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Summary 

It  seems empirically tha t  the first digits of random numbers  do 
not occur with equal frequency, but  tha t  the  earlier digits appear 
more often than the latters. This peculiality was at  first noticed by 
F. Benford, hence this phenomenon is called Benford's law. 

In this note, we fix the  set of all positive integers as a model 
population and we sample random integers from this population accord- 
ing to a certain sampling procedure. For polynomial sampling proce- 
dures, we prove that  random sampled integers do not necessarily obey 
Benford's law but  their Banach limit does. We also prove Benford's 
law for geometrical sampling procedures and for linear recurrence sam- 
pling procedures. 

1. Introduction and notations 

It  has long been known empirically that  in most statistical tables 
the proportion of numbers with the first significant digit equal to or 
less than k ( k = l ,  2, . . . ,  9) is approximately log,0(k+l).  This phenom- 
enon suggested us that  the  first significant digit from numerical tables 
did not occur with equal frequency, but  tha t  the  earlier digits appeared 
more often than the latters. 

Af ter  making many counts from a large body of physical data, 
Farmer ' s  Almanac, Census Reports, Chemical Rubber Handbook, etc., 
F. Benford [2] first noticed this peculiarity, hence this logarithmic law 
for the  first significant digits is called Benford's law. This law does 
not hold, of course, in every numerical table. 

Several authors, such as W. H. Fur ry  and H. Hurwitz [8], S. A. 
Goudsmit and Furry  [9], R. S. Pinkham [13] and R. A. Raimi [14] have 
sought the  explanation of this phenomenon by assuming tha t  all phys- 
ical constants are selected from a population with some underlying 
distribution and have shown tha t  certain assumptions about this dis- 
tr ibution lead to the logarithmic law. 
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To B. J. Flehinger [7] it occurred tha t  the smallest population 
which contains the set of significant figures of all possible physical 
constants, past, present  and future,  must  be the  set of all positive in- 
tegers.  The explanation for Benford's law should, therefore,  lie in the  
properties of the  set of integers as represented in a radix number  
system. 

As far as considering the  distribution of the first significant digits 
it  is quite natural  to the author  also tha t  we restr ict  ourselves to the  
set of all positive integers. But this restriction does not lead auto- 
matically the  smallestness of the population containing all possible phys- 
ical constants. 

In this paper we fix the population, as a model, the  set of all 
positive integers which would contain significant numbers  of all possi- 
ble numerical constants. From this population, tha t  is the set of all 
positive integers, we sample random integers according to a certain 
sampling procedure. What  kind of sampling procedures produce the  
set of random intergers  which obey Benford's law, it is our problem 
t rea ted  in this paper. 

A sampling procedure C is identified to the set of sampled integers  
and c~ is the  n t h  smallest sampled integer of C. The number  of sam- 
pled integers c,, l~n<_N,  with the  first digit less than or equal to k 
( k = l ,  2 , . . . ,  9) is denoted by A~v(C; k) and we define 

P~v(C; k)=P~v(C; k)= A~v(C; k) 
N 

Flehinger considered successive cumulative averages (Hhlder sums) 
of P~(N; k) : 

l iv p l - 1  . P (N; 1 (N, k),  l=2, 3, . . .  , 

for C = N  and proved tha t  

lim lim P~v(N; k) =logl0 ( k + l ) .  

The limit of successive cumulative averages is called Banach limit. 
R. L. Adler and A. G. Konheim [1] proved tha t  the  Banach limit is 
finitely additive measure on the set of all positive integers and assigns 
zero measure on every finite subset of positive integers. Hence it  is 
quite natural  to consider the Banach limit of P~(N; k). Roughly speak- 

i n g ,  the  probability tha t  a random integer  has initial digit less than  
or equal to k seems to be logl0(k+l).  

Linear recurrence sampling procedures have been considered with 
special reference to Fibonacci numbers.  R. L. Duncan [6] proved tha t  
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the sequence {log F~}~:l,2,... is uniformly distributed rood 1, where F~ 
is the n th  Fibonacci numbers, which signifies that  Benford's law holds 
for Fibonacci numbers. L. Kuipers [10] gave another proof of Duncan's 
result. 

J. L. Brown, Jr. and R. L. Duncan [4] and L. Kuipers and J-S. 
Shiue [12] extended the results in [6] and [10] and proved that  the 
sequence {log V~}~=I,2,... is uniformly distributed rood 1, where V~ satis- 
fies a linear recurrence formula with some restrictions. 

J. Wlodarski [17] and W. Brady [3] observed empirically the dis- 
tribution of the first digits of Fib0nacci numbers and L. C. Washington 
[16] reproved Benford's law for Fibonacci and Lucas numbers. 

R. A. Raimi [15] reviewed the first digit problem making clearer 
the hypotheses and results with a nearly complete bibliography. P. 
Diaconis [5] also tested Benford's law for a large class of arithmetic 
sequences. 

In this paper we shall deal with various sampling procedures by 
examining for the resulting sampled integers whether  Benford's law 
holds or not. In the next section we shall consider linear sampling 
procedures and prove that  their Banach limit obeys Benford's law. 
Geometrical sampling procedures will be considered in the third section 
and Benford's law will be shown to hold for geometrical sampling pro- 
cedures. We shall consider linear recurrence sampling formulae in the 
fourth section and prove Benford's law except some special cases. In 
the last section we shall consider polynomial sampling procedures which 
are exceptions of linear recurrence sampling procedures. We shall 
prove that  any polynomial sampling procedure does not necessarily 
obey Benford's law but their Banach limit does so. 

Throughout in the following we shall write 

log x-- log~0 x and In x = log~ x .  

2. Linear sampling procedures 

In this section we shall consider a linear sampling procedure A(a, d). 
A(a,d) is a subset of positive integers of the form a,~=a-t-(n--1).d, 
where a and d are positive integers. The simplest case: a=l  and d 
=1 was considered by Flehinger, which corresponds to the complete 
enumeration of aggragates. 

Firstly we consider the case for d = l  and arbitrary a. Secondaly 
the case for a=l  and any d. Summing up these two cases we shall 
t reat  a general case. 

Let us define A--A(a, 1), then the n th  smallest integer a~=a+n-1 .  
Suppose that  the initial value a has g digits. The number ~(a) of 
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g-digits posi t ive in tegers  g rea te r  than or equal to a whose initial digi ts  
are less t h a n  or equal to k is 

= .  

(k+l).lOg-a, 

O, 

if 1 0 q - ~ a < ( k + l ) . 1 0  g-I 

if ( k + l ) . 1 0 ~ - ~ a < 1 0  g �9 

Le t  N be the  number  of sampled in tegers  by the  procedure  A(a, 1), 
t h e n  a~ = N + a and 

A~(A; k) = ~(a) + k- l0  g. ( 10{ - g -- 1 ) ~_ N + a - -  l0  s 
9 

for  lOS--a<_N<(k--t-1) �9 1 0 S - a ,  

= ~(a) + k. 10~ (10s-g+1-- 1) 
9 

for ( k+  1). l0 s - a_~  N <  10 s + ~ - a .  

Thus  we obtain 

P~,(A; k) = A~,(A; k)]N 
= 1 -  ( 9 - k ) ' 1 0 s  -~ 9~(a)+9a--k'lOg 

9N 9N 

for  lOJ--a~_N<(k+l) .10 J - a ,  

k. 10 ~+1 98(a)--k.  10 g 
- 

9N 9 N  

for (k + 1). 10 s -  a ~ N <  10 j . 

If  we replace N by N+a, the  value P~+,(A; k) differs f rom P~,(A; k) 
at  mos t  O(N-1). Thus  we can deduce 

t l 9 - -k  9a 
Q(a; k ) = l i m  PJ.,o~(A" k )=  

s-~ 10k 

l ~ a < k + l  

k + l ~ a < l O .  

Using the  same a r g u m e n t  as Flehinger ,  we have 

lira lim P~(A; k) = l o g  (k + 1) .  

Le t  us define B= A(1, d) and the  n t h  smallest  in teger  b~= 1 + ( n - 1 ) .  d. 
I f  a sampled  in t ege r  b.v satisfies 

lO~<bN< 10 J+l , 

then 
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where [x] is the  greatest  integer  less than or equal to x. The num- 
ber A~(B; k) of sampled integers with their  first digit less than or 
equal to k is 

J - ' r k  10~+[bN--10 j] 

~o~ r:,. 0 ,1~  ~ < [ (~ +~). ~ o, ,] 
k d J -  

~:, L - T J  

d - 

Then 

P A B ;  k) = 1 (9--k) -10~ FO(N-I) 
9dN 

for l-d--] ~ N <  [-(k+d)" lOJ ] , 

lOk- i0 j +O(N_I) 
9dN 

for [.(k+l)'lOJ ]=<N< [ i0~+I] 
d L d J '  

since [x]=x-  {x} where 0 ~  {x} <1.  

1 { 1 - -~  Q(a; k) =l im P~.~o~/~(B; k) = 
~-~ 10k 

-9-J' 

Thus we obtain 

9 - k  l ~ a < k + l  
9a ' 

k+l~a<10. 

Replacing a by aid in Flehinger 's  calculation, we have 

lira lira P~(B; k) = log (k + 1). 
~ a o  N ~ o a  

For a general sampling procedure A(a, d), we can conclude by 
almost the  same arguement  as used before:  

THEOREM 2.1. l iml im P~(A(a, d); k)=log (k+l ) ,  where A(a, d)=  {a 

+ ( n - 1 ) . d ;  n - - l ,  2 , . . . }  for any positive integer a and d. 
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3. Geometrical Sampling procedures 

In this section we shall consider a geometrical sampling procedure 
G=G(c, r), which is a subset of positive integers of the form g~=c.r ~-~ 
where c and r r  are positive integers. Pu t  B~(G(c, r); k) be the  num- 
ber of sampled integers g~ for l<_n<_N with their  first digit equal to 
k, then we have 

THEOREM 3.1. lira B~(G(c' r) ; k) =log (k + l ) - l o g  k, except for  the 
2 ~  Y 

case r = 1 0  ~ for  some positive integer m. 

COROLLARY. lim A~(G(c, r);  k) .=log (k+ l ) ,  except for the same case 
2T~ N 

as in Theorem 3.1. 

In order to prove Theorem 3.1 we need some lemmas. 

LEMMA 3.1. Let r be a positive integer greater than 1. Then log r 
is irrational except for  r= 10 ~ for  some nonnegative integer m. 

LEMMA 3.2. Let r be a positive integer greater than 1 and not of  
the form 10 ~ for  some nonnegative integer m. Then the sequence {n. 
log r}~=~,~.., is uniformly distributed rood 1. 

(L. Kuipers and H. Niederreiter [11], Example 2.1.) 

LEMMA 3.3. I f  the sequence {x~},=1,2,... is uni formly distributed rood 
1, then the sequence {xn+a}~=~,2,..., where a is a real constant, is uni- 
formly distributed rood 1. (Kuipers and Niederreiter, Lemma 1.1.) 

PROOF OF THEOREM 3.1. The necessary and sufficient condition for 
the first digit g~ to be k is 

k . l O ~ g ~ < ( k + l ) . l O  ~ 

for some nonnegative integer m, where g~=c.r ~-~. Taking logarithms 
these inequalities above, we have 

log k + m  log c + ( n - 1 ) . l o g  r < l o g  ( k + l ) + m .  

Suppose tha t  r is not of the  form 10 ~ for l a positive integer.  Then 
the  sequence {(n--1).logr}~=l,2... is uniformly distributed mod 1 by 
Lemma 3.1 and Lemma 3.2. From Lemma 3.3, the  sequence {log e-l- 
(n-1).logr}~=i.2... is uniformly distributed. Taking account of the  
necessary and sufficient condition, we obtain 

lim BN(G(e, r);  k) ---log ( k + l ) - l o g  k .  
2 t ~  N 
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If r = 1 0  ~ for some nonnegative integer m, then the first digit of 
g~=c.10 ~-' is identical to the first digit of c, that  is, the logarithmic 
law does not hold for any geometrical sampling procedure G(c, 10~). 

(Q.E.D.) 

For a linear sampling procedure A(a, d), the sequence of sampled 
integers {a~} satisfies a linear recurrence formula of first order:  

a~ + l -= a~ + d . 

For a geometrical sampling procedure G(c, r) (rr  the sequence 
of sampled integers {gj satisfies 

g n +  l ---- r . g n  �9 

It  is natural to ask for a general linear recurrence formula of 
first order : 

h~+l=r.h~+s , 

where r r  and s are positive integers. Then 

h~=c.r~-l + d  , 

where d = s / ( 1 - - r )  and c=hl - -d .  The first significant digit of h~ is 
identical to that  of c . r  n-~ for every sufficiently large n. Thus we ob- 
tain 

THEOREM 3.2. Let C=C(r,  s, t) be a sampl ing procedure f o r  which 
the sequence o f  sampled integer {cn} satisfies the l inear recurrence f o r m u l a  
o f  f irs t  order 

Then 

lim P,v(C; k)=log (k+l ) ,  
N ~ r  

except f o r  the case r---lO ~ with  m some nonnegative integer. 

4. Linear recurrence sampling procedures 

In the preceding sections we have proved that  linear recurrence 
integer sequences of first order obey Benford's law in the sense of 
Banach limit. In this section we shall consider a linear recurrence 
sampling procedure L(d, a, c) which is a subset of positive integers 
and the n th  smallest integer of L(d, a, c) is denoted by u~. The se- 
quence of sampled integers {un} satisfies the following linear recurrence 
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formula  of order  d :  

(4.1) u~+a=a,_l .u ,+,_l+a,_z .u ,+,_2+.  �9 �9 +ao.u~ , 

and also the  initial condit ions:  

u~=cl , u~=c2 , . . . ,  and u~=c~ , (4.2) 

where  

(n>=l) ,  

and 

l im log  I+---B/A~'-ti/\ ' = 0 .  
~ A \ a /  i 

LEMMA 4.1. I f  the sequence {x~}~=t.., .... is  u n i f o r m l y  d is t r ibuted  rood 

1, a n d  i f  {y~} is  a sequence w i t h  the proper ty  l i m ( x ~ - y ~ ) - - r ,  a real 
n ~ o o  

a=(a~_l,  a~_~, - . . ,  a0) and c--(cl, c~, . . . ,  ca) 

are d-dimensional  in tegral  vectors.  
We consider the  case : d = 2 .  Duncan [6], Kuipers  [10] and Washing-  

ton [16] proved t h a t  for a = ( 1 ,  1), Fibonacci and Lucas number s  sat isfy 
Benford ' s  law. Now we consider the  following recur rence  fo rmu la :  

u~+2=a~.u~+~+al.un, n > l  (al.a2-r 

and its character is t ic  equation is 

(4.3) ~2=a~. ~ +a l  �9 

THEOREM 4.1. I f  the characterist ic  equation (4.3) has two real dis-  

t inc t  roots a a n d  fl w i t h  ]al>=lfl[ and  a is  not o f  the f o r m  +10  ~ f o r  a n y  
nonnegat ive  in teger  m ,  then {u~},=1,2,... obeys Ben  f o r d ' s  law. 

PROOF. In this  case, the  discr iminant  of (4.3) 

( I )  D = a ] + 4 a ~ > O ,  

t hen  the  n t h  t e r m  u ,  can be represen ted  by 

u , = A . a " - l + B . ~  "-I , n>=l , 

where  A and B are constants  depending  only on a,, a2, u, and u.. 
Suppose f u r t h e r  t ha t  lal>l/~t. Then  we have,  for sufficiently large n,  

log u , = l o g  (A ' an - l+B ' f l  "-1) 

B ~ n--1 
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constant, then {Y~}~=1,2,... is un i formly  distributed rood 1. 
(Kuipers and Niederreiter, Theorem 1.2.) 

LEMMA 4.2. I f  a is an algebraic number o f  degree 2 or a rational 
number except for  the case a= ___10 ~ for  any nonnegative integer m, the 
sequence {(n-1).loga},=l,2,... is un i formly  distributed rood 1. 

Combining Lemma 3.2, Lemma 4.1 and Lemma 4.2, we see tha t  
the  sequence {log un}~=l,2,.., is uniformly distr ibuted mod 1, which means 
immediate ly  t ha t  Benford's  law holds for the  sequence {u~}~=1,2,.... 

If  O<a-----Ia[=lfl[, then f l = - - a  (because ar  and 

u = l  A~.a ~ ,  for n = 2 m + l ,  

B~-a 2~ , for n = 2 m §  

where  A~ and B~ are constants depending only on a ,  as, u~ and us. From 
Lemma 4.2 we see tha t  two sequences {log u~}~=,,3,5,.., and {log u~}~=2,~,8,... 
are both uniformly distr ibuted mod 1, f rom which we can easily de- 
duce tha t  the  sequence {log u~}n=~,~,3,.., is uniformly distr ibuted mod 1. 
This signifies tha t  Benford's  law holds for the  sequence {u~}~=i,2,3,..., 
which completes the proof. (Q.E.D.) 

(II) D---a~ q-4a~=O . 

In this case the characterist ic  equation (4.1) has only one real root 
and u~ can be represented as 

u~=(A.nq-B) .a  ~-~ , n>__l , 

where  A and B are constants depending only upon a ,  as, u~ and u2. 
Then we get,  for sufficiently large n, 

log u~-- log (A. n-k B). a ~- 

= log  [Al+log n + ( n - 1 ) . l o g  Ial+log 1+  A.--B n g 

LEMMA 4.3. Let f (x)  be a funct ion defined for  x ~ l  that is differ- 
entiable f o r  sujficiently large x. I f  

lim f ' (x)=O (irrational), 

then the sequence {f(n)},=~,z,... is un i formly  distributed rood 1.  
(Kuipers and Niederreiter, Exercise 3.5.) 

By this Lemma 4.3, we know tha t  the  sequence [ l o g n + ( n - 1 ) .  
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log taE}n=l,2,.., is uniformly distr ibuted mod 1. Then we obtain 

THEOREM 4.2. I f  the characteristic equation (4.1) has a double real 
root a which is not of  the f o r m  ___10 ~ f o r  any nonnegative integer m, 
then {u~}~=1,2,... obeys Benford's law. 

Now we consider the general recurrence  sampling procedure L(d, a, c) 
with its recur rence  formula (4.1) and the  initial conditions (4.2). The 
character is t ic  equation of (4.1) is 

(4.4) ~=a~_l .  ~-1+a~_2. ~d- s+ . . .  +a l -  2+a0 .  

THEOREM 4.3. The characteristic equation (4.4) has roots a~, as, . . . ,  
a~ with mult ipl ici ty  m~, m s , . . . ,  rap, respectively. Suppose that 

(4.5) la l l> t~ l> l~ l>-  - ' ' "  >=1~1 

and at is a real root, which is not o f  the f o r m  +_ 10 ~ f o r  any nonnega- 
tire integer m.  Then the linear recurrence sampling procedure L(d, a, c) 
obeys Ben ford 's  law. 

PROOF. The n t h  smallest sampled in teger  of L(d, a, c) u~ can be 
represented by 

n- -1  u~ = b~(n-- 1)- a7 -~ + b2(n- 1). a~ -2 + . . .  + bp(n-- 1). ap , 

where  b, bs,.-- and bp are polynomials of degree at  most m ~ - l ,  m s - l ,  
�9 . .  and r a p - l ,  respectively, which depend on a, c, a~, as , . - ,  and ap. 

Let  us put  

b l ( n - - 1 ) = e l . n t  + e L _ t . n ~ - l  + . . . + e l . n  + e o  , 

where  et=~0 and O<_l~m~-l .  Then 

log u~-----log [b~(n--1)]+(n--1)-log ]at] 

bs(n-  1).a~ -~ bp(n--1):a~ -~ 
+ l o g  1-~ b t (n-1) ' a~  -~ ~-.-.-~ b~(n_l).s ~ �9 

From (4.5), the  third  t e rm tends to zero as n goes to infinity. Here  

log lb~(n-1)l--log ]e~.n~l �9 e~_~ + . . . _ ~  . n  ~-~ ~ 
e~. n et 

=log  le~I+ l" log n +O(n-t) , 

and log la~l is irrational and f rom Lemma 4.3, and so the  sequence 
{log u~}~=~,2,.., is uniformly distr ibuted mod 1, which completes the  proof. 

(Q.E.D.) 

Remark.  If  the  root as is also real, then  we may  subst i tute  the  
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condition (4.5) by 

(4.6) lall>--[a~l>l~d > ' ' "  > ] ~ 1  �9 

In the next section we only treat polynomial sampling procedures 
which are special cases of L(d;a, c) but have their characteristic equa- 
tion of special form. For example, a sequence of square sampled 
integer {n 2} satisfies the recurrence formula: 

(4.7) u~+3= 3" u~+2--3 " u ~ + l + u ~  �9 

The characteristic equation of (4.7) is 

(2--1)3=0, 

which has only one root 1=10 ~ and this is an exceptional case for 
Theorem 4.3. 

5. Polynomial sampling procedures 

In this section we consider a polynomial sampling procedure P(d, a). 
The nth  smallest sampled integer 

p~ =a~.n~ § nd-~-~ �9 �9 �9 +al. n +ao , 

where a~=/:0, a~_~, - . . ,  a1 and a~ are integers. 
Firstly we consider a monomial sequence 

Pn = aa" na , 

then 

log p~=log ladl+d.log n .  

LEMMA 5.1. The sequence {c.logn}n=l~...., where c is a constant, 
is not un i f o rmly  distributed rood 1. 

(Kuipers and Niederreiter, Exercise 2.13) 

By using the contraposition of Lamma 3.3, we conclude that,  for 
any monomial sequence P~, (log P~}~=1,2.... is not uniformly distributed 
rood 1. For d = a d = l ,  Flehinger pointed that  P~(C; k) does not have 
the limit as n tends to the infinity, so that  the Banach limit of PN(C; k) 
is indispensable. 

For a general polynomial sampling procedure P(d, a), 

log p~ =log (a~. n ~ + ad_1. n ~-l-k-" �9 + al. n + a0) 

--log la~I+d.log n + l o g  (1 +O(n-~)). 

Combining Lemma 5.1 and the contraposition of Lemma 4.1, we obtain 
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Remark. Any polynomial in teger  sequence 
necessari ly obey Benford 's  law. 

On the  o ther  hand, we have 

THEOREM 5.1.  

PROOF. Let  

{P~} ~=1,2 .... does not  

For every polynomial sampling procedure P(d, a), 

lira lim P~(P(d, a) ; k )= log  ( k + l ) .  

us consider a monic monomial sampling procedure 
P~(d, a) with  p~=n ~ (P1(d, a) is wr i t t en  simply n ~ for abbreviation). 

The number  of p ,=n  ~ with the  first-digits less than  or equal to k 
sat isfying 

1 0 ~ n ~ < 1 0  T M  , for i nonnegat ive i n t ege r ,  

is equal to 

Then we have 

{(k + 1) T M -  1 }. I0 TM + 0(1) .  

P.~(p, ;  k) = P,r ~; k) 

=1 lOm{lOWa-(k+l)Wa} F0(N -1) 
N(10 T M -  1) 

for 1 0 m ~ N < ( k + l )  w~. 10 m 

_ 10w~{(k+l)W~--l} .10 m +O(N-~) 
N(10 T M -  1) 

for (k + 1) w~. 10 TM < N <  10 cs +l~/a. 

For  another  monic polynomial sampling procedure P2(d, a) with 
d--1 

p~=n~+ ~ a~.n ~, we obtain 
z = 0  

P,I,(P~; k ) :  P,~(P~; k) + O(N-1) . 

O(N -1) t e rm gives no affection on the  calculation af terwards ,  so we 
may  consider only a monic polynomial sampling procedure of the  type  n a. 

Let  us define 

(5.1) Q~(n~; a, k)= l im PJ.~om(na; k) 
j ~ o o  

=1 {lOW~-(k+l)Wa} 
a .  (i0 T M -  i) 

fo r  l ~ a < ( k + l )  TM , 

_ lO TM { ( k +  I )  T M -  1} 
a.  (10 T M -  1) 

for (k+  1)wa<a< 10 TM . 
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We can observe that ,  for all l, lim P].1oj/~(n~; k) exists and we put  this 
.1--oo 

l imit equal to Q~(n~;a, k). 
We now derive a formula for Q~(n~; a, k) for l > l .  

(5.2) Q~(n~;a, k) 

= l i m  P~.~oj/~(n~; k) 

1 a'm'~/a =li ra  5-I, P~-~(n ~" k) 
~-~ a . l O  ~/~ ~ : t  

~-~ a.iO~/~ ~, P~-~(n~; k ) +  5-I, P~-'(n~; k) 
loila~M<lO(i+l)/a M=loJ/d 

= - J  #, . 

Let  us set 

(5.3) QZ(n~; a, k ) = 1 - 1  ~ c'-~(nd; k).  (In a) ~ 
a ~:o i !  ' 

for l < = a < ( k + l )  TM , 

= 1 ~ d,_,(n~; k). (ln a)' , 
a ~=o i! 

for  (k + l)l/~<=a<lO TM �9 

For I=1,  wh have from (5.1) 

10 TM ~k+ 1 v/~ 
c~(n ~ ; k ) = -  - ~  i ..... , 

10 T M -  I 

d1(n~; k ) :  lOWd[(k+l)W~--l} 
10 TM -- 1 

Suppose tha t  the  expression for Q~(n~; a, k) (5.3) is valid for l--1, 
and subst i tu t ing (5.3) into another  formula for QZ(n~; a, k) (5.2) for l>1 ,  
we obtain 

c~( n ~ ; k ) =  l OW~ -- ( k -t-1)w~ 
I0 TM- 1 

1 ~ [In (k-Fl)*/~] ~ [c,_~(n d. k)_Fdz_~(n~, k)] 
"~ lOWd--I ~=I i ]  

I ~ [In lOW~] ~ 
lOW~--i ~ = I  i! d~_~(n~; k) , 

d~(n ~ ; k) = 10'/~ {(k + 1) TM} 
10 T M -  1 
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10 TM ~, [ln (k+l)~/q ~ [c,_~(ne. k)+d,_~(n~; k)] 
10 T M -  1 ,=i i! 

1 ~ [ln 10~/~] ~ d~_~(n~ ; k) .  
lO1/~-- 1 ~ : i  i! 

Consider the generating functions associated with {c,(n~;k)} and {d,(n~; 
k)}: 

C(n ~; Z, k) = Z c,(n ~; k). Z '  , 
l = l  

D(n ~; Z, k,) = Z d,(ri d; k). Z '  . 
/ = 1  

Then they satisfy 

C(n~; Z, k)= 10~/~-(k+l)~/~ Z 
i0 TM- i i -- Z 

--t 1 .  [C(n ~ ; Z, k) + D(n ~ ; Z, k)]. [(k + 1) z /~-  1] 
10 TM- 1 

_~ 1 �9 D(n ~ ; Z, k,). [10 z/~- 1]. 
I0 TM -- 1 

By solving this functional equation for C(nd;Z, k) and D(n~;Z,  k), we 
get 

Z 10 ~ (k + 1) (1-z)/~ 
C(n d ; Z, k) = 1 -  Z 10 (~-z)/~- 1 ' 

D(n~; Z, k)= Z 10 ('-z'/~.{(k+l)(1-z)/~-l} 
1 - -Z  10 (l=z)/~- 1 

We also consider the generating function associated with the set 
of functions {Qt(n~; a, k)} : 

r Z, a, k )= ~ Q~(n~; a, k). Z z . 
/ = 1  

From the expression for Q'(nd; a, k) (5.3), we obtain 

t Z C(n~'; Z, k) 1 - Z  a 1-z 
r Z, a, k )=  

D(n*; Z, k) 
~I-Z 

for l ~ a < ( k + l )  TM 

for (k + 1) TM_~ a < 10 TM . 

The function ~ ( # ;  Z, a, k) has simple poles only at  the points: 

2~+l~ni 
In 10 

n=O, +1, +2, . . . .  
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Let/"1 is a circle centered at the origin with radius R, where l < R < 2 ,  
and F~ is a circle centered at I with radius R - 1 .  Then 

i I I i 
, 

=O(R_(,_,)_lim Z--1 .r Z, a, k). 
Z--I Z TM 

a, k)dZ 

Applying l'HSpital's rule to the calculation of this limit, we obtain 
that ,  for l__<a<10 TM, 

Q~(n ~; a) = O(R -(~-~)) + In (k + 1)/ln 10. 

Thus we have 

lim Qt(n~; a)=log  ( k + l ) ,  

for any a with l=<a<10 TM, which signifies tha t  

lim lim P~(n~; k)=log  ( k + l ) .  

For a general polynomial sampling procedure P(d, a) with p,=a~.n ~ 
c/--1 

+ ~ a~.n ~ (asr replacing a by a/ae, we have 
~ 0  

lim lim P~(P(d; a); k )=log  ( k + l ) ,  

which completes the proof of Theorem 5.1. 
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