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Summary 

At first we introduce a simple stochastic difference equation, to 
simulate random sampling drif t  in population genetics, which is natu- 
rally obtained from a random collision model. Next,  we introduce a 
random collision model to simulate overdominance model in population 
genetics. We assume in a t ime interval z/t, a random collision of four 
particles, which represents overdominant  selection, takes place at  a 
certain probability, where a particle corresponds to a gene. We as- 
sume tha t  mutat ion takes place by some rate and assume tha t  every 
new muta t ion  is different from extant  alleles. We estimate mean het-  
erozygosity by our simulation method and compare it with the  result  
obtained by using a stochastic difference equation for overdominance 
model. 

1. Introduction 

Random collision model is useful to simulate various models in pop- 
ulation genetics (see Itoh [6]). Recently, the  amount  of good data 
from natural  population on the genetic variability is increasing, and 
the  demand for analysis giving insight into molecular evolution and 
genetic s t ruc ture  of population is becoming increasingly important .  But  
the problems which can be t reated by analytical methods are restricted. 
Even to get  the  numerical result on Fokker-Planck equation is difficult 
when the  dimension is more than two. Hence simulation methods are 
becoming important .  

At  first we introduce a symple difference scheme to simulate random 
sampling drif t  for genetic studies. A simulation method introduced by 
Pederson [14] is known and is a good numerical technique. But  Ped- 
erson's difference equation scheme seems complicated. The method 
presented here is obtained by an approximate descript ion of random 
collision model for random genetic drif t  (Itoh [3], [5], [6]), which is al- 
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ready used by Maruyama and Nei [10], Maruyama and Takahata [11], 
Takahata [15], Maruyama [9], Nei et  al. [12], to discuss genetic vari- 
ability maintained by mutat ion and overdominant  selection in finite 
populations and is shown to be convenient. For the simulation studies, 
it  is necessary to decompose a covariance matr ix  called drif t  matr ix.  
For general covariance matrix,  Cholesky decomposition is usually used. 
Pederson's method also gives a decomposition of the drif t  matr ix  im- 
plicitly. For our case an approximation of the random collision model 
automatically gives a decomposition of the drif t  matr ix  as shown in 
Section 2. There are several models for the studies of random sampl- 
ing drif t  for example Wright 's  [16], Moran's [13] and others ' .  Our 
random collision model also seems to be one of the models which are 
simple and has clear image. In Section 3, we do not use approxima- 
tion by stochastic differential equation. We simulate over-dominant 
selection model in population genetics directly by a four-particle ran- 
dom collision model. When we carry out computer  simulations by sto- 
chastic differential equation we must  descritize the  t ime parameter .  
This makes the  t rajectory go across the  boundary, which is not expected 
from the  stochastic differential equation. Our random collision model 
for overdominant  selection model gives a reasonable behaviour of tra- 
jectory at  the  boundary. We carried out a simulation study by our 
random collision model. We compared the heterozygosity obtained by 
our model with  the  result by Maruyama and Nei [10], and found these 
two results agree well with each other. Hence our result justifies the  
result  by Maruyama and Nei, as well as the result by Maruyama and 
Nei justifies our result. 

2. Simulation method by stochastic diFFerential equation 

In Wright ' s  model it is supposed tha t  each of the genes of the  
next  generation is obtained by a random choice among the  genes of 
the  previous generation and that  the  whole population changes all at  
once. In Moran's model it is supposed that  there are M individuals 
each formed from m alleles A1, A2,.- . ,  A~, and tha t  at  each instant  at  
which the  state of the model may change, one individual of the  alleles, 
chosen at  random, dies and is replaced by a new individual which is A~ 
with probability mdM, where ~n~ is the  abundance of the allele A~. I t  
is supposed tha t  the  probability of any individual "dying" during an 
interval (t, $+dt) and then being replaced by a new individual is ,tdt. 
Hence the mean number  of such events in unit  t ime is 2M and the  
mean length of a generation is 2-t. The following random collision 
model is another  reasonable model. 

Consider a population of M particles each of which is one of k 
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types, A1, A~,. . . ,  A~. The types may represent species, alleles, geno- 
types or other  classification. We then consider random collisions be- 
tween particles, which are assumed to occur at the  rate Idt per t ime 
interval (t, t+dt) for each particle. If a pair of particles of different 
types i and j collide, then after  the collision the  both particles are the 
type i with probability 1/2 and the type j with probability 1/2. If the  
type of the  colliding particles are the same, no change occurs. In this 
random collision model two particles are chosen by random sampling 
without  replacement at first, and from the two particles, two particles 
are chosen by random sampling with replacement. 

We can approximate our random collision model by a stochastic 
difference equation (1). In it, the relative abundance of type i increase 
by c~/xdt)x~(t-)AB,(t) by the interaction with j which results the de- 
crease of the  type j by --c~/~dt)x3(t)AB~(t), where c=~/~]M. Hence 
our random collision model automatically lead to the  following equation 
(1), which has the drift  matr ix c~{xdt)(a,j-xj(t))}At as covariances. 

For i, j =  1, 2 , . . - ,  m, consider 

( 1 ) Axdt) = ~ ca,j4x,(t)xj(t)~B~(t) , 
J = l  

where 

1 for i > j  

a~j= - 1  for i < j  

AB~,(t) ( i > j )  are mutually independent one dimensional normal random 
variable with the mean 0 and the variance At. Let 

x#+~t)=x#)+Az,(t) for i=i, 2,..., m. 

Then this difference scheme represent the random sampling drift of m 
alleles, I, 2,-.-, m whose relative abundances at time t are x~(t), x~(t), 

�9 .., x~(t) respectively. 
Cholesky decomposition is usually used for the decomposition of 

covariance matrix. For our case the method gives the representation 

( 2 ) Axe(t) =c ~ d~(t)ABj(t) 
J=l 

where {d~:(t)}{d~(t)}~={x,(t)(~,j--x:(t))} for a lower t r iangular  matr ix  
{d~(t)} and its transpose {d~(t)}', and ABj(t), j = l ,  2 , . . . ,  m, are mutu-  
ally independent  normal random numbers with the  expectation 0 and 
the variance At. This method is applicable to general covariance matr ix  
and does not  make use of the  speciality of the  drift  matrix.  

Pederson [14] gave a representation in which x,(t+ At) is constructed 
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from xd t+At )  for j = l ,  2 , . . . , i - l ,  and xj(x) for j = l ,  2 , . . . ,  i, as 

7;--I 

(3) (1- 1 [ 
~_, kcABdt)/x,( t)(1--  xdt)) 

1 -  E x2(t) 
L 

2=1 

1 -  j(t) 2~, xj(t)(aj~-x~(t))J , 
3 = I  

where ABe(t), i=1 ,  2 , . . . ,  m, are mutually independent normal random 
numbers. 

Our method require ,~Cz mutually independent normal random num- 
bers for each step, while by the above two methods mutually independ- 
ent m normal random numbers are sufficient. But the equation (1) is 
very simple and the decomposition is explicitly given in it. In our re- 
presentation, the decomposition is given by 

{x~(t) ( o . j -  xj(t))} = L L  ~ 

by m X ~C~ matr ix  L in which a column vector with Wx~xj, ( i>  j) as 
i th component, --~/x~xj as j th  component and 0 as the other compo- 

( ) nent is arranged as the i - j +  k th column. 

3. Simulation method by random collision model 

We discuss the case in which mutation is absent. In the previous 
papers, the author introduced a three-particle random collision model 
for population biology (Itoh [4], [7]). Here we introduce four-particle 
random collision model to simulate overdominant selection model in 
population genetics. 

Consider a random mating population of effective size N, and as- 
sume that  selection and mutation occur deterministically and that, af ter  
selection and mutation, 2N gametes are randomly chosen for the next  
generation. If we assume that  the fitness of heterozygotes is 1 for all 
pairs of alleles and 1 - s  for all homozygotes, and that  every new muta- 
tion is different from the extent  alleles (infinite allele model by Wright 
[17], and Kimura and Crow [8]). Then we have 

E (Jxdt)) = 2Nx~(t) { -- v + s ( J -  xdt))/(1 - s J)} ~t 
(4)  

E (,lx,(t)dxj(t)) = x~(t) (3~j- x2(t)) (~lt) 

by an appropriate scaling of time, where v is the mutation rate, xdt) is 
J n the frequency of allele A~ at time t, = Z x~(t), and N is effective pop- 
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ulation size. The study of the allele frequency distribution in finite 
populations for overdominance selection was initiated by Wright  [18]. 
Approximate formulas for the effective number  of alleles tha t  can be 
maintained in finite population are developed by Kimura and Crow [8], 
Ewens [1], [2] and others. Yokoyama and Nei [19] presented a gen- 
eral formula for the expected heterozygosity for the Wright  model of 
overdominant  selection when population size is larger than a certain 
level. Maruyama and Nei [10] used the equation (1) to study various 
properties of overdominant selection in a finite population by computer  
simulations, simulating the stochastic differential equation with expec- 
tations and covariances given by equation (4). 

In a population there are n particles of m types, A ,  A2,.--, A~. 
Consider the  following four-particle random collision. Four particles 
are chosen from the population by random sampling without  replace- 
ment,  and let the four particles be A ,  A s, Ak, and At. A~ and Aj from 
an individual A,A s, and A~ and Az from A~At. The A~Aj and the  AkAt 
collide and produce two A,Ass with probability 1/2+s,- ~z and two A~Ats 
with probability 1/2+skt,~-, where s~j.~t=--s~.~j. 

(5) 

s/2 

s~r --s[2 

0 

if i C j  and k=l 

if i = j  and k r  

if i=#j and k r  or i = j  and k=l ,  

and then the two A~Ass (or the two A,A,s), split into two A~s and two 
Ass, (or two Aks and two Ats). Hence by the above collision A ,  A s, 
A, and At become two A# and two A #  or two A~s and two Ats. We 
assume tha t  a collision takes place in a t ime interval It, t+dt], with 

probability Cdt. Let the array of alleles frequencies be X=(X1, X2,..., 
X~) at t ime t. We calculate the  expectation E (~X~(t)) and covariance 
E (~IX~(t)3Xs(t)). 

Let e~,.~ .... ~ be the number  of the elements of the  set {ajl%=a~ 
for l< j=< i - -1} ,  and f(X~ 1, X~2,..., X ~ ) = X ~ I ( X ~ - ~ )  ( X ~ a - ~ m ) " -  
(X.~- ~ . . . ~ ) .  For example, 

f ( Xt, )[2, X~, X~) = X~X2( X~- 1) (Xt -- 1),  

f ( X t  , X .  )[1, X3 ) = X~ ( X~ - l ) ( X~ --  2 ) X3 . 

We define random variables X,~.,z(X), for which 

,s(2) 

Pr  (X,,,~t(X)= 1--~ . . / 1  _ \ f ( X .  Xs, X~, Xt) 
\ 2 /  
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i s ,fit Pr  (X~ ~ ( 2 ) = - � 8 9  ~,@ f (X .  X,, X~, X3 
' n(n--1)(n--2)(n--3) 

Pr(X,~ ,~ , (R)=O)=I- -C f(X,X~,X~,X,) ~t.  
n(n-1)(n-2)(n-3)  

We assume all pairs {X~.~, X~t,~} are mutual ly  independent.  To sim- 

plify representat ions we consider an m dimensional linear space, 1 
( ~;, J = l  

R, i, j=l ,  2,..., m[, over a field R which is genera ted by x,A~d~ l x~; 
I 

l inearly independent  elements A~A;, i, j= l, 2 , . . . ,  m. (I + 2X~.~)A,A; 
+(I+2X~u~)A~A~ represents the outcome of a collision of A,A~ and A~A, 
during [t, t+At]. We define an amount  of a, ( )~, as follows. For  each 
A,A~, i, 3"= 1 , . . . ,  m, 

(A~A~)~ = 0 if a :/: i, 3", 

(A~A~L=I if a=i, aCj or ar a=j ,  

(A~A~)~ = 2 if i = 3" = a .  

For each e lement  of the linear space, 

( ~-2, xuA.Ajl = ~ zu(A,A.)a. 
z, J=it /~r z,2=I 

(1 + 2X, j,~,)A,Aj + (1 + 2X~.u)A~A,- (A.Aj + AkA,) 
= 2X~j,~,A,A~-- 2X, j,~,AkA~ , 

is the outcome from a collision of A~A~ and A~A~ during 
Hence, let  {i, j ,  k, l} be the set of i, j ,  k and t, 

[t, t + dt]. 

E (AX.)= ~, E (2X~,~A,A~-2X~,~,A~A~)~ 
[ i , j , k , l } ~ e r  

=CsAt ~ f (X .  X;, X~, X~) {(A, A3) _(A~A3.} 
,.~,~=~ n(n--1)(n-2)(n--3) 

-Cs,ft Z f(X,, X~, X~, X,) [(A~AjL--(A~A3~ �9 
,=~,~., n(n--1)(n--2)(n--3) 

Making use of 

Z = Z + "R, + :E + :E + :E , 

a ~ g  a = ~  a ~ k  a = g  a = k  

we have 

E,( E , -  l ) -n(  Eo--1) 
E(AX~)=2CsAt" 2Xa( (n- -1) (n- -2)  ) "  
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We calculate E(dXodX~), for a r  

dX.dX~= E (2X~,~A,A~-2X~,~A~A~). 
[GJ,k,l} ~r 

X Yl, (2Xo,~,~,A,,A~,--2X~u,,~,~,A,,A~,)~ . 
b ' , 3 ' , ~ ' , ~ ' }  ~ 

Hence we have 

E (dX.dX~)= E E [2X.,~(A~A~)o2Xi~,~(A~A~)~ 
(%,J,k,l}~a,~ 

-- 2X~:,~( A~A~)~2X~,~( A~A~)~ - 2Xo,~( A~A~).2X~ ~, ~( A~A~)~ 

+ 2X~,~(A~A~).2X~,~dA~A~)~} 

= ~ {(A~A~).(A~A~)~-- (A,A~).(A~A~)~-- (A~A~)~(A~A~)~ 
{~,3,~,t}~a,~ 

+(A~A~).(A~A~)~}C f ( X .  X:, X~, X~) dt . 
n(n--1)(n--2)(n--3) 

We have 

k=a,l=~ k=~,l=a k,t=a k,l=a ~=~,~=a 

+ N + N + N + N + ~ , +  ~, + ~, 
~=.,~=~ k,l=~ ~,~=~ k,~=~ ~',~=-~ k=fl, lr  k~a,fl ,J=~ 

+ ~ + ~ + ~ + ~ + N 
~ = ~ ,3 :~a , .S  z = ~ , ~ a , ~  i ~ a , ~ , J = ~  z ~ a , ~ , ~ = ~  ~ = a , J ~ a , , ~  

+ ~ + N + ~ + ~ + N 

+ N + N  
r  i , j ~ : a , ~  �9 
k=a,l=~ k=~,t=a 

From this we have 

(6) 

Using 

E (dX.ZX~)= 4 CZtXoX~. 
n ( n - 1 )  

dX~dX~= Z {(AiA:)~-2(A~A~).(AkA~)o+(A~A~)~} . 
[ i , J , ~ , l ]  9 a  

Z = 4  Z + 2  Z + 4  
[GO,k , l }~  i , j = a  Gj=a  z=a 

we have 

(7) E (~XoJXo)= 4 C~tXo(n--Xo). 
n(n-l) 



360 YOSHIAKI ITOH 

Hence we have approximately the following 

E (~xo)= 4--Cs~o(E ~-xo)~t 

E (~tx~Ax~)-~Cxo(~-x~)At 

where x~ =X~/n, for a =  1, 2 , . . . ,  m. 

4. Simulation for infinite allele case 

We assume that  every new mutation is different from the extant  
alleles and in a time unit ~t each of the n alleles is replaced by a 
mutant  with probability (4v/n)C~t. Random collisions and mutations 
take place mutually independently. Hence we have 

E (~xo)=4--Cxo{-v+s(E x~-xo)}~t. 

We choose C=n2/4 and put n=2N. We have 

E (~tx~(t))=2N{-v+sx~(52, x~.-x~)} ~t 
k 

E (~x~x~) = x~(~--  x~)~It 

where x~=XJ2N for a=l,  2 , . . . ,  m. The first equation is approximately 
equivalent with (4) when s is small. The variance caused by mutation 
is negligible. Hence we can use our random collision model as a simu- 
lation method for overdominance model when s is small. We can make 
the expectation and variance coincide to (4), if we choose, the state- 
dependent s~j.kz, 

2 (1 - s  J)  

8 

2(1-s j) 

0 

if i r  and k=l 

if i=]  and k r  

if i=]  and k=l or ig:] and k r  

instead of (5). But here we discuss the case of small s and use the 
rule given by (5). 

A step consists of the following successive two stages. In the first 
stage a random collision of four particles takes place and in the next  
stage a mutation takes place with probability 4v, that  is to say, one 
of n particles is randomly chosen and replaced by a mutant  with prob- 
ability 4v. We repeat this step one by one and take the time average 
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of heterozygosity h = l - Z  x~. Initially we set all of the n particles 
are of one type. We take the time average of heterozygosity over 
the last half duration of the total steps, that  is, we take the time 
average from time T/2 to T, to get the average heterozygosity of the 
stationary state. Our results are compared with the results by Maru- 
yama and Nei [10] in Table 1 

Table 1. Comparison of values of heterozygosity, obtained by the two 
methods, stochastic differential equation and random collision model 

2Ns 4Nv Stochastic differential Random collision Random collision 
equation model model 

Maruyama and n---- 2N---- 50 n = 2N= 100 
Nei [10] T---- 1,000,000 1 T----4,000,000 

0 

5 

0 

5 

0 

5 

0 

5 

25 

0 

5 

25 

0.050 

0.0075 

0.100 

0.0175 

0.500 

0.150 

1.0 

0.5 

0.002 

4.0 

3.2 

1.3 

0.0476 

0.0450 

0.0909 

0.0930 

0.3333 

0.3377 

0.500 

0.480 

0.485 

0.800 

0.802 

0.796 

0.0507 

0.0315 

0.0838 

0.0879 

0.3326 

0.3642 

0.486 

0.533 

0.489 

0.787 

0.786 

0.783 

0.0457 

0.0295 

0.0904 

0.1048 

0.3276 

0.3492 

0.477 

0. 529 

0.486 

0.791 

0.793 

0.790 

/~ for 2Ns=O by Maruyama and Nei [10] are obtained by an analytical formula. 

Finally we briefly mention another possible applications of our model. 
The case with s<0  corresponds to negative overdominance model. Our 
random collision model may provide an effective method to study the 
effect of asymmetric overdominant selection. Another possible applica- 
tion is to physics. If we take into account the space parameter,  our 
model may be a caricature for a kinetic Ising model. 
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