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Summary 

This paper is concerned with the consistency of estimators in a 
single common factor analysis model when the dimension of the ob- 
served vector is not fixed. In the model several conditions on the sam- 
ple size n and the dimension p are established for the least squares 
estimator (L.S.E.) to be consistent. Under some assumptions, p/n---.O is 
a necessary and sufficient condition that  the L.S.E. converges in prob- 
ability to the true value. A sufficient condition for almost sure con- 
vergence is also given. 

1. Introduction 

A common factor analysis model belongs to the family of covari- 
ance structure models and asymptotic properties of their estimators 
have been studied by many authors. Anderson and Rubin [1] first 
formulated factor analysis as a mathematical problem and proved the 
consistency and the asymptotic normality of the maximum likelihood 
estimator (M.L.E.) for the structural parameter.  Asymptotic proper- 
ties of the generalized least squares estimator (G.L.S.E.) were investi- 
gated by Browne [2]. 

On the other hand, Tumura and Fukutomi [6] and Fukutomi [3] 
reported, by using numerical examples, that  the M.L.E. can be a dis- 
continuous function of the sample variance matrix. Kano [4], however, 
showed that  each of the M.L.E. and G.L.S.E., as a function of the 
sample variance matrix, is continuous at least at the true variance 
matrix, and hence is consistent. 

When the distance between the sample and true variance matrices 
is not small enough or the sample size is not sufficiently large, these 
estimators are quite likely to get  far  from the true value because they 
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are continuous but  complicated functions of the  sample. The sample 
size which is required to yield the good estimate depends on the  t rue  
value and the s t ructure  of the model--especially the dimension, i.e. 
the number  of items. 

The previous authors studied the  properties of the  consistency un- 
der the assumption tha t  the dimension p is fixed but  did not consider 
the  influence of p. Assuming a single common factor analysis model, 
this paper investigates how the sample size n should be increased so 
tha t  the  least squares est imator (L.S.E.) is to be near the t rue value 
as the  dimension p varies. Particularly, in Section 2 some conditions 
on ~ and p are given under which the-L.S.E,  converges to the  t rue  
value in probability or almost surely. These results are extensions of 
the results in Kano [4] although we restr ict  the number  of common 
factors to one and the  estimation method  to the  least squares method 
in this paper (see Lemmas 1 and 2 in Section 3). 

2. Main results 

Consider a common factor analysis model given by Williams [7] 
which is known to be free from factor indeterminacy under some 
conditions. An infinite dimensional random vector x=(X~, X~,...)' is 
said to conform to a single common factor analysis model if there exist  
scalars u~>=0, a~ ( i=1 ,  2 , . . . )  and uncorrelated random variables Y and 
E~ ( i=1 ,  2 , . . . )  wi th  zero mean and uni t  variance such tha t  

X~-a~Yq-u~E~ (i=1, 2 , . . . ) ,  

where (a ,  a2,- . . ,  u ,  u2, . . . ) '  is a s t ructural  parameter  (vector) and Y is 
a common factor of ~. Since the model is scale invariant, we can as- 
sume without  loss of generality tha t  

(A.1) a~+u~=l  ( i=1 ,  2 , . . - ) .  

For any positive integer  p, let ~ p = ( X , . - - ,  Xp)', ap=(a,..., ap)' and 
Up-d iag  ( u , . - . ,  up), which stands for the  diagonal matr ix  with diagonal 
elements u , . . . , u p .  Then we have 

(2.1) Var {xp}--apa'-PU$ (=~, say),  

which means tha t  ~ conforms to an ordinary single common factor 
analysis model with  dimension p. 

Let  ~p~=(X~,...,Xpk)' for k=l , . . . ,n  be a (projective) random 
sample taken from the single common factor analysis model. The pur- 

pose of this paper is to find conditions tha t  the  est imator (d~p, ~rp) for 
the  (projective) parameter  (ap, Up), which is constructed from the above 
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sample, converges to the true value in probability (or almost surely), 
i.e., 

Ha~p-ap][ P (~~! 0 and II U~- U~ ]l F (~.~.:~ 0 ,  

where the symbol H" [[ denotes the usual Euclidean norm of matrices 
and vectors. Since the above quantities are double sequences with in- 
dices n and p, conditions on the pair (n, p) will be considered in this 
paper. 

P 

Let S~p=n-'~ xp~x~. For simplicity we omit all subscripts of Ip, 
k = l  

S.p, ap, &np, Up and ~rp. We assume tha t  p>-3 throughout this paper 
because of nonidentifiability for p < 3  (see Anderson and Rubin [1], 
Theorem 5.5). Then the least squares estimator (L.S.E.) for the struc- 
tural parameter (a, U) is determined by the following relation: 

(2.2) [[I--S[[ =min  I[I--S[[ ,  

where 2 7 = ~ ' - b ~  n and I = ~ ' §  2. The L.S.E. exists with probability 
one because the parameter space can be compactified. By the defini- 
tion of the estimator we have easily 

(2.3) HI-IH ~_ HI-SH-b []S-IH <2 H S - I l l  , 

where I is the true variance matrix. 

Write S=(s~), &=(d~,. . . ,  d~)' and U=diag  ( ~ , . . . ,  hp). In order to 
remove the indeterminacy due to the sign of the loading vector a and 
its estimator ~, we pose the following restrictions: 

(2.4) a~>0 and d~>=0. 

We impose the following assumptions about the underlying prob- 
ability space and the true value of the parameter :  

(A.2) there exists a scalar M0>0 such tha t  E(X~)<Mo for all i ~ N, 

(A.3) there exists a scalar a~>0 such tha t  ]a~[>a0 for all i e N, 

where N denotes the set of all positive integers. Under the above 
assumptions we have the following 

THEOREM 1. The L.S.E. (~, U) is determined by (2.2). Then un- 

der (A.1)-(A.3), i f  n-'p-~O, then [[~-aH F-~0 and [[~r~-U2HY~0, i.e., for 
any ~, ~>0 there exists a scalar ~>0 such that i f  n-~p<~, then Pr {[[~-- 

aI [<~ and II0~-U2[]<~,} >i--~2. 

In order to establish the converse of Theorem 1 we fur ther assume 
the following 
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(A.4) there exists a scalar uo>O such tha t  u~>uo for all i e N, 

(A.5) there exists a scalar m0>0 such that  Coy(X2, X])>mo for all 
i , j~N,  

(A.6) there exists a scalar r > 0  such tha t  

lim E p-1 (X~-  < ~ . 

Remark. The assumption (A.5) is satisfied if for any i and j ( iCj ) ,  
(X~, Xj) has the bivariate normal distribution with E(X~)=O and inf 

t , j e ~  

IE(X~Xj)I>O. The assumption (A.6) guarantees the Liapunov condition 
and it can be replaced by the following assumption: 

(A.6)' there exists a random variable X with E(X ' )<r  such that  IX, I 
< X  (w.p.1.) for all i ~ N, 

which is sufficient for the Lindeberg-Feller condition. 

THEOREM 2. The L.S.E. (6, U) is determined by (2.2). Under (A.1) 

and (A.4)-(A.6), i f  II(~-all~0 and IIgT2-U~II~0, then n-'p--~O, i.e., for 
any r  there exist scalars 3t,$z>O such that i f  P r { t l ~ - a l l < ~  and 

Theorems i and 2 show that  under (A.1)-(A.6), n-tp--~O is a neces- 

sary and sufficient condition for H5-al[ and ]]U~-U211 to converge to 
zero in probability. 

Finally we give a condition under which the L.S.E. converges to 
the true value almost surely. 

THEOREM 3. The L.S.E. is determined by (2.2). Under (A.1)-(A.3) 
^ 

for every a>0 ,  i f  n-tp~+~--~O then Hd-a[l .... tO and ][U~-U2][ ~--~0, i.e., 
^ 

Pr{ lim tI~-all=O and lira IIUz-U~tt=O}=l, 
f (n, p)--.O f (n,p)--*O 

where f (n ,  p) = n-lp2+% 

3. Proofs of the theorems 

The proofs of Theorems 1-3 depend on the following lemmas, which 
will be proved in Appendix. 

LEMMA 1. Under (A.1) and (A.3), there exist scalars ~ and MI>0 

such that i f  p-1 ~, (~j_a~aj)2<~z, then 
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P P 

~=1 z~3 

LEMMA 2. (i) Under (A.1), 

P P 

E (/~[--u~)'<2 E [(s~,--1)2+(a~--a~) ~} �9 
~=I z=l 

(ii) Under (A.1) and (A.4) there exists a scalar M~>O such that 

P P 

E (s,-1)~_~M~ E {(d:--a~)2+(u~--u:) 2} �9 
Z = I  i : ~  

We are now in a position to prove theorems. 

PROOf Of THEOREM 1. Assume that  4p- '[[S-IH2<3L Then from 
(2.3) and Lemma I we have 

(3.1) [l~-al[~4p-'M, I[ S -  s < M~a ~ . 

When p is fixed, Lemmas 1, 2 and the relation (3.1) imply tha t  the 
L.S.E. is a continuous function of S, as was shown by Kano [4]. 

From the assumption (A.2) we have 

(3.2) E{IIS-.~IP} <n-'p~Mo, 

which implies from Markov's inequality that  if 4n-~pMo/~<3 2, then 

Pr { 4p-~ li S -  2, [I2 ( ~ 21 > 1 -  ~ . 

This implies from (3.1) that  

Pr [H&-all2<M~3 ~} >l--e, 

I l a - a l l ~ O  

which proves that  

(3.3) 

Next  we shall prove that  

n-~pMo, we have similarly 

as n- tp-o0 . 

[l~2-u=ll~o. Since E{~=~(s~-l) ~} 

P 

(3.4) ~, (s,~--l)~!~0 as n-~p---,O. 

By (A.1) and Schwarz' inequality, 

P P 

< 2  IIO.,-alp + 8 I10.- alp, (3.5) 

which implies that  

< 
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P ^~ ~ ~-L  n - ~ p . . _ + O .  (3.6) ~,, (a~--a~) 0 as 

It follows from (3.4), (3.6) and Lemma 2 (i) that  

Z (u~--u~) 0 as Q.E.D. 
t = 1  

PROOF OF THEOREM 2. In this part we write S=(s,~r From (3.5) 
and Lemma 2 (ii) we have 

P ^ 

E (s=.-1)~M~{21l~-all"4"Slla-all%liU~-U~ll ~} 

and hence the assumptions of Theorem 2 imply that  

P 

:E (s~.- 1)~A 0. 

It is sufficient to prove that  for any ~>0 there exist scalars $~, ~z>0 

such that  if Pr .--f~ (s,,-1)~<~1 t. >1-82 ,  then n- 'p<r 

We shall show a contradiction by assuming that  there exist a scalar 
~0>0, sequences {n~}, {p~}, {$~} and {$~} such that  
( i ) 8~, ~ > 0  and $~, ~--.0 as l--+~, 

Pr I ~  (s,~,-1)~<~t > 1 - ~  for all I ~ N  and that  (ii) 

(iii) ni*p~>=~o for all l E N. 
From (ii) we have 

(3.7) Pr {(s~,~-- 1) ~ < $~} > 1-- ~ for all 1 6 N.  

It follows from (i), (3.7) and (A.5) that  

(3.8) n~--+ ~ as l - - . r  

By Schwarz' inequality, 

( s , , - 1 ) = = E  n- '  (X}~--I >=p-' n- '  (X,~-I) , 
i = l  z = l  k = l  k = l  

which implies that  

(3.9) Pr vr~/~nr 1 z N (x:~- 1 < OI > 1 -  ~ 

Define 

for all I ~ N.  

Pt nl  

Y~ = ~ (X:~- 1), T~ = ~ Y~ and 
t ~ l  k = l  

n t 

s~= ~ Var (Y,~). 
]r 

Then we can rewrite (3.9) as 



CONSISTENCY CONDITIONS ON THE LEAST SQUARES ESTIMATOR 63 

(3.10) Pr  [{p?~/~n~-'s~(s[*T~)}~<O~]>l--a~ for all l ~ N .  

First we shall show that  s~-~T~--LN(O, 1) as l-~oo. The variable T~ is 
the sum of independent and identically distributed variables and hence 
under (A.5) we have 

Pl Pl 

(3.11) Var (Y~,)= ~ ~ Coy (X: ,  X],)>p~mo and 
z = l  j = l  

(3.12) s] = n~ Var (Y~) > n,p~no. 

From (3.8), (3.12) and (A.6) we have 

n l 

sr <~+') E E{I Y,~ 12+q = n,sr<~+"E{I Y~, I ~+'} 
k = l  

as  l - - ~ r  , 

which implies that  

(3.13) st '  T~ L_. N(0, 1) 

by using the Liapunov Theorem. Under the assumption (A.6)' we can 
use the Lindeberg-Feller Theorem. Since 

r~- -  l~=~ (X:I-1) t < : P ~  (X,~--I)2<P~ ~ (XZ+I)~<P:(X2+I) 2 , 

we have from (3.8), (3.11) and (3.12) 

L ( ~ ) - s r  2 E Y?kdP 
k = l  I Y l k f ~ 8  t 

= {Var (Yz,)} -~ X I Y:ldP 
J [Y/l[>*S/ 

< (p~mo)-I • Ip~(z,+,~,(,m~,,o~,l, P~(X2 + 1)2dP 

=m;1X f (X~+I)~dP---~O as 1--,oo 
X2+i>l(nlmo)l/2 

where P is a probability measure on the underlying probability space. 
It  follows from (i), (3.10) and (3.13) that  p-[~nni-~s~---+O as 1--+oo so that  
by using (3.12) n~p~--.0 as 1--,oo. This contradicts (iii). Q.E.D. 

PROOF OF THEOREM 3. If p is bounded, we have p - ' ] l S - I l I  z .... > 
0 because the assumptions of Theorem 3 imply that  n--~oo and S is 
the mean of independent and identically distributed variables ~ x ~  
(k = 1,. �9 n) with E(xp~x'~) = I .  

We assume therefore that  p increases unboundedly. The assump- 
tions of Theorem 3 imply tha t  n-~p~+=<c for some c>0.  For any p e 



64 YUTAKA KANO 

N, let  ~ be any e lement  of the  set  {n ~ N[~-*p2+'<c}. Since 

~, p-*Ei]IS-III ~} </1//0 ~ n-*p<Moc ~. p-(*+-~<oo , 
p=l p=l ~=I 

we have  p-*][S-III' .... ,0 by using Theorem (iii) on p. 111 of Rao [5]. 
Therefore  it  follows f rom (2.3) and L e m m a  1 t h a t  

(3.14) I[5--all .... , 0 ,  

and hence we have  f rom (3.5) 

P (3.15) ~, (~--a~) 2 .... �9 0 .  
t = 1  

Similarly we have 

E (s.-- i) ~ </I//0 ~-Ip<oo , 
p=I p=l 

which implies 

P 
(3.16) ~ (s~-- 1) 2 .... , 0 .  

~=1 

I t  follows f rom (3.15), (3.16) and L e m m a  2 (i) t h a t  

i i ~ -U~J l  .... , 0 .  Q.E.D. 

Appendix 

In Appendix we give proofs of L e m m a s  1 and 2. For  simplici ty 
we wr i te  b~ and v~ ins tead of &~ and ~ ( i = 1 , - - - ,  p), respectively.  

PROOF OF LEMMA 1. Firs t  we shall show some prel iminary resul ts  
(R.1) t h r o u g h  (R.4), which are re la ted to the  quant i t ies  

( 1 ) c~=b~bj-a~a~ (i, ] = 1 , -  �9 -, p ) .  

(R.1) I f  Ib~-a~l<w, then  ]b,-ail<a~w. 

PROOF. F r o m  (2.4) we have 

(R.2) 
+I)~2. 

Ibl-at[=(b~ +a~)-*[b~--a~[< a?~z < a;tvt . Q.E.D. 

I f  [c~]<~2 and ]b~-a~]<L~ for  some L > 0 ,  t hen  [b~--a~]<a~(L]b~l 

(R.3) I f  ]c,~], ]cj~[, [c~,[<2-Ia~ (<1)  for  di f ferent  i, ] and k, t hen  ,~b 2~-a 2~2~, 

PROOF. [b~-a~]~_[aj[-1{lajb~-bjbd-klb~b~-a~ad} <a~l(LIbd-k l)v2 �9 
Q.E.D. 
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(2) 

Since 

(a) 
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48a~'(c~ + c~ + el,). 

From (1) we have 

(b~b~b~) z = (a~a~ + c~) (a~a~ + c~) (a~a~ + c~) and 

(b :b~) ~ = ( a ~a~ + c ~) ~ . 
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which implies that  

P P 

{b ~ a ~ < " - ~ L  (7 )  ~ - -  ~__~" ~ Z ~ ,  
~=I z~ej 

for some L~>0. 
From (6) and the assumptions of (R.4) we have 

(b~- a~) ~ ~ 48 x 3ag~9~ 

dividing (2) by (3) we have 

( 5 ) b~ = (a~a~ + cjk)-l(a~a~ + c~j) (a~a~ + c~) . 

From (4) and (5) we have (noting tha t  I c~jl<l) 

Ib~-a~l<2a~2(lc~j[+lcj~[+lck~l+lc~ji]c~d)~_4a~2(]c~l+lc~l+lc~d) , 

which implies that 

2 2 2 --4 2 2 2 (b~-a~) ~48ao (c~j+c~ +c~,) . Q.E.D. 

(R.4) There exist scalars w, L ' > 0  which depend only on a0 such that  
for any p>__3 if Ic~jl<w for all 1_~i, j < p  and i C j ,  then 

P P 

3], (b , - -a i )2~P -1L' ~ c~j . 
Z=I z~3 

PROOF. Taking Vs<2-ta~, we have from (R.3) 

( 6 )  (b~--a 0 2 22 ~_48a~-' ( c ~ + c ~ + c ~ )  ~ ~ 

for all different 1~_i, j ,  k~_p, which implies that  

(b~--al)~<48a~ ~ ~ ~ ~. , 

where the summation is extended over all different subscripts 1~ i ,  j ,  
k < p .  Then we have 

p P 
b 2 2 2 -4 2 (p--1)(p--2) ~ (,--a~) ~_3x48ao (p--2) ~. c , , ,  

z = l  z ~ 3  
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which implies that  Ib, l's are bounded and hence we have from (R.1) 
and (R.2) [b,--a,l<ao, provided va is very small. Therefore we have 

Ib~+a,l>ao , 

which implies that  

Ib ,~ ~2-~b •  ~-~b ~ a 2 ~ a - 2 / b  ~ ,,2~ 

Therefore (R.4) follows from (7) and (8). 

for l~_i~_p.  

Q.E.D. 

Let us prove Lemma 1. Since the assumption of this lemma is 
wri t ten as 

there exist at least two different integers k and l (l_~k, l~_p) such that  

which imply that  

P p 

c~j<2~ 2 and ~, c~j<2~ 2 , 
1=1 2=1 
J C k  J ~ l  

]c~j]<2$ for every j with 1_~3_~p and j ( r  and 
(9) 

]ctj]<2~ for every j with l ~ j _ ~ p  and 3" ( r  

Take 2~<2-~a~. Then using (R.3), we have from (9) 

(b~--a3)2~48 • 3a~'• (2~) 2 for l~_j<_p,  

which implies that  there exists L2>0 such that  

Ibd<L~ for l ~ i ~ p  (10) 

and that  

(11) 

in view of (R.1). 

I bl -- al l < 24a~ ~ 

We can assume that  k r  without loss of generality. 
Then using (R.2), we have from (9)-(11) 

(12) ]b~-akl<a~'(12a~SL2+l)x2~ (--Lsx2~, say). 

Using (R.2) again, we have from (9), (10) and (12) 

(13) Ib j -a j l<ao ' (L2L~+l )x2~  for l~_j<=p and j ( r  

From (10), (12), (13) and (A.1) there exists a scalar L~>O such that  

(14) [c~l=lb,b~-a~ajl<L4~ for l ~ i ,  j_~p and i C j .  
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Therefore Lemma I follows from (14) and (R.4). Q.E.D. 

PROOF OF LEMMA 2. Since the  objective function (2.2) is wr i t t en  
a s  

we have 

P P 

II -Sll = ~ ( a , a j - s ~ ) 2 - t  - ~ (a~-t -u~-su)  2 , 

2 s , -  b~ if b, < s , ,  
(15) v 

0 if  b~>_-s,. 

When b~<s , ,  it follows f rom (15) and (A.1) t ha t  

(16) v~-  u~ = ( s , , -  1 ) -  (b~- a~). 

When b~=s , ,  it follows f rom (15) and (A.1) t ha t  

(17) O < = u ~ - v ~ _ l - b ~  + l b ~ - a 2 d ~ l l - s . l + I b ~ - a ~ l  . 

From (16) and (17) we have 

(v -~, - -  u~) 2 ~_ 2 { ( s . -  1) 3 + (b ~, - -  a2,) 2 } 

for eve ry  i. Therefore  the  proof of Lemma 2 (i) is complete. 
Let  us prove Lemma 2 (ii). When b~-,<s,, we have from (16) 

(18) ( s , , -  1) 5 N 2 {(v~ - u~)2+ (b~- a~) ~} . 

When b~, >= s ,  and s~ > 1, we have 

(19) ( s ~ -  1) 3_~ (b~-- 1) ~ < (b~- a~) 2 . 

When b~>=s, and s ~ l ,  we have f rom (15) and (A.4) 

(20) (s~, -- 1) 2_~ 1 < u;4(v~-- u2~) 2 . 

I t  follows f rom (18)-(20) tha t  

( s ~ -  1) 2 ~ 2(b~- a2~) 2 + ug4(v~-  u-:) 2 

for eve ry  i, which proves Lemma  2 (ii). 
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