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Summary 

In mult iparameter  estimation for mult ivariate  discrete distributions 
with infinite support, inadmissibility problems in situations where the  
mult ivariate  probability distribution function is not a product of the  
one-dimensional marginal probability distribution functions have previ- 
ously been unexplored. This paper examines the  inadmissibility problem 
in some of these situations. Special a t tent ion is given to est imating 
the mean of a negative multinomial distribution. In est imating the  
mean vector, certain Clevenson-Zidek type estimators are shown to be 
uniformly bet ter  than the usual est imator  under  a large class of gen- 
erally scaled squared loss functions. Some of the  results are general- 
ized to other  multivariate discrete distributions and to situations where 
several independent negative multinomial distributions are considered. 

1. Introduction 

There has been considerable interest  in the  problem of mult iparam- 
eter estimation for one-parameter discrete exponential families. Partic- 
ular interest  has been given to simultaneous estimation of the  means 
of several Poisson random variables. Various improved Poisson means 
estimators have been shown to dominate the maximum likelihood esti- 
mator  (MLE) uniformly under quadratic type losses. These results can 
be found in Peng [7], Clevenson and Zidek [2], Tsui [9], Hwang [5], 
Tsui and Press [11], and Ghosh, Hwang and Tsui [3], among others. 
The last paper also provides a review of the research in the  general 
area of simultaneous estimation for one-parameter exponential families, 
including the  Poisson distributions and the  negative binomial distribu- 
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tions as special cases. 
In all of the previous research, the  underlying marginal distribu- 

tions are assumed to be independent  of one another.  This paper ex- 
amines the  simultaneous estimation problem in some situations where  
the  underlying marginal distributions are dependent.  

Let  X=(X1,..., X~), n>-2, be a random vector which has a neg- 
ative multinomial distribution (also called a multivariate negative bi- 
nomial distribution), NM(k, p), with probability distribution function 
equal to 

(1.1) p(X~=x,... ,X,,=xnlk, p)_ - F(k+Z) q~-[p~, 

n 

where k>O, Z = ~  x~, p=(p , . . . ,  p~), p~>O, x ~ = 0 , 1 , 2 , . . . ,  for i = 1 , . . . ,  
t = 1  

n 

n, and q = l - ~  p~>0. Note tha t  the  X~'s are positively correlated and 
t z 1  

the mean of X~ is ~=kpJq. 
Bates and Neyman [1] provide an application of the negative multi- 

nomial distribution in models represent ing accident proneness; other  
applications are described in Neyman [6]. Sibuya, Yoshimura and Shi- 
mizu [8] provide a comprehensive review of the properties of the neg- 
ative multinomial distribution. In particular, many situations where 
such a distribution arises are described. For example, suppose that ,  
given a>0 ,  X , . . . ,  X. are independent and have Poisson distributions 
with means a ~ , . . - ,  a~ ,  respectively;  suppose fur ther  tha t  a has a 
gamma distribution. Then the unconditional joint distribution of the  
X~'s (after integrat ing out a) is a negative multinomial distribution. 
Thus, the negative multinomial distribution can be viewed as an n- 
variate "dependent  Poisson distr ibut ion".  Note tha t  in (1.1), if 0~= 
kp,/q, i = 1 , . . . ,  n, are kept  fixed while le t t ing k-~c~, then the  random 
variables X , . . . ,  X~ become independent  and have Poisson distributions 
with means 0 , . . . ,  0n, respectively. Therefore, a negative multinomial 
distribution NM (k, p), with a large value of k, is close to the  independ- 
ent  Poisson distribution case. 

Suppose tha t  X=(X , . . . ,  X,) has a negative multinomial distribu- 
tion NM (k, p), given in (1.1). One problem of interest  is to est imate 
simultaneously the  means ~ , . . . ,  ~. of X , . . . ,  X., respectively. The 
maximum likelihood estimation (MLE) of ~ = ( 8 , . . . ,  0~) is 8~ 
For this case of dependent X~'s, it will be shown tha t  8~ is uni- 
formly dominated by a class of simultaneous means estimators 8(X)= 
(01(X),. . . ,  8~(X)) under a large class of loss functions of the form 

^ n ^ 

(1.2) LK(8, O(X)) = E K(O,) (~,- O,(X)y/O, , 
% = 1  
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where K(.)  is a nonincreasing function and K( . )>0 .  
Some of the improved estimators ~ have the  form 

0 

Z where b>=(n-1), 0 < c < 2 ( n - 1 ) ,  and = ~  X~. The estimators given by 

(1.3) are proposed in Clevenson and Zidek [2] for the independent Poisson 
distributions case. A proof of a result  more general than this is pro- 
vided in Section 2. The proof, which is similar to tha t  of Theorem 2.1 
of Clevenson and Zidek [2], does not use the  difference inequality method 
commonly used in simultaneous estimation problems for discrete distri- 
butions. 

What  if the  simultaneous means estimation problem mentioned 
above involves several independent negative multinomial distributions ? 
Using a difference inequality to be developed, we show in Theorem 3 
tha t  the usual estimator of the means is dominated by a large class of 
the  estimators under the normalized squared error loss L,, a special 
case of (1.2) with K(.)_=I. Tsui's [10] result concerning several inde- 
pendent  negative binomial distributions is a special case of the  new 
result. When only one negative multinomial distribution is considered, 
this difference inequality proof provides an alternative proof of the  re- 
sult in Section 2 under L1. The difference inequality proof, however, 
cannot establish the dominance result  under the general loss (1.2). 
Fu r the r  generalization of the results and concluding remarks are given 
in Section 4. 

2. One negative multinomial case 

Suppose X=(X1,. . . ,  X~)has the  negative multinomial distribution 
NM(k, p), given in (1.1). Theorem 1 shows tha t  in this case of de- 
pendent  X~'s, the usual estimator,  ~~ of the mean vector E(X) 
=(01,..., 0~), is dominated uniformly by a class of estimators under the  
general loss function given in (1.2). The proof of Theorem 1 makes 
use of several facts which are s tated as lemmas below. Recall tha t  

O~=kp~q -~, and hence the sum O.----NI, O~=k(1-q)/q and O~07~=p~ p~ 

=p~(1--q)-l. 

LEMMA 1. Suppose X = ( X , . . . ,  X=) has the probability distribution 
function given by (1.1). Then 

n 

(1)  conditional on Z---P, X~, X= (Xt , . . . ,  2(=) has a multinomiaI distri- 

bution and 
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(2.1) 

(2.2) 

(2 )  

(2.3) 

(2.4) 

Exl= (X,)=ZS,8- ~ , and 

Ex~ z (X:) = Z8~87~(1 - ~,87 ~) + Z~8~87 ~ , 

where Exlz denotes expectation with respect to the conditional dis- 
tribution of X given Z. 

= X  The sum Z- -~ .  ~ has a negative binomial distribution with prob- 

ability distribution function equal to 

P(Z=z)= F(z+k) q~(1--q)', z=O, 1 , . . .  
z!F(k) 

and Ez (Z) = k(1--q)/q= 8.,  

where Ez stands for  expectation with respect to the distribution 
of Z. 

LEMMA 2. Let Z be a random variable. Suppose hi(.) and h~(.) 
are real-valued functions. Then, i f  hi(z) is nondecreasing and h2(z) is 
nonincreasing in z, then 

(2.5) E [h,(Z)h~(Z)] ~ E [h,(Z)] E [h2(Z)], 

provided that all the expected values above are finite. Moreover, i f  h,(z) 
is strictly nondeereasing, h~(z) is strictly nonincreasing and Z is not a 
degenerate random variable, then the inequality in (2.5) is strict. 

LEMMA 3. Suppose K(.)  is a nonincreasing real-valued function 
such that K(.)>O. Suppose 8~>0, i : l , . . . ,  n. Then 

(2.6) 
n ~=1 r  

The proof of Lemma 3 follows directly from Lemma 2. 

Let 5(X)=(51(X),. . . ,  5~(X)) be an estimator of 8. Denote by R~(8, 
5)=EL~(8, 5(X)) the risk function of 5, where LK(8, 5) is given in (1.2). 
For the special case K( . ) - - l ,  denote the corresponding risk function as 
R,(8, 5). The notation is used throughout this paper. 

THEOREM 1. Suppose X = ( X , , . . . ,  X,) has the negative multinomial 
distribution NM (k, p), given in (1.1). Let 8*(X) be an estimator of  the 
mean vector 8 = (8, , . . . ,  8~) of X defined by 

(2.7) 8*(X) = [1 - r247 b)]X, 

where Z =  ~, X~, b > O, and the real-valued function r satisfies 
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(2.8) 0~_r {2b, 2 ( n - l ) } ,  
and 

(2.9) 4(') is nondecreasing and r ) ~ 0 . 

Then, under the loss function given in (1.2), the difference in risk 
functions of 5*(X) and 5~ respectively, is 

(2.10) ~t~RK(8, 5*)--RK(O, 5~ for all 

with strict inequality for some 8. That is, 5*(X) dominates 5~ uni- 
formly under the loss function (1.2). 

PROOF. For notational convenience, let Ko=~, K(O~) and K~=~. ~ 
~=1 ~=1 

�9 K(8~). The difference in risk functions of 5" and 5 ~ is 

(2.11) ~/=Ez Extz {~or'g(o~)[-2(X~-O,)(Z§ 

r +~2(Z) (Z~- b)-~X2]f X 

=Ez Ex,z f,~ 07~K(8,)[28,(Z+b)-Ir 

-t- ( ( Z +  b)-2~2(Z) - 2(Z-i- b) - 'r  . 

By Lemma 1, (2.1) and (2.2), (2.11) becomes 

(2.12) 871Ez {2Z(Z+b)-Ir Z[(Z§162162 
• [Ko-K~OTI+ZKIO71]} 

= 0- I Ez {2Z(Z+ b)-'r -- ZO71) § Z2(Z+ b)-2r ~ 
-~ Z((Z+ b)-Zr -- 2(Z+ b)-'r [K0-- K,O: ~] } .  

Since hl(Z)=Z(Z§162 is nondecreasing in Z by (2.8) and (2.9), and 
h2(Z)=(1--ZO71) is nonincreasing in Z, (2.5) of Lemma 2 and the fact 
tha t  Ez (1--Z8_')=0 imply that  the first summand in the braces in (2.12) 
has expectation less than or equal to zero. To complete the proof, it 
is necessary to show that  the expectation of the sum of the remaining 
two summands in (2.12) is less than or equal to zero. The expectation 
of these two summands is 

(2.13) Ez {8:IZ(Z+b)-2r162162 
-2(Z+b)(Ko6.-KI)]} 

= Ez {871Z(Z+ b)-~r [(K08. - K~) ( r  25) 

+ Z(r �9 

By (2.6) of Lemma 3, nKl~_Ko6.. Moreover, r and r by 
(2.8), and hence (2.13) is less than or equal to 
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Ez {07'Z(Z+ b)-~r 1) (r - 2b) + Z(r - 2 ( n -  1))]} ~_ 0 ,  

again by (2.8). Therefore, (2.10) holds. 

Remark. Recall tha t  the case of independent  Poisson random vari- 
ables X~ is a l imiting case of X = ( X , . . . ,  2(,) with a negative multi- 
nomial distribution. Hence, Theorem 3.1 of Clevenson and Zidek [2] 
can be viewed as a special case of Theorem 1. 

The case of simultaneously es t imat ing the  means of several inde- 
pendent  negative multinomial distributions is considered in the  next  
section. Theorem 2 provides a result  similar to tha t  in Theorem 1, 
bu t  for this mult ivariate negative multinomial case. The proof of 
Theorem 1 can be modified to prove Theorem 2, but  the  resulting class 
of dominating estimators is small. A large class of estimators dominat- 
ing the  usual estimator can be obtained if the loss function used is 
the  special case of (1.1) with K(- ) - - I .  The proof of the lat ter  result  
uses the  difference inequality method.  The result  and the proof will 
be discussed fur ther  in the  next  section. 

3. Multivariate negative multinomial case 

In this section, the following set t ing is assumed: 
For ]=1, . . . ,  m, X j=(Xj , . . . ,  Xj~j) has a negative multinomial dis- 

tr ibution NM (kj, pj), where k j>0 ,  P~=(Pj1,'" ", Pj~j), pj~>0, and qj=l-- 
nj 
:E pj~>0. Fur thermore,  the Xj, ]=1, . . . ,  m, are mutually independent.  
Z=I 

The random vector X = ( X , . . . ,  X,)  is said to have a multivariate neg- 
ative multinomial distribution. Let  Oj=(Oj,..., Ojnj) be the mean of 
Xj and let 0=(8, . . . ,  8,). This set t ing will be referred to as a multi- 
variate negative multinomial sett ing. 

The problem is to estimate 8 based on X. The corresponding loss 
function (1.1) in the above set t ing becomes 

m n j  

(3.1) LK(8, @) = E E K(#j,) (0j,--6~,)'/0~,, 
J = l z = l  

where  8(X) is an estimator of a. Denote 

n j  m 

(3.2) Z~=EXj, ,  Z = E Z j ,  
~=1 J = l  

(3.3) Oj=kjpj/qy, 
n 

#j. = ~ Oj~ = k~(1-- q~)/qj, 
~,=1 

nj nj 
(3.4) gj0 = ~ K(0j~), Kjl = 52. 0j~K(0~,), n ,  = Min {nj} . 
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Theorem 2 below provides a class of estimators O(X) of 0 uniformly 

dominating ~~  under loss (3.1) for the case n.>=2. 

THEOREM 2. Let X= (X , .  �9 X,~) be as described in the multivariate 

negative multinomial setting. Suppose n,>-2. Then the estimator ~*(X) 

given in (2.7) uniformly dominates O ~  under loss (3.1) i f  the 
function r in (2.7) satisfies conditions (2.8) and (2.9) except that the 
value of n in (2.8) must be replaced by n,.  

PROOF. Given Z = ( Z , . . . ,  Z~), the conditional expectations of X:~ 
and X}~ have similar expressions as  in Lemma 1, (2.1) and (2.2). Pro- 
ceeding in the proof of Theorem 1, the difference in risk functions, z/, 

of O*(X) and 8~ can be shown to be less than or equal to an ex- 
pression similar to that  of (2.13), namely, 

m 
(3.8) d~7,, Ez{87.'Zj(Z+b)-~c(Z)[(Kr j~l 

+ Zj(r 2(Kj08r -- gr 2(Z-- Zj) (Kj0O,. - K:~)] }. 

Now, (2.6) of Lemma 3 implies njKj,~_KjoSj.. The assumed conditions 
on r then imply that (3.3) cannot exceed zero and the proof is com- 
plete. 

For the case of several independent negative binomial distributions, 
that  is, for n . - - l ,  the proof of Theorem 2 does not seem to be modi- 
fiable to produce estimators 8*(X) dominating g~ under loss func- 
tion (3.1). However, if the loss function is L,(8, 8), the special case of 
(3.1) (or (1.1)) with K( . ) - - I ,  it can be shown by using the difference 
inequality method that 8 ~  is dominated by a class of estimators 
even for n . = l .  The result is summarized in Theorem 3. For simpli- 

city, denote n*=Max {nj} and n . = ~  n~. 
j=l J=l 

THEOREM 3. Let X = ( X , - . . ,  X~) be as described in the multivari- 
ate negative multinomial setting. Then, to estimate the mean @ of X 

^ 

under loss function L~(@, 0), the estimators given in (2.7) dominate the 
estimator 5~ provided that the function r in (2.7) satisfies 
(2.9), 

(3.4) 

(3.5) 
and 

b > n * - - I ,  0~_r Min {(n.-1), b}, 

(Z+b)-'C(Z) is nonincreasing in Z.  

E 2--1 1 With the convention that  ,=~n'=O for a~O, the i+~__ln~ th coor- 

dinate of an n.-vector of real values is called the (ji)th coordinate of 



52 KAM-WAH TSUI 

the vector for simplicity. Thus, the ( j i ) th coordinate of X is X~,. Let  
e~ be the n.-vector whose (j i) th coordinate is one and whose other co- 
ordinates are zero. The following lemmas are useful in proving Theo- 
rem 3. 

LEMM~. 4. Suppose X=(X1, - - . ,  X~) is as described in the multi- 
variate negative multinomial setting. Suppose g(X) is a real-valued 
function such that 

(3.6) E g(X)< oo, 

Then 

(3.7) 

(3.8) 

and 

(3.9) 

PROOF. 

and g(X) =0 i f  X j ,~O.  

E {py,g(X)} = E {Xj ,g(X- ej,)l(g~ +k~-  1)} , 

E {g(X)lPj,} = E  {(Zj+kj)g(X--eDl(Xj,+l)}, 

X~, q-- 1 g(X+ej,) 

g ( X + e ~ , - e j , )  -- E Xy,--g( X )  . 
,,, X~,+I  

The proofs of (3.7) and (3.8) are similar to the one in Hwang 
([4], p. 19-20), where several independent negative binomial distribu- 
tions were considered. The proof of (3.9) follows from (3.7) and (3.8) 

nj 

and the observation that  O~=k~p~dqj and q j = l - ~  pj~. 
Z=I  

LEMMA 5. Suppose X = ( X , . . - ,  X,~) is as described in the multi- 
variate multinomial setting. Let O ( X ) = X +  f ( X )  be an estimator of  O, 
where f ( X )  is an n.-vector of  real-valued functions fy~(X), j =  1 , . . . ,  m, 
i=  1 , . . . ,  nj such that f ~ ( X )  satisfies condition (3.6) in  Lemma 4. Then 

under the loss function LI(~, 0), the difference in risk functions of  a(X) 

and a ~ (X)  = X is 

(3.10) d -- R(0, 0)-- R(0, 0 o) = ~ E [Dat(X) + Dj2(X; k j)] 
j = l  

where 

(3.11) 

(3.12) 

nj nj 

D~,(X) = N f ' ( X +  e~,)/(Xj,+ 1) + 2 ~. [f~,(X+ e j,) -&~(X)] ,  
~,=1 Z = I  

f , , (X+ ,,) $2..,~.jt f r k,DAX; k,)= N z, Xj,+I ,,, X,,+l 

+ 2 ~, , (X+ e j,) - E Xltf~,(X+ e j,-- ejt) 
*=1 t#~- 
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-xj,L,(x)] . 

PROOF. 2 = E  [f],(X)/O~,4.2(fjdX)/O~,]). Applying identity 

~ X  (3.9) of Lemma 5 consecutively with g(X)=f)~( ) and g(X)=Xj,fj ,(X) 
yields (3.10) after some algebraic manipulations. 

From (3.10), a sufficient condition for an estimator O(X)=X4. f (X)  
to dominate O~ under loss function L~(0, 0) is that  the functions 
fj ,  satisfy the difference inequality: 

(3.13) ~, [D~,(X)4.Dj2(X; k j ) ]_0 ,  for all X ,  
J= l  

with strict inequality with positive probability. 

PROOF OF THEOREM 3. Define fj~(X)=--r if Xj~>=0, 
zero otherwise. We show that  these f~,'s satisfy the difference in- 
equality (3.13). First, it is straightforward to show that 

(3.14) ~,~ D~(X)= r Z4.n. Z ] 
~=~ (Z4 .b4 . l )  * Z4.b4.i Z4.b 

By the same argument as in (3.2) of Tsui and Press ([11], p. 95), (3.14) 
is less than or equal to zero if r satisfies (2.9) and (3.4). To com- 
plete the proof, we show that  for each j, Dj~(X; k~)~O for all X. Now, 
from (3.12) and (3.2), 

nj 

(3.15) kjDj2(X; kj)--r r ~ [Z(r ] 
( Z + b + I )  2 (Z+b) z 

_ 2r A 2r 
(Z4-b4-1) (Z-t-b) 

nj  

Using the identity ~, [Z(j,)(Xj~+ 1) + X],] =-" Zj(Zj 4. n~- 1), (3.15) becomes 
i= l  

(3.16) [ z+b+lr -2] kz+br -2]. 
By (3.4), b > n * - l ,  hence (Zj+nj-1)(Z+b) -~ is nondecreasing in Zj. 
Therefore, r -~ is nondecreasing in Zj. By (3.4) 
again, the expressions in both sets of brackets are nonpositive and (3.16) 
becomes 

Z,r ~ r  _ r ~0  
( Z + b + l )  k Z + b + l  Z+bA-- ' 

by (3.5). 
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Thus, Dj~(X; kj)~_O for all X. This completes the proof. 

Remark. If  the  X / s  are independent  binomial random variables, 
tha t  is, n.=l,  Theorem i of Tsui [10] is a special case of Theorem 3 
with b>m-1. 

4. Further Generalizations and concluding remarks 

Theorem 1 states tha t  in est imating the  mean vector 0=(0 t , . - .  8,) 
of a negative multinomial distribution based on the observed X=(X,  
�9 . . ,  X,), n>=2, the  estimator 0*(X) given in (2.7) is bet ter  than the  
MLE O~ under the  fairly general loss function (1.1). The proof 
of the  result  depends mainly on the  properties (2.1) and (2.2) of the  

conditional distribution of X given Z= ~, X,  The marginal distribution 

of Z does not appear to play an important  rote. I t  is therefore natu- 
ral to expect tha t  the  result of Theorem 1 remains t rue  for other  mul- 
t ivariate discrete distributions as long as properties (2.1) and (2.2) con- 
t inue to hold. 

Recall t ha t  the  negative multinomial distribution can be obtained 
as a mixture  of independent Poisson distributions with the gamma dis- 
tr ibution as mixing distribution. More precisely, the probability distri- 
bution function X can be wri t ten  in the  form 

(4.1) P(X~=xl , . - . ,  X~=x,)=E~, P(X,=x,l,~a) , 

x~=O, 1 , - . . ,  for i=l , . . . ,n ,  where P(X,=x~[~a) is the Poisson prob- 
ability distribution function with mean ,~,a and the expectation is taken 
with respect to the distribution F(a) of ~, the  gamma distribution in this 
ease. For other mixing distributions F ( . )  of a, it is not difficult to show 
tha t  the result ing multivariate discrete distribution in (4.1) has proper- 
ties (2.1) and (2.2). Moreover, the components of X are dependent.  

Theorem 1 can be fur ther  generalized in another  direction, namely, 
to an even more general loss function than (1.1). Note tha t  in the  
proof of Theorem 1, the transition from (2.13) to (2.14) made use of 
the  inequality (2.6). Suppose the  loss function used is (1.1), except 
tha t  K(03 in (1.1) is replaced by K~(O,), i=1,.. . ,  n, where the  K~(.) 
are possibly different non-increasing functions and K~(.)>0 for all i. 
Denote this loss function by L*. Suppose fu r ther  tha t  for some ~>1,  
the  functions K~(-) satisfy a similar inequality as (2.6), namely, 

(4.2) ~ ~ 6~K~(6~)<_[~=~ 0~] [~=~ K,(O~)I, for all 0~>0. 

Then, using the  same argument  as in the  proof of Theorem 1, we have 
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the following generalization of Theorem 1. 

THEOREM 4. Let n~2.  Suppose the probability distribution func- 
tion of X--(X~,-.. ,  Xn) is given by (4.1), which includes the negative 
multinomial distribution as a special case. Suppose further that the loss 
function L* is used and that inequality (4.2) holds. Let r be a real- 
valued function satisfying conditions (2.8) and (2.9) except that n in 
(2.8) must be replaced by p given in (4.2). Then the estimator ~*(X) of 
the mean ~ of X, given in (2.7), is uniformly better than the naive esti- 
mator O~ X. 

An example of (4.2) is K~(O~)=r~K(O~) for r~>0, i=1 , . . . ,  n, and 
K(O~) is as described in Lemma 3. In this example, 5=r./max {rj}>l ,  

where r . - ~ ,  r,. To see this, observe that  

By Lemma 1, (4.3) cannot exceed 

r.[~=~ O~r,/r.] [,=~ K(O3rJr.] =r_~[~  o,r~] [ ~  Kdo~)] 

O 

Inequality (4.2) then follows. 
In summary, this paper examined the previously unexplored prob- 

lem of inadmissibility of the usual estimator of the mean of a multi- 
variate discrete distribution with marginal distributions not necessarily 
independent of one another. Special attention was given to the nega- 
tive multinomial distribution. It was shown that  the Clevenson-Zidek 
type estimators given in (2.7) uniformly dominate the moment estimator 
in two major settings. The first setting assumes a general loss func- 
tion, L~, given in (1.1), and involves one negative multinomial distribu- 
tion. More generally, it involves the multivariate discrete distribution 
given in (4.1) and a loss function L*, which is more general than L~. 
The second setting assumes a more specific loss function, L~, which is 
a special case of L~ with K ( . ) - I ,  and involves several independent 
negative multinomial distributions. The superiority of the Clevenson- 
Zidek type estimators over the usual one may hence be considered 
robust both with respect to a large class of loss functions and various 
distributional assumptions. 

UNTVERSITY OF WISCONSIN-MADISON 
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