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Summary 

Exact expressions are obtained for the moments of coverage of 
the random ellipsoid 

T,(2, S(X)) = {y I ( y -  2)'s-*(x) ( y -  2) _ v} 

where X=(x~,. . . ,  x,) is a sample from a N~(p, I )  distribution. This 
leads to approximations for the distribution of coverage and a solution 
to a problem in tolerance regions. An alternative expression is obtain- 
ed for the distribution function of a quadratic form in normal variables. 

1. Introduction 

Suppose that  X = ( x , . . . ,  x , )~  R p• is a sample from the Np(~, I )  
distribution where /~ ~ R p and I ~ R ~• positive definite are unknown. 

A measurable map T: RP• p satisfying P~,z)(P(,,z)(T(X))>=p)>= r 
for every (/~, I )  is called a ~-content tolerance region at confidence r. 

The random variable P(~,z)(T(X)) is called the coverage of T. The 
purpose of this paper is to study the distribution of the coverage when 

(1) T(X) = T~(2, S(X)) = {y [ ( y -  2)'S-'(X) ( y -  2) ~_ r} 

where 2 = n  -~ ~,x~, S (X)=(X-21 ' ) (X-21 ' ) '  and r>__0. We will denote 
~=1 

this coverage by Cr(2, S(X)) hereafter .  As is easily seen the distribu- 
tion of C~(2, S(X)) is independent of (/J, I ) .  Thus if we know the dis- 
tribution of C~(2, S(X)) for each r we can obtain a p-content tolerance 
region at confidence r by choosing r so that  ~ is the 1--r  quantile of 
the distribution of C,(2, S(X)). 

The problem of obtaining such an r has been considered elsewhere. 
In particular when p=l,  Wald and Wolfowitz [14] show how to calcu- 
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late r exactly using numerical integration. Odeh [6] tabulates r for 
various values of ~, ~ and r and fu r the r  compares these exact results 
with the  approximation suggested by Wald and Wolfowitz [14]. Wallis 
[15] considers this problem in the  context  of simple regression and 
Lieberman and Miller [5] generalize to multiple regression situations. 

John [3] considers this problem for arbi t rary  p and obtains a large 
sample approximation. Siotani [12] develops large sample approxima- 
tions for dimensions p=2 and 3. Gut tman [2] obtains large sample ap- 
proximations to the  mean and variance of C,(~, S(X)) and then fits by 
the method of moments  a Beta (p, q) distribution. In all these papers 
the adequacy of the  approximations is not formally established al though 
they seem intuitively reasonable. 

In this paper we provide a method of approximating r which is 
applicable to any sample size. This approximation is based on the  fact  
tha t  the  distribution of C,(~, S(X)) is concentrated on (0, 1) and is thus  
determined by its moments.  This leads to a finite series approximation 
for the  distribution function of C~(~, S(X)) based on m moments  and 
we can then solve iteratively for the  value of r for which ~ is the  
( 1 - r ) t h  quantile of the distribution. We emphasize that  the  approxi- 
mation is appropriate for any sample size. 

2. The moments of coverage 

We note tha t  Tr(~., S(X)) is equivariant  under the  action of the  
positive affine group given by G= {[a, B]ta e R p, B ~ R p• det B>0} ,  
where [a ,  B~][a2, B2]=[a,+Bla2, B~B2] with action [a, B]X=al ' -kBX on 
R p• inducing action [a, B](~, S(X))=(a§ BS(X)B') on the minimal 
sufficient statistic (,~, S(X)). If S e R ~• is positive definite then denote 
by Sr the  unique lower tr iangular  factorization of S as S=SrStr. Thus 

( 2 ) Cr(~,, S(X))----P(~,~(T,(~, S(X)) 
=P(0,,)([P, 2:r]-1[~, S(X)r]T,(O, I))=P(o,,')( T,(z, S)) 

where z=2~.'(2,--l.~),--,N~(O, n-II) is statistically independent of 

( a ) s = 2 ~ I s ( x ) , , s ( x ) ' ~ ( 2 ~ l )  '.-, w , , (L  n -  1). 

This establishes our earlier comment  tha t  the  distribution of C, is in- 
dependent  of (/~, 2:). 

Denoting the  joint distribution of (z, S) by P and ruth moment  of 
C, by ~ we have 

( 4 ) ~ = E [C~] 

-= ~ IR~,•215 {P(o,z)(Tr(z, S))}'dP(z, S) 
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r 

IRpx" P({Y"" ""' y~} C Tr(z, S))dP(~z)(Y) 

= I P(max (y~- z)'S-l(y~- z) <= r)gP(~ l) (Y) 
J RP Xm l'::~<r~, 

= fRP• P(~i)(m~x (y~-z) 'S- ' (y , -z)~_r)dP(z ,  S) 

where Y=(g, , . . . ,  y=) is a sample from the Np(0, I) distribution, the 
third equality follows from Robbins [7], the  fourth equality follows 
from the fact tha t  y ~ C,(z, S) if and only if (y-z) 'S-~(y-z)<r and 
the  last equality is just  an application of Fubini 's  Theorem. We note 
tha t  the  third equality in (4) establishes tha t  evaluating the  ruth too- 
ment  of C, is equivalent to calculating the  probability tha t  the random 
ellipsoid covers m points in R ~ chosen independently from the N~(0, I) 
distribution. 

Given (z, S) we have tha t  (y~-z)'S-1(g~-z) for i = 1 , . . . ,  m is a 
sample of m from a distribution on R with distribution function G(=,s). 
As is well-known the  largest order statistic from a sample of m from 
distribution function F has distribution function F ~. Thus from (4) 
we have tha t  

( 5 ) ~ = E  [G~,s)(r)]. 

The ease of evaluating this expectation depends greatly on the  expres- 
sion we use for G(=,s). We consider this problem in the next  section 
and for convenience suppress (z, S) as par t  of the  notation. Note tha t  

--\ p n+l 
ard results on the distribution of quadratic forms. 

3. Expression for G 

Many authors have considered the  distribution of ( y - - z ) ' S - i ( y - z )  
where yNNp(0, I) and z e RL S e R ~• positive definite are fixed. Vari- 
ous expressions have been obtained for the  distribution function G; for 
example see the bibliography in Johnson and Kotz [4], Chap. 29. For 
our purposes, as we must  raise G to the  ruth power and then take ex- 
pectations with respect to z and S, none of these seem suitable. Ac- 
cordingly a different expression is developed here. This expression is 
seen to be a generalization of tha t  obtained in Robbins [8]. We note 
tha t  our result  is obtained by directly in tegrat ing the  Np(0, I) density 
over the  non-central ellipsoid Tr(z, S). This is perhaps the  most straight-  
forward method of calculating this probability, proceeding along the  
lines of the  results in Ruben [9], and is an alternative to the approach 
taken in Ruben [10]. 
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Using the spectral decomposition for S we have that S--QDQ' 
where Q e R ~• is orthogonal and D=d iag  (dL..- ,  d~) where d~_dz~_... 
>__d~>0. Now Q'y~-Np(0, I) and thus we can consider the distribution 
of (y--b)'D-1(y-b) where b=Q'z and y.~Np(O, I). The ellipsoidal region 
T,(b, D) can be divided into 2 p subregions bounded by the boundary of 
T~(b, D) and the hyperplanes containing the principal axes. A parti- 
cular subregion is completely characterized by A=diag (2 , . . . ,  lp) where 
2,=sgn (y,-b~). Within a particular subregion make the change of vari- 
able y -* t ,  %, . . - ,  %_~ where t=(y--b) 'D-~(y-b)  and vlJ~=2~t-~/2d~(y~--b~). 
Note that  vp--1-v~ . . . . .  v~_~. The Jacobian is given by 

P 

( 6 ) J(y--*t, v , . . . ,  vp_~)=2-~d~ .. .dpt pn-~ T[ v: m �9 
t = I  

Thus we have that  

( 7 ) G(r)--P(o,x)((y-b)'D-~(y-b)-~r) 

I: 
where S,={elO~_v~_l, v p = l - v t  . . . . .  vp_t} and 

P 

~=o j=l kj! 

where k .=k~- I - . . .  §  for k~ ~ No and we sum over all ( ~ . . , . ,  k~) satis- 
fy ing these constraints. Taking the Cauchy product of the p series is 
justified by Theorem 3.5, Rudin [11] as they are individually absolutely 
convergent. Then by the Dominated Convergence Theorem, Rudin [11], 

we have that  ~ f: is. f~(t' v)dvdt equals 

where n = ( n , . . . ,  n~)', ~(n)=(F(n,)...F(n~))]F(n~§ and m(.ln)  
is the moment generating function of the Dirichlet (n) distribution. 

We have that  ~ ( - ~ ) ~ . . . ( - ~ ) ~ = 2  ~ when the k~ are all even 
A 



MOMENTS OF COVERAGE OF A RANDOM ELLIPSOID 27 

and is 0 otherwise. Now 

(10) m(tln)= ~o.." ~ ffJ t~ ... t~, =~, t;l ... t# l 
= ~=~ ill j~! ~=o .~ l~! Ip! ) 

where ffl=~(n+l)/$(n) is the l th moment of the Dirichlet (n). Thus 
we have that  (9) equals 

r~2(km+lva)~27r m T P / 2 + k + /  
(11) 2p~, ~ ~ ~ ~(k+l+1/2)(-1/2) ~ ~ ~ =  ~ 

and putting j~=k~+l=, j=k+l, (11) becomes 

~= (-2b~y I --~- (12) 2,r,,~ ~, e(j+l/2) ~ ,  a~r~ 2 : = + 3  Q 

J=O = ~=0 

Therefore combining (7) and (12) we have that  

X f l  d~  j*+l ~,, x ~J _ . 
~=~ ,=0 (2i)[(j~--i)! 

When b~=b~=...=b~=O this expression agrees with that  given in 
Robbins [8]. 

We obtain an expression for G~(r) by raising (13) to the ruth power 
and expressing this as a series in r. This gives 

m rap~2 / ~ /  1 "r rap~2 (14) G ( r ) = . -  exp~--~bb)~-~) 

• ~, { ~J" ]e[ (~.4_ 3"=)-i 7, i ( j ,  + 1/2) 
j=O j k=l j k .~ j k  

x f l d ~  &~+t t - -  ~J . - -  
,=, ,=o (2i)!(3"~,--i)! 

where j . = j ~ + . . . + j ~ ,  j~ .=j~l+ . . .+ j~p for i = l , . - . ,  m and the summa- 
tion convention is as before. 

When d~ = . . . =  d~= 1 we have that  (y-b) ' (y-b)~ Chi-square (p, b'b). 
In this case the distribution function of the largest order statistic in a 
sample of m from this distribution is given by 

(15) G=(r)=exp(-2 b'b ) {~=~ (b'b/2)~F-~(2 +j) 

Xf[ /'e'\pl2+t-lt'2) " 2 1 1  ,'m, 

- = = , , - o  i ~ ( ~ , - i ) ~  
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Then set t ing d,=...=dp=l in (14) and equating coefficients between 
(14) and (15) we obtain the  nonintuit ive identi ty 

J~ (_2b~)~ (16) Z ~ 2] ~(j~+l/2) ]a[ ~, 
j.ffis ~ffil ~.=& z=, ~ffio (2i)!(j~--l)! 

i 

From this we deduce tha t  the  absolute value of the j t h  te rm in the  
series in (14) is bounded above by 

(17) "/=d'+'='( r ~I'-'( v--_ l(~)-'=/~ ~ -~I IZ-b'bl2P~ 

_-,~,-/=d=J+,-(, \y/~" VF-,,fty/ty/ I p / ( P k-= Z_b,bl2P~ !'" 

Then put t ing  x=md~(rl2)ll-b'bl21 and taking 3" terms in (14) we have 
tha t  the  absolute error in this est imate of G=(r) is bounded above by 

(18) exp(-2b'b)[r-"~'i'd"~'P-'~[P~~2] " ' :  \2 ]x~ l  -'~ "='+' d! ~, 

=exp(_~b,b)(r~'~'i2d,~,l,-,~(PkiPk-"~l f:e,(,_t)Sdt 
tWI ' tYIt-51 -7. 

_<exp {-~(b'b-dlrl l-b'bl21)} ( r\2i~'<','+'+' 

X d'S+",+ll"-'~[P~ (~)-'~ns+iil-b'b/21S+ll(j + 1)' 
1 \21 

where the  first equality is justified by Taylors' Integral  Remainder 
Theorem. 

4. Evaluation of /~, 

We now use the  expression in (14) to evaluate ~ .  To do this we 
need to calculate the  expectation of (14) with respect to the distribu- 
tion for (b, D) where  b-~ N~(O, n- l I )  statistically independent of D which 
has the  distribution of the characteristic roots from a W~(I, n - - l )  dis- 
tribution. By the  Dominated Convergence Theorem this expectation 
can be evaluated by calculating the  expectation of each te rm in (14) 
and summing.  

First  we calculate the expectation with respect to the distribution 
for b. We have tha t  E[exp{-(m/2)b'b}b~q=nm(m+n)-~-Pn(2i)!/(2'i!) 
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and thus 

(19) 
~:o (2i)!(j~--i)[ 

( f f - ~ - /  ~, (.11'(~+~)-' 
,=o i!(3"~t--i)! 

=l I" l ' )"%, \ ~ /  \1 'm,+~ 

Thus we can write the expectation of (14) with respect to b as 

. - 1  

• 
m-t--n 

where 

- ) (21) k,, . . . j ,(~)= z . . .  z ~ r - ' ( ~ + 3 , , + . . - + 3 , , + 1  
J.l=Jt J.p=Jp = \ -~ 

x r(j~,+ 1/2)--. F(j~p+ 1/2) 
F(M+I)-- .F(j .+I) 

Note that  we have the following recursion to aid in the computation 
of k 

Jl Jp 

(22) kj,...jp(m)--- ~ . . . .  ~,, k6_j~,...~p_~p(~n--1 ) 
3ml=O imp =0 

X T'-'(--~-+ j=t + - - "  + j,,,:,,+ i)F(j ,~t+l/2)" ' l - ' ( j=p+112) 
/-'(j,,, + l) �9 r(./,,,,,+l) 

The density of (d , . . - ,  dp) is given by 

2,(2~)~_,/~ d; -~-''" "d; -~-'~<jx[ (d~-d~) exp - (d~+.. .  +d~) 

where A~=2="/*/F(n/2), A~)=A,~A~_~...A,,_~+t and 0<d~< . - .<d~<oo .  
We then want to evaluate expectations of the form E [d~J~ +~.. .d~Jp+~l 
with respect to (23). We denote this expectation by 2jr..~(m). 

To evaluate the ~'s we must integrate an expression of the form 
(23) where the powers of the d, now differ. Towards this end we write 

T[ (d~-d~) as a polynomial in d b . . . ,  d~; namely ~l,r..~pd~*,..-d~% 
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where 

(24) s,= I(i,,..., mli ,+. . .+,: , -  p(s,-1) , ~ _ 

as it is easily shown that  each term must have degree p(p-1)/2. While 
we are not able to obtain closed form expressions for these coefficients 
they can be calculated recursively as ]~ (d~-d2)= ]-[ (d2-d~). 

l<:~<J<p l<i<2<:p--I 
p--1 

~=,r[ ,-~(4~-d~p, and from this we deduce l~. . .~p=(-1)~p (,'--,~p)~' I~...hp_~ where 

I(i,, . . . ,  ip)= [ ( h , - . . ,  h~_,)]h~-~. ..-~h~_~=(p-1)(p-2)/2, O~_h~_p-2, ip 
of the indices satisfy hj=i~ and the remainder satisfy hs+l=is}. 

Thus to evaluate 2 we must evaluate integrals of the form 

(25) l ( i , . . . ,  ip)= f: S: ~ S: ~" "" 1o~'-~ a~...'~ d~, exp t - 1  (d~ § . . .  -t- d~) t 

• ddf..dd~ 

where i , . - . ,  ip are nonnegative integers all of the same parity. These 
integrals can be evaluated in closed form via partial integration or, 
conveniently for computation, recursively. For example when p=2 
this leads t o  2jly2(975 ) --- [ ( n - -  3-~ m + j~ + 3"~)! + 2(j~ -- j2)/(n-- 3 ~- m + 2j2 , n - -  3 
-~m+2j,)]l(n--3)! and l(i,j)=-l/2((i-~j--2)/2)!~-(j--1)l(i,j-2) when 
j>l ,  l(i, j)=l/2((i+j--2)/2)!+(i-1)l(i--2, j) when i > 1  and l(0, 0)--~/4, 
l(1, 1)=1/2. Therefore from (20) we have established. 

T H E O R E M  1 .  

/ T \ rap/2 / 97, \ p/2 

• ')-7];. ~r~--t--n 

t 

No error bound is at present available for truncation of this series. 

5. Approximations 

As mentioned earlier, specification of the moments of the distribu- 
tion in this context in effect specifies the distribution. Of course, as 
it is impossible to evaluate all the moments, we must make use of the 
information given by a finite number to obtain an approximation. One 
method of obtaining an approximation is via Bernstein polynomials; 
see Feller [1], pp. 219-227. In fact we have the result that  if Fr re- 
presents the distribution function of the coverage C~ then F~,~>(t)= 
. Z t ( ~ ( - 1 ) ~ - s A ~ - J ~ j ( r  ) ~ \ J l  converges uniformly to F~ as m--,c~ where 
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/~(r) is the ] th  moment of C~ and z/~ is the kth difference operator. 
Now note that  r~<r2 implies T,,(~, S(X))=~T~(&, S(X)) which im- 

plies C~(~, S(X))<C~,(~, S(X)) which in turn implies F~(t)<F~(t) for 
t ~ (0, 1). Therefore F~(t) is a strictly decreasing function of r. Also 
Fo(t)=l and F.(t)=O and thus there is a unique r such that  F~(fl)= 
1 - y .  

From Feller ([1], p. 224) we have that  (--1)~-~/~-~/~(r)=E [C~(1- 
C~)'-~]. Now reasoning as in Robbins [7] and as in Section 2 we have 
that  this expectation can be wri t ten as 

(29) I P(y~ ~ T~(z, S) i=1, . . . ,  k) 
RPXm 

xP(y~ ~ T~(z, S) i = k + l , . . . ,  m)dP(~,~(Y) 

f~• P((Y~-z)'S-~(Y~-z)~r; i=1 , .  . ., k) 

• P((y~-z)'S-~(y,-z) > r ;  i -  k + 1 , . . . ,  m)dP(~,i) (Y) 

= fR,•215 S).  

Therefore 

(30) 

and the sum in the expectation is the probability that  in a sample of 
m from G(z,s) at most [mtJ are less than or equal to r. This is the 
complement of the event that  at least [mtj +1 of the sample values 
are less than or equal to r and this is the distribution function of the 
[ m t J + l s t  order statistic in a sample of m from G evaluated at r. There- 
fore Fr is a strictly decreasing continuous function of r. Fur ther  
Fc,,o~(t)=l, Fc~,~(t)=O which implies the existence of a unique r~ such 
that  Fc~,~)(/9) = 1 -  r for every m. 

Now let $>0 and suppose there are infinitely many r~<r--~, say 
subsequence {r~}. Then 1-r=F~,~m)(fl)>F(~,~_~)(fl)--~F~_~(p)>F~(~)= 
1 - r  and accordingly no such subsequence exists. Similarly there can- 
not exist infinitely many r~>r+~ and we have proved 

THEOREM 2. r~--~r. 

Thus the r~ we compute from our approximations to F~(~9)are t rue 
approximations. We note that  in proving Theorem 2 we have estab- 
lished the interesting fact tha t  Fc,~,,~(t) is the probability the random 
ellipsoid T~(~, S(X)) will contain at most [mtJ of Y l , " ' ,  Y~ where these 
values are a sample from an independent Np(~, 2:) distribution. 

Fur ther  combining Theorem I and (30) we obtain the following 
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series expression for Fc~.~)(~) where we have put  m0= LmPj ; namely 

t=(m0+l)p (tp+j=i,mo+l<t<m} k=m0+l 

X ( _ 1 ) t - k + , ( 1  1 . ) ' w - t p / z  ~,, kjl...j~a(,)~jl...jp(,)(2) i'/2 " 
t + * b  31+'.-+Jp=~ 

This series is used for calculations. By the  monotonicity results ob- 
tained above once we have obtained a value of r for which the series 
gives a sum less than 1 - r  the  already calculated coefficients of the  
appropriately t runcated series can be used in the  iterative calculations 
to obtain the  value of r solving Fc~.~)(P)=l-r .  

For example when p = 2 ,  n=122,  /~=.9, r = . l  and where we record 
r~.=((n-2)/2)(n/(n+l))r~ we obtain the  following sequence for (m, r~.): 
(1, .106), (2, .380), (3, .651), (4, 795), (5, .864), (6, .897), (7, .912). These 
values were obtained by directly programming the  expression in (31). 
Extensive tabulation of approximate values of r still remains a consid- 
erable programming problem but  the  above results indicate that  it can 
be accomplished by our approach. 

6. Conclusion 

We have obtained expressions for the  moments  of coverage of the  
random ellipsoid T~(~, S(X)). These expressions lead to an approxima- 
tion to the  distribution function of the  coverage C~(~, S(X)). This ap- 
proximation leads to an approximation to the  unique value of r which 
makes TT(2, S(X)) a #-content at confidence r tolerance region. These 
approximations apply for any sample size. 
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