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Summary 

Let the  random variables )(1, )(2, . . . ,  X~ be generated by the  first- 
order autoregressive model X~=OX,_I+e~ where e,  i--1,  2 , . . . ,  n, are 
i.i.d, random variables with mean zero, variance a s, and with unspeci- 
fied density function g(.). In the  present  paper we obtain a charac- 
terization of limiting distributions of nonparametric and parametr ic  
estimators of ~ as well as a local asymptotic minimax bound of the  
risks of estimators. 

1. Introduction 

Let the  random variables XI, X2, . . . ,  X~ be generated by the  first- 
order autoregressive model 

X,=OX,_I+e, 

where e~, i = 1 ,  2, 3 , . - . ,  n, are i.i.d, random variables with mean zero, 
variance a s, and with the density function g(.). We assume tha t  101< 
1. In the  present  paper we obtain a characterization of l imiting dis- 
tributions of regular estimators of 0 as well as a local asymptotic mini- 
max bound of the risks of estimators of 8. 

Akahira [1] considered the  parametr ic  first-order autoregressive 
model and developed the asymptotic efficiency of the  process within 
the class of all asymptotically median unbiased (AMU) estimators of 8. 
Recently, Akahira and Takeuchi [2] studied higher order asymptotic 
efficiency of statistical estimators in parametr ic  models, the  results have 
been applied to the first-order autoregressive process. Also Kabaila [12] 
discussed the  asymptotic efficiency of the  AMU estimators for an auto- 
regressive moving average process. The purpose of this paper is to 
investigate the  asymptotic efficiency of the estimation of 0 wi thout  
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specifying the  density function g(-). That  is 8 is the parameter  of in- 
terest  and the  infinite dimensional parameter  g is a nuisance function. 
The density function g is assumed to have certain regulari ty conditions 
and belongs to a class of density functions. The results provide a char- 
acterization of limiting distributions of estimators for 8 as well as a local 
asymptotic minimax bound of the  risks of estimators. The estimators 
are not restricted to AMU est imators and the  efficiency result is more 
than to compare the limiting variances of estimators. A convolution 
type representation is derived for the  limiting distributions of regular  
estimators for 8, and the local asymptotic minimax bound leads to a 
comparison of asymptotic risks of arbi t rary  estimators for 8. 

Let us now look at the above AR (1) model from a different view- 
point. Suppose tha t  we observe a sequence of numbers xl, x~,-.. ,  x~ 
which are generated by the determinist ic AR (1) model, i.e. x~=Sx~_~. 
We can easily recover the parameter  8 through many different ways, 
for example, 8=xJx~_~ for i-~2,3,.. . ,n; 8=x~x~_~/x~ for i - - 1 , 2 , . . . ,  n ;  

O=Yl, x~x~_~ x~; 0=median  {x~x~_~li=l, 2,...,n}/median {x~ti=l, 2, 

�9 . . ,  n}; or 0 is defined to be the value minimizing ~o(x,-Sx~_~) where 

p(t)>~O for t ~ ( - ~ ,  ~), etc. We then  can derive a class of estima- 
tors of 8 by simply replacing x~ with X~ in all the cases. (Notice 
tha t  ~ X~X~_,/~ X? is the least squared est imator of 0.) This intuit ive 
way of producing estimators is of interest  in itself but  we will not 
pursue fu r ther  here. Two interest ing problems are the following: (1) 
Can we tell the difference among the  above estimators when the den- 
sity function g is unspecified? (2) What  is the information contained 
in the models of g being fixed and specified and of g being unspecified 
and belonging to a class of densities ? These two problems are basic- 
ally asking how well can we est imate 8. 

Recently Begun, Hall, Huang, and Wellner [31 studied the  asymp- 
totic efficiencies of estimators for general i.i.d, parametric-nonparamet-  
ric models. Their work answers problems similar to (2) above in the  
i.i.d, cases (with or without censored data). They developed asymptotic 
lower bounds for estimation of the  parametr ic  and nonparametric com- 
ponents of mixed models. The results are based on work of LeCam 
[18], Hajek [71, [81, Beran [51, and Millar [15]. Inagaki [11] has also 
independently developed a similar convolution representation as in Hajek 
[7]. Representation theorems and asymptotic minimax theorems have 
also been established for a variety of parametr ic  and completely non- 
parametr ic  problems, see, for example, Levit  [14], Beran [5], Millar [15], 
Ibragimov and Hasminskii [10], Pfanzagl [16], and Wellner [17]. The 
current  paper is dealing with a mixed parametric-nonparametric (semi- 
parametric) model with dependent observations. An important  feature  
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of semiparametric models such as AR (1) is tha t  the parameter  of in- 
terest  0 can be interpreted in many ways as it is discussed in the  pre- 
vious paragraph;  see Bicket [6] and Begun, Hall, Huang and Wellner 
[3] for more examples in semiparametric models. A surprising property 
of the AR (1) model may lead to a possible construction of adaptive 
estimators for 0 which perform as well asymptotically as when we know 
the density function even wi thout  the  knowledge of the density func- 
tion. See Bickel [6] or Begun, Hall, Huang and Wellner [3] for a de- 
finition of adaptive estimators. Under  certain regulari ty conditions, 
Beran [4] constructed a class of partially adaptive estimators of 0 whose 
asymptotic performance will dominate tha t  of the least squares esti- 
mators  for all g of interest. 

For notational simplicity we only consider AR(1) model, the  cur- 
ren t  results can be extended to AR(p) model, p~_l, as long as similar 
conditions as in Lemma 1.2 are imposed. 

2. Conditioning and local asymptotic normality 

Suppose tha t  el, e2,.- ' ,  e~ are i.i.d, random variables with density 
function g e • and Q is the collection of all mean zero densities with 
respect to a sigma-finite measure /~ on the real line. Let L2(/~) denote 
the usual L2-space of square-integrable function and let ( . ,  .)~ and [l" I], 
denote the  usual inner product and norm in L2(~). Thus glne L2(Z). 

The random variables X1, X~,..- ,  X~ generated by the first-order 
autoregressive model have joint density, by conditioning, 

X (1.1) f ( X ;  8, g)=f~(Xl;#, g).-[-[ f j (  j l x , . . . ,  x.1_~, 8, g) 
j=2  

=g(x,-OXo). 
.1=2 

= 

J=l 

where [0l< 1, g ~ ~,  and 2(0- 0. Hence the  log-likelihood function is a 
sum of i.i.d, unobservable random variables. 

Now let  O(h) denote the collection of all sequences {0~}~, such tha t  
]0~1<1 and ]nIn(~-O)-h[--~O as n - . ~  where h e R', and let O--U{O(h); 
h e R~}. Similarly, let C(g, ~) denote the  collection of all sequences 
{g~}~zl with  each g~ ~ Q such tha t  ]lnl/~(g~J~'-g*/~)-~[l~---.O as n---~oo where 
p e L2(#) and (/~, g~n), = 0 necessarily. 

For f ~ - f ( X ;  0~, g~) and f = - f ( X ;  0, g) where ]01<1, 0~ e O, g e Q, 
and g~ ~ C(g) = U C(g, ~) and the  union is taking over all /~ such tha t  

e L2(#) and <~, g~/2),=O, define the  local-likelihood ratio L~, whenever  
the r ight  side is finite, by 



140 WEI-MIN HUANG 

(1.2) L ,= log  [[f(X;  0,, g,) / f (X;  0, g)]}. 

Hence we have 

L.-- log {If(X; 0~, g,) / f (X; 0~, g)]} +log [[f(X; 0,, g)/ f(X; 8, g)]} 
- -  L (1) ~ -  L (2) say 

The following Lemma is a consequence of (1.1) and arguments of 
LeCam [13] and Beran [5]. 

LEMMA 1.1. For 0~ ~ 0 and g~ e C(g, ~), we have 

2n-"  

where a[=4[[/~[[~. Thus, under Pf, 

L(~ ') d . N ( - - l a [ ,  a~) as n---,r 

and the sequences [ f (X;  0,, g,)} and {f(X; 0~, g)} are contiguous. The 
sequences of  probability measures {Q,} and {P,} (or their corresponding 
sequences of  densities with respect to a dominating measure) on ,_~ are 
said to be contiguous i f  for  any ,.~-measurable random variables Y~, 
Y~--~O in Q~-probability i f  and only i f  Y,-~O in P,-probability. 

The following lemma is a result due to Akahira [1], and the tech- 
nical assumptions were also introduced there. The lemma is restated 
in terms of L~-framework. 

LEMMA 1.2. (Akahira [1]) Under the assumptions 
( i ) g(t) is positive for  all t on R ~ and lira g(t)= O. 

t~• 

(ii) g is three times differentiable and lim g'(t)=0. 
t~• 

(iii) d" log g(t)/dt 2 is a bounded function and E([e,[4)<zo. 
(iv) For each 8, [0l<1 and 0~ ~ O(h) the following hold: 

(a)  l im n -3/2 ~ ,  E , . [ l X j _ d - s u p  ib'(ej+v)l] = 0  ; 
n ~ r  O=l ~EAJ 

(b) .-..lim n- 'E. ,  tlI,=~lXJ-d"supib'(eJ+v)l]2} =0' 

where b(t)-  - d  ~ log g(t)/dt 2, A~-- [v l0<lvi<h~-~/~lX~_d}. 
E[I g'(e~)/g(e~)] 4] < ~,  (v) 

then 

L~ ) = 2n -m ~. hXj_t, p ( X j -  8X~_t)g-tn(Xj- 8X,_,) - 1 ai+ o~(1) 
J=l 

where a~ = 4h~a ~ lip I1~/(1- 0') and p( . )  = - 2-1g'( .)g-t /2( .)  e L'(/~). 
der P~ 

Thus, un- 
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( a ~ )  as n--~ , 1 L(~ ~ ~ N - ~ a : , 2  O 0  

and the sequences {f(X; 8~, g)} and {f(X; 8, g)} are contiguous. 

LEMMA 1.3. (Orthogonality of  score functions). The score funct ions 
S~)=-Xj_~.p(X~-OXj_,)g-~/2(Xj-~X~_,) and S(j)-fl(X~-~?X~_~)g-m(Xj - 
OX,_,) o f  8 and g (in direction fl, ~ e L~(~)), respectively, satisfy for  
every pair (i, j), i C j ,  1_<__i, j ~ n ,  
( i ) Coy [$7 ~, Si ~)] = 0, 
(ii) Cov [S~ s), S(p] -- 0, and 
(iii) Coy [S~ ~ S~ s)] = 0, this holds for  every (i, j). 

PROOF. These follow from <g,/2, ~>,=0, mean (g)=0, and the follow- 
ing identity, for i < j ,  

Coy (S,, Sj)=E{Cov (S ,  SjIX1, X~ , . . . ,  X~_~)} 

+Cov {E(S,[ X ,  X,,  . . ., Xs_, ), E(S ,  I X,, X~, . . . , X~_~)} 

where S~ and S~ are arbitrary random variables depending on ( X , . . . ,  
X~) and ( X , . - . ,  X~) respectively. 

Asymptotic normality of the local log-likelihood ratio follows from 
Lemmas 1.1, 1.2 and 1.3, we have 

PROPOSITION 1.1. (Local asymptotic normality). Suppose that 8~ 
O, g~ ~ C(g), and f ~ f ( X ;  8, g), f ~ = f ( X ;  ~ ,  g~), then L~ in (1.2) satisfy 
for  every ~ > 0 , 

a s  n-- -+oo , 

where a~(X) -= hXj_,, p (X~-  8Xj_I)-? ~ ( X j -  8X~_I), ~ = 4(h~a 2 H P[I~ § lift I[~) --- a~ 
§ ( 1 -  O~)a~. Thus, under Pf, 

L~ ~-i~N(--2-13 2, ~) as n-~oo , 

and the sequences f ( X ;  O~, g~) and f ( X ;  8, g) are contiguous. 

3. Representation theorem and local asymptotic lower bound 

In this section we develop asymptotic lower bounds for estimation 
of 8 in the presence of the unknown nuisance parameter g. If the 
density function g of ej were known, g=go say, then the result of 
H~jek [7] or Inagaki [11] together with Lemma 1.2 guarantee that  any 
estimator of 8 has a limiting distribution more dispersed than N(0, 1/I0) 
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where I0 = 4a ~ tl p lt~/(1- 8 z) is the usual parametr ic  Fisher information for 0 
but  in an non-i.i.d, model. Akahira [1] considered the class of all asymp- 
totically median unbiased (AMU) estimators of 0 and derived a lower 
bound of the  asymptotic distributions of AMU est imators;  the l imiting 
distribution is again N(0, 1//0), the  a rgument  was based on the Neyman- 
Pearson fundamental  lemma and it is different from the current  in- 

vestigation. I t  was also shown tha t  the  least squares estimator ~, Xj_I 
2=1 

X/~-~ �9 j/z=_, X]_I of 0 is asymptotically efficient if and only if the density 

function go is a normal density function. 
In the present  paper we develop a representation theorem of the  

limiting distributions of regular est imators of 0, as well as a local as- 
ymptotic minimax lower bound of the  risks of arbi t rary estimators of 
0. Both lower bounds are derived without  specifying the nuisance func- 
tion g. Suprisingly, the lower bounds tu rn  out to be the same as when 
g is specified. I t  then provides a necessary condition of constructing 
adaptive estimators (see Bickel [6] or Begun, Hall, Huang, and Wellner 
[3], for example) of 0. Beran [4] provided a sufficient condition for 
constructing partially adaptive est imators by est imating the  ' score func- 
t ion '  p(x) of 0 of a one-step linearized estimators of the least squares 
estimators�9 The orthogonality proper ty  of score functions S, (J) and S~ j) 
in Lemma 1.3 suggests tha t  we may be able to construct  fully adap- 
tive estimators of 0. 

We say tha t  an estimator 0" of 0 is regular at (8, g)~ ( - 1 ,  1)x 
if, for every sequence {(0~,g,), n>=l} ~O• the  distribution of 
nl/2(8~-0n) (under f ( X ;  8,, g,,)) converges weakly to a law .C=_C(0, g) 
which depends only on (8, g) but  not on the  particular sequence {(0~, 
g,), n>=l}. Thus _C does not depend on h or p. 

The proof of the  following theorem is slightly different from the 
approach taken in Begun, Hall, Huang and Wellner [3] for i.i.d, cases; 
a directional approach is used in the  current  proof, this has also been 
used in Huang [9]. 

THEOREM 2.1. Suppose that On is a regular estimator of  0 with 
limiting law .ff and that the assumptions of  Lemma 1.2 and Proposi- 
tion 1.1 hold. Then .ff may be represented as the convolution of  a N(O, 
1/lo) distribution with .ff~--.ff~(0, g), a distribution depending only on (8, 
g), where 

Equivalently, i f  T, Zo, and W denote random variables with laws 
.if, N(0, 1//o), and .ff~, respectively. 

(2.1) T~--Zo§ W 

where Zo and W are independent. 
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PROOF. For any particular ' direction'  # E L~(/~), ]]#[I,=1, <#, fin>= 
0, let g~=(1-r~)W2g~/2+r# where r is real and small. The sequence of 
probability measures P,(.; 8, g~i~, #) determined by f (X ;  0, gr is essen- 
tially a two-parameter (0, r) family. Note that  g$/~e C(g, h~#) implies 
g~/~=(1-n-~h~)W~gW2+n-W~h~#+o(n-~n) and hence P~(-; 0, g~/2, #)=p~(. ; 0, 
g'/~ ~-^/--~/~ #) at r = 0  where r.=r+n-W~h. The H&jek's [7], [8] the- 

( ~ n ) ~ k  '~ /~ 
orems apply to this two parameter family at (0, 0), it follows from 
Lemma 1.3 and Proposition 1.1 that,  for all (0~, g~)e O• h~#) and 
any regular estimator t~ of 0, (2.1) holds. Note that  Lemma 1.3 im- 
plies the convolution representation (2.1) is free of the chosen direc- 
tion #. I t  completes the proof. 

THEOREM 2.2. Suppose that the assumptions of Lemma 1.2 and 
Proposition 1.1 hold, and that l(.) is a loss function satisfies the Hhjek's 
conditions : 
( i ) l(x)=l([xl), (ii) l(x)~_l(y) i f  ]xl~_lyl, and 

(iii) f" l(x)exp(-2-12x2) dx<c~ for all 2>0 and l(O)=O. Then with 
j -  

f ,=- f (X;  0~, g~), (0~, g,) E exC(g) ,  

(2.2) lim inf sup Efl[nl/~(O~- 0)] ~E[I(Z0)] , where Zo- N(O, 1/I0), 
n--~ #n (an'%) 

[o=4a 2 [Ip][~/(1-- 02). Furthermore, i f  the equality holds for a nonconstant 
l(.), then under Pf, 

PROOF. 

a s  n - - - ~  o o  . 

lim inf sup Efl[n~n(O.--6)] 

- lira inf sup Ef, l[nV~(8,~- 0)] 
~-~  # .  (o., (7.) ~ e x c(g)  

>=lim inf sup El(x; #~, ~)l[nW2(6,--O)] 

which, by Lemma 1.2 and Proposition 1.1 and the parametric model 
local asymptotic minimax theorem of H~jek [8], is >-_E[l(Zo)] ; and more- 
over, equality in the final step holds only if, under P f, 

[n~/2(O~-O)-2n-w~ ~: X~_~.p(X~-OXj_t)g-W2(Xj-OX~_~)]--~O 

that  is, the limiting law of rim(8,--0) is N(0, [4~llpll~/(1-0~)]-~). We 
have essentially guessed the lower bound in the above inequality from 
Theorem 2.1 and local asymptotic minimax theorem of Hfijek [8]. 
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