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Summary

It seems empirically that the first digits of random numbers do
not occur with equal frequency, but that the earlier digits appear
more often than the latters. This peculiality was at first noticed by
F. Benford, hence this phenomenon is called Benford’s law.

In this note, we fix the set of all positive integers as a model
population and we sample random integers from this population accord-
ing to a certain sampling procedure. For polynomial sampling proce-
dures, we prove that random sampled integers do not necessarily obey
Benford’s law but their Banach limit does. We also prove Benford’s
law for geometrical sampling procedures and for linear recurrence sam-
pling procedures.

1. Introduction and notations

It has long been known empirically that in most statistical tables
the proportion of numbers with the first significant digit equal to or
less than k (k=1,2, -..,9) is approximately log, (k+1). This phenom-
enon suggested us that the first significant digit from numerical tables
did not occur with equal frequeney, but that the earlier digits appeared
more often than the latters.

After making many counts from a large body of physical data,
Farmer’s Almanaec, Census Reports, Chemical Rubber Handbook, etec.,
F. Benford [2] first noticed this peculiarity, hence this logarithmic law
for the first significant digits is called Benford’s law. This law does
not hold, of course, in every numerical table.

Several authors, such as W. H. Furry and H. Hurwitz [8], S. A.
Goudsmit and Furry [9], R. S. Pinkham [18] and R. A. Raimi [14] have
sought the explanation of this phenomenon by assuming that all phys-
ical constants are selected from a population with some underlying
distribution and have shown that certain assumptions about this dis-
tribution lead to the logarithmic law.

337



338 KENJI NAGASAKA

To B. J. Flehinger [7] it occurred that the smallest population
which contains the set of significant figures of all possible physical
constants, past, present and future, must be the set of all positive in-
tegers. The explanation for Benford’s law should, therefore, lie in the
properties of the set of integers as represented in a radix number
system.

As far as considering the distribution of the first significant digits
it is quite natural to the author also that we restrict ourselves to the
set of all positive integers. But this restriction does not lead auto-
matically the smallestness of the population containing all possible phys-
ical constants.

In this paper we fix the population, as a model, the set of all
positive integers which would contain significant numbers of all possi-
ble numerical constants. From this population, that is the set of all
positive integers, we sample random integers according to a certain
sampling procedure. What kind of sampling procedures produce the
set of random intergers which obey Benford’s law, it is our problem
treated in this paper.

A sampling procedure C is identified to the set of sampled integers
and ¢, is the nth smallest sampled integer of C. The number of sam-
pled integers ¢,, 1<n<N, with the first digit less than or equal to %
(k=1,2, ---,9) is denoted by Ay(C; k) and we define

Py(C; k)y=P}(C; k):_ézv_(fri_k) .

Flehinger considered successive cumulative averages (Holder sums)
of Py(N;k):

PYUN; k)=L STPF(N; k),  1=2,3, ---,
N =1

for C=N and proved that
lim lim Pi(N; k)=log, (k+1) .

-0 N—oo

The limit of successive cumulative averages is called Banach limit.
R. L. Adler and A. G. Konheim [1] proved that the Banach limit is
finitely additive measure on the set of all positive integers and assigns
zero measure on every finite subset of positive integers. Hence it is
quite natural to consider the Banach limit of Py(N; k). Roughly speak-
"ing, the probability that a random integer has initial digit less than
or equal to k seems to be log, (k-+1).

Linear recurrence sampling procedures have been considered with
special reference to Fibonacci numbers. R. L. Duncan [6] proved that
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the sequence {log F,},.,,.. is uniformly distributed mod 1, where F,
is the nth Fibonacei numbers, which signifies that Benford’s law holds
for Fibonacei numbers. L. Kuipers [10] gave another proof of Duncan’s
result.

J. L. Brown, Jr. and R. L. Duncan [4] and L. Kuipers and J-S.
Shiue [12] extended the results in [6] and [10] and proved that the
sequence {log V,}.-1:... is uniformly distributed mod 1, where V, satis-
fies a linear recurrence formula with some restrictions.

J. Wlodarski [17] and W. Brady [3] observed empirically the dis-
tribution of the first digits of Fibonacei numbers and L. C. Washington
[16] reproved Benford’s law for Fibonacei and Lucas numbers.

R. A. Raimi [15] reviewed the first digit problem making clearer
the hypotheses and results with a nearly complete bibliography. P.
Diaconis [5] also tested Benford’s law for a large class of arithmetic
sequences.

In this paper we shall deal with various sampling procedures by
examining for the resulting sampled integers whether Benford’s law
holds or not. In the next section we shall consider linear sampling
procedures and prove that their Banach limit obeys Benford’s law.
Geometrical sampling procedures will be considered in the third section
and Benford’s law will be shown to hold for geometrical sampling pro-
cedures. We shall consider linear recurrence sampling formulae in the
fourth section and prove Benford’s law except some special cases. In
the last section we shall consider polynomial sampling procedures which
are exceptions of linear recurrence sampling procedures. We shall
prove that any polynomial sampling procedure does not necessarily
obey Benford’s law but their Banach limit does so.

Throughout in the following we shall write

logx=logy,x and Inz=log, x.

2. Llinear sampling procedures

In this section we shall consider a linear sampling procedure A(a, d).
A(a,d) is a subset of positive integers of the form a,=a-+(n-1)-d,
where a and d are positive integers. The simplest case: a=1 and d
=1 was considered by Flehinger, which corresponds to the complete
enumeration of aggragates.

Firstly we consider the case for d=1 and arbitrary a. Secondaly
the case for a=1 and any d. Summing up these two cases we shall
treat a general case.

Let us define A=A(a, 1), then the nth smallest integer a,=a+n—1.

Suppose that the initial value a has g digits. The number d(a) of
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g-digits positive integers greater than or equal to a whose initial digits
are less than or equal to k is

(f+1)-107—a,  if 100 <a<(k+1)-107
0, if (k+1)-10'<a <107 .

é(a)=

Let N be the number of sampled integers by the procedure A(a, 1),
then ay=N+a and

A4 =3(@)+k- 10010021 4 N o100
for 10/ —a<N<(k+1)-10/—a,
=8(a)+k-10°-(-l—qj:;_1:-1l
for (k+1)-10/—a<N<10/*'—q.
Thus we obtain

Py(A; ky=AxA; k)N
—1— (9—k)-10/ + 96(a)+9a—k-10°
IN 9N
for 10/ —a=N<(k+1)-10'—a,
_ k.10 n 93(a)—k-107
IN IN
for (k+1)-10/—ax<N<10/.

If we replace N by N-+a, the value Py .(4; k) differs from Py(A; k)
at most O(N™!). Thus we can deduce

9—-k
Y

10k

9% ’

1_ ) 1§.a<k+1

Q(a; k)=lim P}i(A; k)=
! k+1<e<10.

Using the same argument as Flehinger, we have

lim lim PY(A; k)=log (k+1) .

{—00 N—co

Let us define B=A(1, d) and the nth smallest integer b,=1+(n—1)-d.
If a sampled integer b, satisfies

107£b,y <107,
then
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e

where [x] is the greatest integer less than or equal to x. The num-
ber Ay(B;k) of sampled integers with their first digit less than or
equal to k is

im0 [2]

for [1gj]$N< [ﬁ_l_il)_ﬂ]’
=515

fw[m+34w]

10741
SN’[ ].
sN<|[2

Then

Po(B: k)=l 0= R)-107 "
»(B; k)=1 san TOdT)

o [ aeftepae),

- 10k-10/
9dN

+O(N™)

since [x]=2— {x} where 0= {2} <1. Thus we obtain

9—k
9a

10%
9

(1- . lga<k+l

Q(a; k)=Um P.,u(B; k)=
! k+1<a<10.

Replacing @ by «/d in Flehinger’s calculation, we have

llim Ilvlm Pi(B; k)=log (k+1).
For a general sampling procedure A(a,d), we can conclude by
almost the same arguement as used before:

THEOREM 2.1. limlim Pi(A(a, d); k)=log (k+1), where A(a,d)={a

[0 N—oo

+(n—1)-d; n=1,2, ---} for any positive integer a and d.
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3. Geometrical Sampling procedures

In this section we shall consider a geometrical sampling procedure
G=G(c, r), which is a subset of positive integers of the form g,=c-r*!
where ¢ and r#1 are positive integers. Put By(G{c, 7); k) be the num-
ber of sampled integers g, for 1=<n<N with their first digit equal to
k, then we have

THEOREM 3.1. }}E—Bﬁ-(—lc\—}mclzlog(k—l-l)—logk, except for the

case r=10™ for some positive integer m.

CoROLLARY. lim -AxG(e,1);k)
v N

=log (k+1), except for the same case
as in Theorem 3.1.

In order to prove Theorem 3.1 we need some lemmas.

LEMMA 3.1. Let r be o positive integer greater than 1. Then logr
1s 1rrational except for r=10™ for some monmnegative integer m.

LEmMA 3.2. Let r be a positive integer greater than 1 and not of

the form 10™ for some mnonmnegative integer m. Then the sequence {n-
log 7} azts.... 18 uniformly distributed mod 1.

(L. Kuipers and H. Niederreiter [11], Example 2.1.)

LEMMA 3.3. If the sequence {X,},1.s,... 18 uniformly distributed mod
1, then the sequence {x,+a},_,..., Where a is a real constant, is uni-
formly distributed mod 1. (Kuipers and Niederreiter, Lemma 1.1.)

ProOOF OF THEOREM 3.1. The necessary and sufficient condition for
the first digit g, to be k is

k-10"<g,<(k+1)-10™

for some nonnegative integer m, where g,=c-r*"'. Taking logarithms
these inequalities above, we have

log k+m=logc+(n—1)-log r<log (k+1)+m .

Suppose that r is not of the form 10* for I a positive integer. Then
the sequence {(n—1)-logr},-;s.. is uniformly distributed mod 1 by
Lemma 3.1 and Lemma 3.2. From Lemma 3.3, the sequence {logec+
(n—1)-log r},-1,.. is uniformly distributed. Taking account of the
necessary and sufficient condition, we obtain

N—co

lim »B_”(m%'li.@_:log (k+1)~logk.
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If r=10™ for some nonnegative integer m, then the first digit of
g.=¢-10""" is identical to the first digit of ¢, that is, the logarithmie
law does not hold for any geometrical sampling procedure G(e, 10™).

(Q.E.D.)

For a linear sampling procedure A(a, d), the sequence of sampled
integers {a,} satisfies a linear recurrence formula of first order:

an+1=an+d .

For a geometrical sampling procedure G(c, r) (r+#1), the sequence
of sampled integers [g,} satisfies

Gnst=7"Gn .
It is natural to ask for a general linear recurrence formula of
first order:
hpi1=7ho+s,
where r#1 and s are positive integers. Then
h,=c-r'+d,

where d=s/(1—7r) and c¢=h,—d. The first significant digit of h, is
identical to that of c.r' for every sufficiently large n. Thus we ob-
tain

THEOREM 3.2. Let C=C(r, s, t) be a sampling procedure for which
the sequence of sampled integer {c,} satisfies the linear recurrence formula
of first order

C,,+1=’r'cn+3 .
Then
lim Py(C; k)=log (k+1),

N—oo

except for the case r=10™ with m some nonnegative integer.

4. Linear recurrence sampling procedures

In the preceding sections we have proved that linear recurrence
integer sequences of first order obey Benford’s law in the sense of
Banach limit. In this section we shall consider a linear recurrence
sampling procedure I(d, a,c) which is a subset of positive integers
and the nth smallest integer of L(d, a, c¢) is denoted by u,. The se-
quence of sampled integers {u,} satisfies the following linear recurrence
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formula of order d:
(4.1) Unpa=Cge1" Unpg1 T Qag Uppggt+ * + 0 Uy, (nzl),
and also the initial conditions:
4.2) Uy=C;, Upy=Cy, -+, and U;=¢,
where
a=(C4_1, Qy_g, "=, &) and c=(c, ¢y ++,Cq)

are d-dimensional integral vectors.

We consider the case: d=2. Duncan [6], Kuipers [10] and Washing-
ton [16] proved that for a=(1, 1), Fibonacei and Lucas numbers satisfy
Benford’s law. Now we consider the following recurrence formula:

Unp2 =0 Unp1+01+ %, ,  MZ1 (a,a,%0),
and its characteristic equation is
(4.3) 12=a2-1+a1 .

THEOREM 4.1. If the characteristic equation (4.3) has two real dis-
tinct roots @ and B with |e|=|8| and « is not of the form +10™ for any
nonnegative integer m, then {U,},-,.... obeys Benford’s law.

ProOF. In this case, the diseriminant of (4.3)
(I) D=aj+4a,>0,
then the mth term u, can be represented by
u,=A-a"'+B-gt,  nzl,

where A and B are constants depending only on a;, a,, u, and u,.
Suppose further that |a|>|3]. Then we have, for sufficiently large =,

log u,=log (A-a" '+ B- ")
e B/ B\*!
=logc A- 1{ __<.._>
og A-a" 114 ” }
Y n—1

=1og1A|+(n—1)-1og|a|+1og}1+_1§’.(£)
Ala

and

Ll'_g}log 1+%<%>H =0.

LEMMA 4.1. If the sequence {&,}n1s... 18 uniformly distributed mod
1, and if {y.} is a sequence with the property lim (z,—y.)=7, a real
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constant, then {Y,}n-1... ts uniformly distributed mod 1.
(Kuipers and Niederreiter, Theorem 1.2.)

LEMMA 4.2. If a is an algebraic number of degree 2 or a rational
number except for the case a==+10™ for any nonnegative integer m, the
sequence {(n—1)-loga},-,,... 1s uniformly distributed mod 1.

Combining Lemma 3.2, Lemma 4.1 and Lemma 4.2, we see that
the sequence {logu,},-1,... is uniformly distributed mod 1, which means
immediately that Benford’s law holds for the sequence {u,}.-1s,...-

If 0<a=|e|=[g], then 8= —a (because a#p), and

Ao, for n=2m+1,
Up=
B,-a™™, for n=2m+2,

where 4, and B, are constants depending only on a,, a,, %, and %,. From
Lemma 4.2 we see that two sequences {log #,},-13;... and {log %, },-0.44...
are both uniformly distributed mod 1, from which we can easily de-
duce that the sequence {log %,},12s.. is uniformly distributed mod 1.
This signifies that Benford’s law holds for the sequence {u.}n-123,...,
which completes the proof. (Q.E.D.)

(I) D=ai+4a,=0.

In this case the characteristic equation (4.1) has only one real root
a and u, can be represented as

U,=(A-n+B)-a"", nz1,

where A and B are constants depending only upon a,, @, %, and %,.
Then we get, for sufficiently large n,

log u,=log (A-n+B)-a"!

=log {A-n-a “(1—!—2%1,—)}

=log|A|+log n+(n—1)-log |a|+]log 11—}—:‘%’1’_. .

LEMMA 4.3. Let f(x) be a function defined for x=1 that is differ-
entiable for sufficiently large x. If
lim f'(x)=6 (irrational),
then the sequence {f(n)}n-1s,... 18 uniformly distributed mod 1.
(Kuipers and Niederreiter, Exercise 3.5.)

By this Lemma 4.3, we know that the sequence {logn-+(n—1)-
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log ||} n=13... is uniformly distributed mod 1. Then we obtain

THEOREM 4.2. If the characteristic equation (4.1) has a double real
root @ which is mot of the form +10™ for any monmegative integer m,
then {U,},-1s,.. obeys Benford’s law.

Now we consider the general recurrence sampling procedure L(d, a, ¢)
with its recurrence formula (4.1) and the initial conditions (4.2). The
characteristic equation of (4.1) is

(4.4) Z'i=a¢_1-ld"l+ad_g-ld'2+ R +a1'x+a0 .

THEOREM 4.3. The characteristic equation (4.4) has roots ay, ay, -+ -,
a, with multiplicity my, m,, - - -, m,, respectively. Suppose that

(4.5) lo| > el =]as|= - - - =] ety

and a; 18 a real root, which is mot of the form +10™ for any monnega-
tive integer m. Then the linear recurrence sampling procedure L(d, a, c)
obeys Benford’s law.

ProOF. The nth smallest sampled integer of L(d, a,c) u, can be
represented by

U =b(m—1) &7 +b(n—1)-a "+ - - - +b(m—1)-a2",

where by, by,--- and b, are polynomials of degree at most m,—1, m,—1,
. and m,—1, respectively, which depend on a, ¢, o, @, -+ and a,.
Let us put

bin—1)=e, -ni4e, W 4+ - +e-nte,
where ¢,#0 and 0Zl<m,—1. Then

log u,=log |b(n—1)|+(n—1)-log |a|

bin—1)-ai= | bn—1)-ar
bn—Da T T D)

+log .1+

From (4.5), the third term tends to zero as n goes to infinity. Here

)

and logle;| is irrational and from Lemma 4.3, and so the sequence
{10g Uy} ner,s.... is uniformly distributed mod 1, which completes the proof.
(Q.E.D.)

log {by(n—1)|=log (]e,-nl}- |1+_§L:1_+ I . |
e n e-n'"t o oe-mt

=log|e|+1-log n+0(nY),

Remark. If the root e, is also real, then we may substitute the
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condition (4.5) by
(4.6) ls|Z[ep|>lag|= - - - Z2lay)

In the next section we only treat polynomial sampling procedures
which are special cases of L(d; a, ¢) but have their characteristic equa-
tion of special form. For example, a sequence of square sampled
integer {n’} satisfies the recurrence formula:

4.7 U3 =3 Uppg— 3+ Upy 1+ Uy -
The characteristic equation of (4.7) is
(2—1)*=0,

which has only one root 1=10° and this is an exceptional case for
Theorem 4.3.

5. Polynomial sampling procedures

In this section we consider a polynomial sampling procedure P(d, a).
The nth smallest sampled integer

Du=0yN4ta,_-n* e tayenta,,

where a,+#0, a,_4, ---, ¢, and q, are integers.
Firstly we consider a monomial sequence

Da=0q-nt,
then
log p,=log|a,|+d-logn .
LemMA 5.1. The sequence {c-log n}._s.., where ¢ is a constant,

is not uniformly distributed mod 1.
(Kuipers and Niederreiter, Exercise 2.13)

By wusing the contraposition of Lamma 3.3, we conclude that, for
any monomial sequence P,, {log P,}.-.,.. is not uniformly distributed
mod 1. For d=a,=1, Flehinger pointed that P,(C;k) does not have
the limit as n tends to the infinity, so that the Banach limit of Py(C; k)
is indispensable.

For a general polynomial sampling procedure P(d, a),

log py=log (as-n*+a, -0+ -+ +a;-ntay)
=log |a,;|+d-log n+log 1+0(n™Y)).

Combining Lemma 5.1 and the contraposition of Lemma 4.1, we obtain
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Remark. Any polynomial integer sequence {P,},-;... does not
necessarily obey Benford’s law.

On the other hand, we have
THEOREM 5.1. For every polynomial sampling procedure P(d, a),

lim lim P}(P(d, a); k)=log (k+1) .

l—00 N-—oo

ProoF. Let us consider a monic monomial sampling procedure
P(d, a) with p,=n* (P(d, a) is written simply n® for abbreviation).

The number of p,=n? with the first- digits less than or equal to k&
satisfying

108 n? <107, for 7 nonnegative integer,
is equal to
{(k+1)2—1}.10"*+0(1) .
Then we have

Py(Py; k)=Py(n?; k)
_ 10/72{10%% — (k1) -
=1- E\/'(IO""(—I) ) }+O(N L
for 1072 N<(k+1)V4.10%
_ 10ve{(k+1)4—1} - 10 -
= N(lO)‘/“— 1)} +O(N)
for (k-+1)¥¢-10/# K N<109+vH

For another monic polynomial sampling procedure Pyd,a) with
d-1
p,=nt+) a;-n', we obtain
=0

Pi(Py; k)=Py(P,; k)+O(N™).

O(N™Y) term gives no affection on the calculation afterwards, so we
may consider only a monic polynomial sampling procedure of the type n%
Let us define

(5.1) Q' (n%; a, k)=lim I;,}.mj/d(n"; k)
=1— {101/d__(k+1)1/d}
a-(104—1)

for 1<a<(k+1)2,
_ 10% {(+ 1) —1)
a- (107 —1)
for (k+1)e<a<10V2,
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We can observe that, for all I, lim P! u(n?; k) exists and we put this
g

limit equal to Q*(n?; e, k).
We now derive a formula for @(n?;a, k) for [>1.

(5.2)  Q(n;a k)
=lim P/ ie(n; k)
J._m 1 a-10/¢ e
= g & PR
. 1 -1 av10/2
—tim L[S 5 PR+ S P b))

gm0 - 10772 (20 1gi/dg yraroCi+)/a M=107

o 101/¢ «
=_1_{2 10-*de Q-i(n?; 8, k)dﬁ—[—g Q-\(ne; g, k)dﬁ]
a Ls=1 1 1
— 1 1 ml[d I—1 d. “ I—1 de
=Ll | @ 8 bap+ | @t 6, ]
Let us set
5.3) Qs 0 by=1-1 5 alwi B (o)

for 1ga<(k+1)2,
Y di(n?; k)-(In )
o 7! ’
for (k+1)V<a<<10v? .

1l
a i

]

For I=1, wh have from (5.1)
10Y2 — (k1)

Cl(nd; k): 101”_1 ’
d(nt; ky= 207 (B 1)
Y 10441 ‘

Suppose that the expression for Q(n?%; e, k) (5.3) is valid for I-1,
and substituting (5.3) into another formula for Q'(»%; «, k) (56.2) for I>1,
we obtain

ot = 10— e 1)

10ve—1
1 =1 [In (B +1)Ye}¢ . )
+ 1073 _1 E [In ¢ il ) fe,int; kY +d,_(n?; k)]

1 2 [ln 104 ,
- 107 _1 = [ i ] 'dt-i(nd: k) H

1/d 1/d
dy(n?; k)=_10_1§)(1'fz'—5:]i)/ }
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1/d -1 1/d7¢
- S BT o 0 1)+ du (s )]

1071
1 ‘= [In 10Ye)E .
+ 1074 —1 = ] ] dy_(n%; k) .

Consider the generating functions associated with {¢,(n?; k)} and {d,(n*;
k)}:

Cn?; Z, k=3 e(n; k)-Z*

=1

D(n?; Z, k)= l:j d(nit; k)-Z° .

Then they satisfy

10%—(k+1)"  Z
107%_1  1-Z

+'101—/1.__—1"[C(nd? Z, k)+D(n; Z, k)]-[(k+1)74—1]

1
gy Dn'; Z, 111071

Cn®; Z, k)=

By solving this functional equation for C(n%; Z, k) and D(n?; Z, k), we

get

Cn?; Z, k)= A . 109-2%4 _(f4-1)4-2/4
y £y 1-‘Z 10(1—Z)/d__1

b4

. _ Z 10(1—2)/41. k+1 (l—Z)/d_l
D(nt; Z, k)= ; o{<(1—z>/d)_1 b

We also consider the generating function associated with the set
of functions {QYn*;a, k)}:

O(n'; Z, o, k)= Q(n; a, k)-Z* .
=1

From the expression for QY(n%; a, k) (5.3), we obtain

Z Cn%Z, k)
1-Z a2
O(nt; 7, a, k)=
D2, k) for (k+1)V¢<a<10¥ .

ai—Z

for 1<a<(k+1)v

b

The function @(n?; Z, e, k) has simple poles only at the points:

1+ 2::’{3" n=0, +1, £2, - - .
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Let I7 is a circle centered at the origin with radius R, where 1<R<2,
and I} is a circle centered at 1 with radius R—1. Then

Qnt; oz)=—2-1—— S L _om; Z, k)dZ————l—S L ome; Z, o, k)dZ

71 Jry 2ry Jr, Z'H

ety i Z—1 ,
=0(R™")~lim Zr-0(n*; Z, @, ) -

Applying Hbpital’s rule to the calculation of this limit, we obtain
that, for 1<a<10v4,

Q(n?; )=0(R“)+In (k+1)/In 10 .
Thus we have
1}33 Qn*; @)=log (k+1),
for any « with 1=<a<10"¢, which signifies that
lim im P{(n?; k)=log (k+1) .

l—eo N—oo
For a general polynomial sampling procedure P(d, a) with p,=a,-n?
d-1
+>a;-nt (ay#0), replacing a by a/a,, we have
1=0

lim lim Pi(P(d; a); k)=log (k+1),

l—o N—+oo

which completes the proof of Theorem 5.1.
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