCB plan over D "v (kc~p} can be 
selected in D *~ (k(dl)}" 

Consider the  subclass of D{~<dp}, 

S ~ = { D  D ~ �9 {~(,~>~, k(1)=[N/2]} 

where  Ix] denotes the  grea tes t  in teger  less than  or equal to x. Also 
we take no in teres t  in the  confounding of the  general  mean and block 
effect. Therefore ,  the  following slightly modified norms may  be intro- 
duced : 
( i)  IIA*(D)It~= max la*l, 

1<~:<~--1 

(ii) tIA*(D)II~= {tr (A*(D)'A*(D))} ~/~, 
where  A*(D) is the ( ~ - 1 ) •  vector  obtained by removing the  first 
e lement  of A(D) and a*'s are the  e lements  of A*(D). Our in teres t  
now lies in a CB plan such tha t  IIA*(D)II, is a minimum over S N. The 
vector  A*(D) can be wr i t ten  by A * ( D ) = M * E ' X ( D ) ,  where  M* is the  
( r - - 1 ) •  ma t r ix  obtained by removing the  first row of M-L Argu-  
ments  similar to Proofs of Theorems 3.2 and 3.4 give the  following 
two theorems : 

T H E O R E M  3 . 4 .  

Then, f o r  any  r E C, 

]]A*(D)I[,'-[IA*~(D)I]~ , i = 1 ,  2,  

where A*~(D)= M * r ( E ' X ( D ) ) .  

THEOREM 3.5. Consider the s i m ~ e  a r r a y  T o f  Theorem 3.3. 
f o r  any  D ~ S ~ and r ~ C, there exists Do e S ~ such that 

Consider the design T and plan D o f  Theorem 3.2. 

Then, 
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r (E 'X(D))=E'X(Do)  . 

From the above theorems, we observe similarly that  an OCB plan 
(w.r.t. [IA*(D)ll~) over S ~ can also be selected in the subclass 

; D *~v �9 S * N = [ D ~ S  N D~ I<~1~" 

On the other hand, the calculation of ItA(D)II~ or IIA*(D)II~ requires the 
inverse of ~ x ~ matrix M. However, Yamamoto, Shirakura and Kuwada 
[13] have shown that  for a 2~-BFF design of resolution 2l+1, M -t has 

at most-(I+3)- distinct elements. Furthermore,  Shirakura and Kuwada 
X g 

[14] have given an explicit expression of these elements. 
In Table, optimum blocks Br  (=  Br.c<*l))) corresponding to OCB plans 

w.r. t .  IIA*(D)III and/or IIA*(D)II2 over S ~ are listed for A-optimal 24-BFF 
designs T of resolution V (minimizing tr  M -t) for the values of N with 
11__N_~26. The A-optimal balanced designs have been already given 
by Srivastava and Chopra [10]. Note that  a B-array [N, m = 4 ,  4, c-U 
= {/~0, t~t, t~2,/~3,/~4}] is equivalent to an S-array [m=4;  ~0, ~t, ~2, ~3, ~], 
where N=~0+4L+6~2+4~a+~4 and ~ = ~ , ,  ( i=0,  1, 2, 3, 4). Therefore, 
24-BFF designs of resolution V can be represented by the sets /2(m= 
4, h), (h--0, 1, 2, 3, 4), of assemblies. Briefly, we write T={~J2(0), ~t/2(1), 
~2/2(2), ~/2(3), ~J2(4)}, where/2(h)=/2(4, h) for h = 0 , . . . ,  4. In Table, note 
that  the other set B,) can be obtained by B , ) = T - B ( o )  for each T. 
Fortunately, it turns out that  relatively many optimum blocks Br are 
simply expressed by ~2(h) and that  the optimum blocks w.r. t .  IIA*(D)II,=~.~ 
are identical except for N=12,  14, 15 and 21. The values of ItA*(D)II~=t.2 
are also given in the table for reference. From the above theorems, 
it may be remarked that  an OCB plan is not unique for a given design. 
Furthermore,  it is easily seen that  if D is an OCB plan for T, then it 

is also so for T, where T is the design obtained by an interchange of 
0 and 1 in T. By the interchange, the most of properties for T are 
preserved (e.g., balanced property or A-, D-, E-optimalities). The fol- 
lowing example is helpful in referring to Table. 

Example 2. 

(i) Consider a B-array [N=12, m = 4 ,  4, if /={1, 0, 1, 1, 1}] given 
by 

T-- [/2(0),/2(2),/2(3),/2(4)}, 

which is a 24-BFF design of resolution V with 12 assemblies. 
can be rewrit ten by the 12x4 matrix 

Then, T 
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011] 0!1110 0 0 111 
o i l  o o 1 1 o 1 1 o l i l  

r ' = ! o ~ o  1 o 1 o 1 1 o 1 l i l E '  
Loio o 1 o 1 1  o 1 1 1 1  J 

whose ath row denotes the ath assembly in T. Let D~=(1; 0, 0, 0, 0, 
0, 0; 1, 1, 1, 1; 1) and D2=(1; 1, 0, 0, 0, 0, 0; 1, 1, 1, 1; 0) be CB plans in 
S ~, whose ath elements denote the ath assemblies in D~ and D2, respec- 
tively. Then IJA*(D~)IIl=0.25, IIA*(D~)JI~=0.7181, IIA*(D2)[I~=0.5 and 
HA*(D2)I[~=0.7071. This means that  D~ is a CB plan bet ter  than D~ 
w.r. t .  []A*(D)[]I and D~ is one bet ter  than D~ w.r.t .  I]A*(D)t[~ for T. 
In fact, [[A*(DI)H~ and [[A*(D~)[]~ have minimum values over S ~. Hence 
D~ and D~ are OCB plans w.r. t .  ]]A*(D)[]~ and [JA*(D)]]2, respectively. 
An optimum block corresponding to D~ is 

Br = {B~0, = [/2(2)}, B(I~-- [/2(0), ~2(3), ~2(4)} }. 

An optimum block to D2 is B r =  [B(o, B(I~}, where 

B(o,= {(1, 0, 1, 0), (1, 0, 0, 1), (0, i ,  i ,  o), 
(0, 1, O, i), (o, o, i ,  i), (1, i ,  i ,  i ) } ,  

B,,~= {(0, 0, 0, 0), (1, 1, 0, 

This is the indication of Table for 
(ii) Consider a B-array [20, 4, 

T = {~2(0), 2Y2(1), 

o), 9 (3)} .  

N =  12. 
4, {1, 2, 1, 1, 1}] given by 

$2(2),/2(3), f2(4)}, 

which is a 24-BFF design of resolution V with 20 assemblies. Similarly, 
T can be rewrit ten by the following 

0 1 0 0 0 ; 1 0 0 0  
0 0 1 0  0i0 1 0  0 
0 0 0 1 010 0 1 0 
0 0 0 0 1 1 0 0 0 1  

i i I 0 0 O i l  I i O i l  
i o o i i o ~ i i o z ! i  
o l o l o l l o 1 1 ! 1  
o o z o 1 1!o 1 1 l i l  

Let D=(1 ;  0 ,1 ,0 ,0 ;  1 ,0 ,0 ,0 ;  1 , 1 , 1 , 1 , 1 , 1 ;  0 , 0 , 0 , 0 ;  1) e S  N. Then, 
}IA*(D)III=0.1429 and [IA*(D)[12=0.2474, which have minimum values 
over S ~. Hence D is an 0CB plan for T w.r. t ,  the two norms and 
the corresponding optimum block BT = {Bc0~, Bc1~}, where 

B,o,= {(1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), 
(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), ~ (8 )} ,  

B(I,= [~2(0), (0, 1, 0, 0), (1, 0, 0, 0), 32(2),/2(4)}. 

Remark. For v>=2, in general, it is an enormous amount of work 
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N to find an 0CB plan D in Dc,r w. r . t ,  each norm for a design T. 
In the  case where  block factors rise in tu rn  for the  complete experi- 
men t  of a design T, we can consider a successive block division. For  
simplicity, consider the  case of r = 2  and k = 4 .  This is the  case where  
a f t e r  the  division of two blocks for one factor  (experimenter) ,  both of 
the  two blocks must  be divided into two blocks for a new factor  (day). 
Firs t  we find an opt imum block Br,~co).~cl)~= [B~0~, Bcl~} w.r . t ,  each norm 
for the  block effect ~.  Nex t  we find the  set Br,~co,0).~co.~),~o,oxk~.~)~= 
{Be0,0, Bc0,t,, Bet,0,, B~t,t~} of blocks minimizing the  norm for the  effect  w, 
where  Bc0.,) and Bet,,, (s=0,  1), a re  two divisions of Bc0~ and Bc~), re- 
spectively, and k(q)=k(q, O)+k(q, 1) fo r  q=O, 1. I f  N=16 and k(0, 0 )=  
�9 . .=k(1,  1)=4,  and if the  assemblies in T are all distinct, then  the  
total  number  of plans in D 'v is 16!/(4!)*=63,063,000, whereas  the  {k(ata~)] 

plan in the above procedure is chosen among (186)+(48)(8)=17,770 

plans. 
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