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Summary 

In this paper, we have undertaken an investigation covering three 
occasions in sampling on successive occasions with a view to examining 
efficiency robustness of the best linear unbiased estimator (BLUE) vis- 
a-vis certain other potentially conceivable estimators when the usual 
correlation model breaks down. We have inferred that  the BLUE is, 
by and large, an efficiency robust estimate in the face of unforeseen 
deviations from the usual correlation model. 

1. Introduction 

In a population where the characters change with the passage of 
time, it pays dividends, if the population is repeatedly sampled, to ex- 
ploit judiciously the information collected on all occasions for optimiz- 
ing the estimation of the current population mean. If the population 
is sampled on more than two occasions, the estimation theory provid- 
ing the best linear unbiased estimator (BLUE) for the current popula- 
tion mean is based on the assumption of a multiplicative correlation 
structure modelled as either of the following two: 

(1.1) p~=pl~-~l for all i and j 

(1.2) p,~=T[ p~,~+, for all i and j ( i < j )  

where p~j is the correlation coefficient between observations for the 
same units on i th and j t h  occasions. (1.2) simplifies to (1.1) when 
p~,~+l--p. Since, practical experience at times reflects something far  
from what  is embodied in a multiplicative correlation model, we need 
to reassess BLUE vis-a-vis other potentially conceivable estimators from 
the stand-point of a breakdown in the assumed model. A brief study, 
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in this direction, relating to BLUE in multi-stage designs has been 
made by Singh and Srivastava [7]. Rao and Graham [6] have presented 
an empirical s tudy of the composite estimators in rotation sampling by 
considering, besides (1.1), an ari thmetic correlation pat tern.  

In this paper, an investigation covering three occasions has been 
under taken with a view to evaluating the impact of a breakdown in 
multiplicative correlation model on the BLUE and three other  known 
estimators to be discussed later. In other words, we intend to examine 
the  BLUE from the standpoint of robustness, and are interested in 
monitoring its performance compared to three  other  estimators in the 
event  of a model breakdown. To achieve this, we have conducted a 
three-fold s tudy in Section 3. 

In the  context  of our choice of three occasions for the present  
study, we would like to refer to a finding of Kulldorff [3] tha t  points 
to the  fact  tha t ,  in respect of the  BLUE, the  toss of efficiency (after 
showing consideration to cost) incurred by using the  information from 
the latest  two or three occasions, instead of the whole sequence of 
occasions, is fairly small. Hence, the  results for three occasions pre- 
sented in this paper have a natural  scope for application, if need be, 
to the  latest  three  of a sequence of occasions. 

Consider a population /2 of size N. Let y denote the characteristic 
under  study, and y~j be its value for the  j t h  unit  on occasion i (3"=1, 
2, . . . ,N;  i=1,2,3). Let n~ denote the size of the  sample T~ on the  
i th  occasion, which consists of two simple random samples drawn on 
each occasion i>__2, one being T[ of n~ ' ma tched '  units, i.e., T[=T~_, 
N T ,  and the  other  being TY of n~' ' unmatched '  units i.e., T['= T~-- 
T[. Having first selected a random sample T~ from 9, we deem it 
necessary to point out that  the following selection schemes are avail- 
able on the  i th  occasion (i=2, 3): 

I. ( i )  Select a sample T~' of n~ units from T~, 
(ii) Select a sample T~ of n~ units from Tz, 

i ~ l  

(iii) Select a sample T:' ( i=2 ,  3) of n~' units from / 2 - O  Tg. 

II. In this scheme, the  steps (i) and (iii) are the same as in 
scheme I, the  step (ii) being replaced by 

(ii) (a) Select a sample of n~ units from Ti t if n~_n;'; other- 
wise ,  

(b) Select a sample of n~ units, i.e., T~'U (simple random 
sample from T~), if n~>n~'. 

III. This sampling scheme also differs from the schemes I and II 
in so far  as the step (ii) of these schemes is concerned, i.e., 
we have 

(ii) (a) Select a sample of n~ units from TL if n~_n'; other- 
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wise, 
(b) Select a sample of n~ units, i.e., T~' U (simple random 

sample from T~"), if n3>n~: ' 
We will examine the variance of the BLUE under these selection 
schemes with a view to selecting one of them for our robustness study. 

The sample means based on n~, n~ and n7 units will be denoted by 
y~, y~ and ~!, respectively. The ari thmetic mean of the observations 
on occasion i - -1  corresponding to the units in T[ will be denoted by 
Y:~-l. 

2. The four estimators and their variances 

For est imating the population mean g~ given by 

1 N 

we would consider four estimators, and find their  variances to compare 
their  performance when the usual correlation model breaks down. For 
the  sake of convenience, we will assume that  the  population variances 
are equal from occasion to occasion, and the same will be denoted by 

s i.e.,  1 1 i = 1 ,  2, 3 .  
N - ~  ~ e ~ = - - ~ -  ~=~ 

2.1. BLUE and its variance 

If we assume (1.2) for three occasions, i.e., 

(2.1.1) PI3-= P12P23 , 

then, for any of the sampling designs described in Section 1, the best 
linear unbiased estimator (BLUE) of ~3 is given by 

(2.1.2) 

where 

and 

i! r~=l - -n , /Q , ,  ( i=2,  3) 

2 2 -i 
Q~= p~_,,~ ~ 1 - p ; _ , , ~  J - n "  

Q~_, n,' I - ' '  
(i=2, 3) 

Q1 ~--- n l  �9 

The reader is referred, for a detailed discussion of the BLUE, to Pat- 
terson [4] and Kulldorff [3]. The variance of ~b is known to be 
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/ 1  )s2 (2.1.8) Vo(~b) = \ 
Q~ 

o 

As remarked earlier, the multiplicative correlation model is not 
borne out by practical experience and hence let us consider a model 

(2.1.4) p,, = (1 + (~)P,~P2, 

where a represents deviations in the model (2.1.1) and its range, in 
order tha t  the associated correlation matrix be positive definite, is given 
by 

(2.1.5) ] ~l~ ,/(1-- p~:) (1 - -  p ~ 3 ) / P , 2 P 2 3  �9 

For each of the sampling designs described in Section 1, we will 
now obtain the variance of ~ab under (2.1.4). For this purpose, we need 
to evaluate certain variance and covariance terms. If C is the num- 
ber of common units between T; and T~' (and consequently between 
T, and T~'), the conditional covariance between y~ and y~ would be ob- 
tained as 

Coy (~', ~ ) =  ( C 1 ) n ' n '  N P23S2 " 
2 3 

By using the conditional expectations, the variance of ~3b under (2.1.4), 
whatever  be the selection scheme out of the three described in Section 
1, turns out, after  some manipulation, as 

(" Q31 _ 1 )$2 2r~r~p~,p~3~ E(C)(nln,--n?~). S~'nl (2.1.6) V(~3b) 

For the sake of simplicity, we will, in future, assume that  the total 
sample size is, say, n on each occasion. Evaluating E (C) under each 
of the three sampling schemes, we get the variance of ~3b for the cor- 
responding scheme. It is worthwhile to point out that  the scheme II 
or the scheme III has an advantage over the other two according as 
~<0 or a>0.  However, it can be noted without much effort that, if 
we entertain both positive and negative deviations as symbolised by ~, 
all the three selection schemes spelt out in Section 1 are admissible 
in terms of the language of decision theory. Furthermore,  each of 
these schemes will be a Bayes' rule if we assume a symmetric distri- 
bution (prior) for a subject to (2.1.5). For our study we have listed 
out both positive and negative a's, and we confine ourselves to the 
scheme I in what  follows. Setting 

~-~' =~i , n--~=m~ , 
~b ~b 
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and employing the  scheme I, we can wri te  f rom (2.1.6) the  variance 
of ~ under  (2.1.4) as 

(2 .1 .7 )  V ( ~ ) =  [ 1 - r ~  2r]r2p~=p~3(1--m,)a] S~ S~ 
1--m~ n N ' 

where  r~ and r~ can now be expressed as 

r2 - -  

r 3 

m l  

1_p~2(1_ m,)~ ' 

m2{l-p~( l-m,) 2} 
m \ 2 2 { l  - -  p~2(l - -  m~) 2} { l  - -  p~3(l - -  m2) 2} - -  m~m~( l  - -  m , )  ( l  - -  2)p,2p~3 

I t  is clear f rom (2�9 tha t  V(~3b) is decreasing with increase in a. 
For  a = 0 ,  the  variances given by (2�9 and (2.1.7)are the same, while 
for a>0 ,  the  la t te r  yields a lower value than the  former.  

An empirical s tudy examining the  effect of model breakdown on 
the  BLUE will be presented in Section 3. 

2.2. Three other estimators and their variances 

A var ian t  of the BLUE, proposed by Cochran ([1], p. 352) as a 
simplified version of the BLUE, is defined by 

(2.2.1) /5~, = Q[~ + p2~ [Q(y[+ p12(yl- 5[)) + ( 1 -  Q ) ~ ' -  ~;} ] + ( 1 -  Q)~ ' ,  

where  Q is a constant weight,  0_~Q__<I. 
We find the  variance of [53, under  (2.1.4), which, a f te r  some sim- 

plification, can be expressed as 

^ [ 2Q 3 -~ 
(2.2.2) V(/~3v) = Q'p~3 [l_p~2(l_m,)2} ~. 

L m l ( 1 - m l )  ( 1 - m i )  

�9 {l+p 2a(1-ml) } t 
m2 ( i-- ms i-- m~ 

2Q ~_ 1 ] S ~ - S 2 
1--m~ ~ ]  n N ' 

where  m~ and m2 are matching  proportions defined in Section 2.1. An 
increase in a, for specified values of o ther  parameters ,  leads to a de- 
crease in the  above variance�9 

For  th ree  occasions, the  composite es t imator  due to Hansen et  al. 
([2], p. 272) could be expressed as 

(2.2�9 ~3~=K[K(~+~--~O+(I - -K)~2+~--~2~]+(I+K)~  , 

where K is a constant weight, 0_<K_<I. After some algebra, the var- 
iance of ~3~ can be obtained as 
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(2.2.4) V(#3~) = [2K' ( 1 -  m,) {1-- (1-- m~)pl:} -- 2KZ(1-- m~)(1 - m~)pl3 
W% 1 

+2K 2 {, (1-m~) (1--(1-m2)p,z)-(1-m,)m2p,8} 
~ 2  

_2K(l_m2)pza+ l I S~ S ~ 
n N '  

where ml and ms are matching proportions defined in Section 2.1. 
The third estimator (vide Raj [5], p. 276) employing the technique 

of difference estimation could be termed, as difference estimator. For 
three occasions, it can be written as 

^ -- --I --I -- ~t (2.2.5) ~d-W[y~q-W(y~-t-(yL-1)) + (1-- W ) ~ ' -  5~] + ( 1 -  W)~'  

where W is a constant weight, 0 ~ W ~ I .  This estimator coincides with 
~3b if p12=p23=l. After some simplification, the variance of ~3~, taking 
n as the sample size on each occasion, is found to be 

(2.2.6) V(~d)= IW' I 2(1-m,)m~ ( 1 - p ~ ) + l  + 1 - - ~  t + 2W31 (1-m~) 

i } { (l--m~) 
�9 (P,~.--P,s) 12--ml. q-W 2 2- (1--p28) 

m2 

+__1+1_-7_l  2w Is s, 
l--mL l--m2) l--m2 ~ n N ' 

where ml and ms, as before, are the matching fractions. 
We will investigate in the next section as to how the estimates 

#3v, #~c and #3~, besides #3b, are affected if, instead of the model given 
in (2.1.1), the one given in (2.1.4) operates. It is, however, evident 
that, under (2.1.4), the variances of #3~, #3~ and #3~ would decrease with 
increase in ~, assuming that sgnp~2=sgnp~3. 

3. A comparison of the four estimators 

Using a CDC Cyber 730, we have computed the percent gains in 
precision for the estimators ~b, ~3v, ~3c and ~3~ relative to the simple 
arithmetic mean ~3. In computing the gains via (2.1.7), (2.2.2), (2.2.4) 
and (2.2.6), we have ignored the term -S2/N. Now, if we denote the 
coefficients of S2/n in (2.1.7), (2.2.2), (2.2.4) and (2.2.6) by B, V, C and 
D, respectively, then their reciprocals (taken in the respective order) 
would mean the relative efficiencies of the BLUE, the variant of BLUE, 
the composite estimator and the difference estimator with respect to 
the simple arithmetic mean ~3. We will denote the percent gains in 
the three cases (in the same order as described in the preceding sen- 
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tence) by 

and 

In the computations of Gb, G~, Gc and G~, we have considered: (i ') ml 
= m 2 = m  (say), (ii') the common matching fraction m is optimally 
chosen, (iii') m~ and m2 are optimally chosen. In the three cases (i'), 
(ii') and (iii'), the weights Q, K and W are optimally determined,  in 
the  sense tha t  they have the values tha t  minimise the variances V(~3~), 
V(~3~) and V(~3~) under (2.1.1), respectively. In conducting the  empiri- 
cal investigation, we have chosen, for the different combinations of p12 
and p23, those values of ~ out of the set ~ = - 0 . 4 , - 0 . 2 , - 0 . 1 ,  0, 0.1, 
0.2, 0.4, tha t  satisfy (2.1.5). For p~2 and pf~, we have selected moder- 
ately large values (i.e., p~, p~3=0.6, 0.7, 0.8) and large values (i.e., p1~, 
p23--0.9, 0.95). For the case (i') we have chosen m=0.4 ,  0.6. 

To evaluate the performance of /~3b vis-a-vis the other three  com- 
peting estimators, we intend to examine their  efficiency robustness to 
model breakdown, meaning thereby tha t  we are interested in finding 
the  effect of model deviations on the efficiency of ~3b vis-a-vis the  other 
three  estimators with a view to determining whether  the former re- 
tains its superiority or not for different ~'s. 

3.1. Equal matching fractions (m,=mf) 
It  is convenient in practical application to keep the proportions 

matched constant instead of changing them on every occasion, (see 
Cochran [1]). Accordingly we take m1=m~=m (say), and choose dif- 
ferent  values for the common matching fraction. 

I t  should be made clear tha t  the weights Q, K and W have been 
optimised under  the model (2.1.1) for each combination of m, p12 and 
p23, and then,  using these weights, the  percent  gains Gb, G~, Gc and Gd 
have been computed for different $'s (i.e., when the model (2.1.4), in- 
stead of the  model (2.1.1), operates). 

The following features-- i l lustrated by Table 1--emerged from our 
numerical investigation. 
( 1 )  If (i) p23 is higher than p12 or (ii) p12 and p23 are large, then ~b, 

from a robustness viewpoint, maintains its bestness among the  
est imators being considered in the event  of a model breakdown- 

(2 )  If (i) p12 is larger than p23 or (ii) p~ and pf~ are moderately large 
and equal, then, viewed in terms of robustness against deviations 



330 M . C .  AGRAWAL 

from the model (2.1.1), ~zb performs bet ter  than ~zv, let alone ~3c 
and ~3~, except possibly when ~_<_-0.1 in the case (i), or when 
3~0.1 in the case (ii). However, we have noted from this in- 
vestigation that, under the most unfavourable configurations of 
m, p12, p~z and ~, the maximum loss in efficiency of ~3b, relative to 
its closest rival ~3v is approximately 0.75%. 

( 3 )  If we look at each of the estimators (~3b, ~8~, ~ and /5~) relative 
to the simple arithmetic mean Y3, then each of them except /53~ 
appears to be fairly robust (as measured by the gain in efficiency) 
to a model breakdown. In the case of /~3~, the preceding com- 
ments would apply when p~2>=0.7 and p~3>-_0.8. 

3.2. Opt imum matching fractions 

In this section we present Tables 2 and 3 which have been extract- 
ed from a larger numerical investigation. The distinguishing feature 
of these tables compared with Table 1 is the determination of (a) opti- 
mum m when m , = m 2 = m  (b) optimum m~ and m~, assuming that  opti- 
mally matched portions of the sample are available. The optimum m~ 
and m~ are those four pairs of values corresponding to the four esti- 
mators, that  minimize the four variances, viz., V(~b), V(~) ,  V(~3c) and 
V(~3~) under the model (2.1.1). We will denote optimum percent match- 
ings by (m*, m*~) for /~3b, (m*, m*~) for ~3~, (m*, m*) for ~o and (m'd, 
m*~) for fi~. When m~=m2=m, these four pairs would reduce to four 
singlets, viz., m* for ~b, m* for ~3v, m* for ~z~ and m* for fi3~. The 
weights Q, K and W are determined optimally as before. Finally, the 
gains Gb, G,, G~ and Gd for the cases (a) and (b) are, respectively, com- 
puted in Tables 2 and 3. 

Case (a): Consequent upon optimisation of the common matching 
fraction m, certain reflections (illustrated by Table 2) are noted below: 
( 1 )  If (i) p23>p~2 or (ii) p~ and p2z are large or (iii) p~2~0.95 and p28 

>_-0.6, then fi3~ maintains its bestness, under a model breakdown, 
in the bouquet of competing estimators considered here. 

( 2 ) For combinations of p~2 and p23 other than those noted in (1) above, 
the estimator fi~b, broadly speaking, tends to sustain, under a 
model breakdown, its bet ter  performance relative to any of the 
other three estimators. 

( 3 )  Each of the estimators (~3b, ~a,, ~ and ~zd) relative to the simple 
arithmetic mean P3 appears to be quite robust (as measured by 
the gain in efficiency) to model deviations. 

Case (b): As a result of optimisation of both ml and m2, the fol- 
lowing features (borne out by Table 3) emerge:  
( 1 ) For large p12 and p23 (i.e., p~, p ~ 0 . 9 ) ,  the estimator ~ maintains 

its superiority (as measured by its efficiency) vis-a-vis the other 
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,4 
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.4 
.6 
.6 
.6 
.6 
.6 

16 
.6 

Table  1. Percent  gains in precision for fi~b, fi3v, ~ac and fi3~ 

P12 P23 ~ Gb Q G~ f K Gc W G d 
I i 

.60 .70 - . 4  16.96 .4888 16.84 .2398 ] 11.24 .4508 9.07 

.60 .70 - . 2  17.61 .4888 17.52 .2398 ] 11.48 .4508 10.18 

.60 .70 - . 1  17.93 .4888 17.86 .2398 11.61 .4508 10.74 

.60 .70 0.0 18.26 .4888 18.21 .2398 11.73 .4508 11.31 

.60 .70 .1 18.59 .4888 18.55 .2398 11.86 .4508 11.88 

.60 .70 .2 18.93 .4888 18.90 .2398 11.98 .4508 12.46 

.60 .70 .4 19.60 .4888 19.60 .2398 12.23 .4508 13.64 

.70 .60 - . 4  11.28 .4675 11.30 .1934 7.36 .4260 3.02 

.70 .60 - . 2  11.83 .4675 11.84 .1934 7.50 .4260 3.85 

.70 .60 - . 1  12.11 .4675 12.11 .1934 7.57 .4260 4.28 

.70 .60 0 .0  12.39 .467~ 12.38 .1934 7.64 .4260 4,78 

.70 .60 .1 12.68 .4675 12.66 .1934 7.71 .4260 5.13 

.70 .60 .2 12.96 .4675 12.93 .1934 7.78 .4260 5.56 

.70 .60 .4 13.53 .4675 13.49 .1934 7.91 .4260 6,44 

.70 .70 - . 4  17.08 .4947 17.05 .2466 11.40 .4607 9,66 

.70 .70 - . 2  18.03 .4947 18.01 .2466 11.71 .4607 11,07 

.70 .70 - . 1  18.51 .4947 18.50 .2466 11.87 .4607 11,78 

.70 .70 0.0 19.00 .4947 18.99 .2466 12.02 .4607 12.50 

.70 .70 .1 19.48 .4947 19.49 .2466 12.18 .4607 13.23 

.70 .70 .2 19.98 .4947 19.99 .2466 12.34 .4607 13.98 

.70 .70 .4 20.98 .4947 21.00 .2466 12.65 .4607 15.49 

.80 .70 - . 4  17.23 .5020 17.28 .2540 11.58 .4718 10.30 

.80 .70 - . 2  18.59 .5020 18.61 .2540 11.96 .4718 12.05 

.80 .70 - . 1  19.28 .5020 19.28 .2540 12.15 .4718 12.94 

.80 .70 0.0 19.98 .5020 19.96 .2540 12.35 .4718 13.85 

.80 .70 .1 20.69 .5020 20.65 .2540 12.54 .4718 14.77 

.80 .70 .2 21.40 .5020 21.35 .2540 12.73 .4718 15.71 

.80 .70 .4 22.86 .5020 22.76 .2540 13.12 .4718 17.63 

.80 .80 - . 4  25.88 .5377 25.74 .3192 17.60 .5146 19.65 

.80 .80 - . 2  28.30 .5377 28.21 .3192 18.46 .5146 22.72 

.80 .80 - . 1  29.54 .5377 29.47 .3192 18.89 .5146 24.32 

.80 .80 0.0 30.81 .5377 30,77 .3192 19.32 .5146 25.96 

.80 .80 .1 32.10 .5377 32.09 .3192 19.76 .5146 27.64 

.80 .80 .2 33.42 .5377 33,44 .3192 20.20 .5146 29.37 

.80 .80 .4 36.14 .5377 36.21 .3192 21.09 .5146 32.97 

.90 .90 - . 2  46.61 .5992 46.16 .4157 29.81 .5872 42.62 

.90 .90 - . 1  50.26 .5992 49.87 .4157 31.10 .5872 46.74 

.90 .90 0.0 54.10 .5992 53.77 .4157 32.41 .5872 51.10 

.90 .90 .1 58.14 .5992 57.88 .4157 33.75 .5872 55.73 

.90 .90 .2 62.39 .5992 62.22 .4157 35.11 .5872 60.66 

.90 .95 - . 1  65.36 .6236 63.82 .4589 39.42 .6161 61.36 

.90 .95 0 .0  71.29 .6236 69.73 .4589 41.44 .6161 67.86 

.90 .95 .1 77.65 .6236 76.09 ,4589 43.53 .6161 74.90 

.95 .90 - . 1  52.75 .6126 52.59 .4302 32.16 .6021 49.99 

.95 .90 0 .0  57.55 .6126 57.44 ,4302 33.69 .6021 55.20 

.95 .90 .1 62.66 .6126 62.60 ,4302 35.27 .6021 60.79 

.95 .95 - . 1  69.17 .6397 68.12 .4769 41.11 .6335 66.35 

.95 .95 0 .0  76.73 .6397 75.67 ,4769 43.53 .6335 74.33 

.95 .95 .1 84.99 .6397 83.94 .4769 46.04 .6335 83.12 

.60 .70 - . 4  15.11 .6547 15.03 ,2887 8.89 .6252 5.59 

.60 .70 - . 2  16.15 .6547 16.09 .2887 9.16 .6252 7.45 

.60 .70 - . 1  16.68 .6547 16.63 .2887 9.30 .6252 8.40 

.60 .70 0 .0  17.22 .6547 17.17 .2887 9.44 .6252 9.38 

.60 .70 .1 17.75 .6547 17.72 .2887 9.58 .6252 10.37 

.60 .70 .2 18.30 .6547 18.27 .2887 9.72 .6252 11.38 

.60 .70 .4 19.40 .6547 19.39 .2887 10.00 .6252 13.45 

.70 .60 - . 4  10.53 .6451 10.54 .2453 6.17 .6136 .42 

.70 .60 - . 2  11.47 .6451 11.47 .2453 6.35 ~6136 2.01 

.70 .60 - . 1  11.95 .6451 11.95 .2453 6.44 .6136 2.82 

.70 .60 0.0 12.43 .6451 12.42 .2453 6.54 .6136 3.65 
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1 

m Pi2 P23 

.6 .70 .6O 

.6 .70 .60 

.6 .70 .60 

.6 .70 .70 

.6 .70 .70 

.6 .70 .70 

.6 .70 .70 

.6 .70 .70 

.6 .70 .70 

.6 .70 .70 

.6 .80 .70 

.6 .80 .70 

.6 .80 .70 

.6 .80 .70 

.6 .80 .70 

.6 .80 .70 

.6 .80 .70 

.6 .80 .80 

.6 .80 .80 

.6 .80 .80 

.6 .80 .80 

.6 .80 .80 

.6 .80 .80 

.6 .80 .80 

.6 .90 .90 

.6 .90 .90 

.6 .90 .90 

.6 .90 .90 

.6 .90 .90 

.6 .9O .95 

.6 .90 .95 

.6 .90 .95 

.6 .95 .90 

.6 .95 .90 

.6 .95 .90 

.6 .95 .95 

.6 .95 .95 

.6 .95 .95 

Table 1. (Continued) 

Gb Q G~ K Gr 

.i 12.91 .6451 12.90 .2453 6.63 

.2 13.40 .6451 13.39 .2453 6.72 

.4 14.39 .6451 14.37 .2453 6.90 
- . 4  i5.29 .6599 15.26 .2972 9.03 
- . 2  16.77 .6599 16.74 .2972 I 9.38 
- . 1  17.52 .6599 17.50 .2972 9.55 
0.0 18.28 .6599 18.27 .2972 9.73 

.1 19.05 .6599 19.05 .2972 9.90 

.2 19.83 .6599 19.83 .2972 10.08 

.4 21.43 .6599 21.44 .2972 10.43 
- . 4  15.50 .6661 15.51 .3065 9.19 
- . 2  17.52 .6661 17.52 .3065 9.61 
- . 1  18.55 .6661 18.56 .3065 9.83 
0.0 19.61 .6661 19.61 .3065 10.04 

.1 20.68 .6661 20.68 .3065 10.26 

.2 21.77 .6661 21.77 .3065 10.47 

.4 24.02 .6661 24.01 .3065 10.91 
- . 4  21.95 .6838 21.84 .3633 13.01 
- . 2  25.12 .6838 25.04 .3633 13.78 
- . 1  26.77 .6838 26.70 .3633 1-1.17 
0.0 28.46 .6838 28.40 .3633 14.57 

.1 30.20 .6838 30.15 .3633 14.96 

.2 31.98 .6838 31.95 .3633 15.36 

.4 35.70  .683~ 35.70 .3633 16.17 
- . 2  38.07 .7143 37.78 .4400 20.10 
- . 1  41.80 .7143 41.51 .4400 20.97 
0.0 45.74 .7143 45.45 .4400 21.85 

.1 49.90 .7143 49.61 .4400 22.74 

.2 54.30 .7143 54.02 .4400 23.65 
- . 1  50.59 .7245 49.85 .4710 24.89 
0.0 55.82 .7245 55.02 .4710 26.05 

.1 61.42 .7245 60.55 I .4710 i 27.24 
- . 1  43.83 .7215 43.63 .4506 r 21.52 
0.0 48.51 .7215 48.31 .4506 22.52 

.1 53.50 .7215 53.30 .4506 23.53 
- . 1  53.27 .7325 52.67 .4831 25.63 
0.0 59.54 .7325 : 58.88 .4831 ~ 26.95 

.1 66.351 .7325t 65.6i  .4831! 28.31 

W 

.6136 

.6136 

.6136 

.6344 

.6344 

.6344 

.6344 

.6344 

.6344 

.6344 

.6443 

.6443 

.6443 

.6443 

.6443 

.6443 

.6443 

.6675 

.6675 

.6675 

.6675 

.6675 

.6675 

.6675 

.7066 

.7066 

.7066 

.7066 

.7066 

.7200 

.7200 

.7200 

.7147 

.7147 

.7147 

.7287 

.7287 

.7287 

G,, 

4.49 
5.34 
7.09 
6.46 
8.78 
9.97 

11.20 
12.45 
13.73 
16.38 
7.39 

10.22 
11.70 
13.21 
14.77 
16.37 
19.71 
15. io 
19.28 
21.49 
23.78 
26.16 
28.63 
33.88 
3-[.61 
38.89 
43.44 
48.30 
53.51 
47.99 
53.81 
60.09 

:41.53 
46.72 
52.29 
51.40 

5 8 . 0 8  
65.39 

three estimators in the event of a model breakdown. 
( 2 )  For combinations of p12 and p.~8 other than those implied in (1) 

above, the estimator ~3b, even in the face of deviations from the 
model (2.1.1), sustains its better performance relative to any of 
the other three estimators for a>_---0.2. However, for a=- -0 .4 ,  
the estimator ~3b, under the most unfavourable configurations of 
pl~ and p23 (e.g. when PI2>>P~3) suffers a maximum loss in efficiency 
of 5.5% relative to ~8~, while it gains, over the remaining values 
of ~, about 10% in efficiency relative to/~3~. 

( 3 )  Each of the estimators (]~3~, ~8~, ~3o and ~3~) relative to the simple 
arithmetic mean ~8 appears to be fairly robust (as measured by 
the gain in efficiency) to model deviations. 

Thus, viewed in totality against the background of the observa- 
tions made in this section, we may infer that the estimator /~3b, which 
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P12 

.60 

.60 

.60 

.60 

.60 

.60 

.60 

.70 

.70 

.70 

.70 

.70 

.70 

.70 

.80 
�9 80 
�9 80 
.80 
.80 
.80 
.80 
.90 
.90 
.90- 
.90 
.90 
.90 
.90 
.90 
.90 
.90 
.90 
.90 
.90 
.90 
.90 
.90 
.90 
.90 
.90 
.90 
.95 
.95 
.95 
.95 
.95 
.95 

P23 

.6O 

.60 

.60 

.60 

.60 

.60 

.60 

.80 

.80 

.80 

.80 

.80 

.80 

.80 

.80 

.80 

.80 

.80 
�9 80 
. 80  
.80 
�9 60 
.60 
.60 
.60 
.60 
.60 
.60 
.80 
�9 
.80 
.80 
.80 
.90 
�9 
.90 
.90 
.90 
.95 
.95 
.95 
.90 
.90 
.90 
�9 
.95 
.95 

6' 

- . 4  
--.2 
--.1 
0.0 

.1 

.2 

.4 
--,4 
--�9 
--.1 
0.0 

.1 

.2 

.4 
--.4 
--,2 
--�9 
0�9 

.1 

.2 

.4 
--�9 
--.2 
--�9 
O. 0 

.1 

.2 

.4 
--�9 
--.1 
0.0 

.1 

.2 
--,2 

0.0 
.1 
.2 

--�9 
0.0 

.1 

0�9 
.1 

--�9 
0.0 

.1 

T a b l e  2. O p t i m u m  p e r c e n t  m a t c h e d  and p e r c e n t  g a i n s  

in prec i s ion  for /~sb, fisv, /33c and fi3a 

mb* Gb m* Q G~ m* K G c 

48�9 48�9 �9 42.381.2058 7.47 
48.83 11.80 48.82 .5439 11.80 42�9 �9 7.69 
48.83 12.07 48.82 �9 12�9 42.381 .2058 7.80 
48.83 12.34 48.82 �9 12.33 42.38 t .2058 7.91 
48.83 12.60 48.82 .5439 12.60 42.381�9 8.02 
48.83 12.87 48.82 �9 12.88 42.381 .2058 8.13 
48.83 13.42 48.82 .5439 13.42 42.381.2058 8.35 
43.43 25.42 43.49 �9 25.08 36.021.3116 18.41 
43.43 27.27 43.49 .5537 26.99 36.021 .3116 19.51 
43.43 28.21 43.49 �9 27.97 36�9 20.07 
43.43 29.16 43.49 .5537 28.96 36.021.3116 20.63 
43.43 30.13 43.49 .5537 29.97 36.021.3116 21.20 
43.43 31.12 43.49 .5537 30.99 36.02 .2116 21.78 
43.43 33.13 43.49 .5537 33.09 36.02 .3116 22.94 
44.79 25.54 44.72 .5742 25.40 37.16 .3340 18.84 
44.79 28.25 44.72 .5742 28.16 37�9 .3340 20�9 
44 7912  65 447  5 7 4 2   958 37.16 3 3 4 0  
44.79 31.09 44.72 5742' 31.04 3 7 . 1 6  3340 21.87 
44.79 32.55 44.72 .5742 32.53 37.16 .3340 '2'2.65 
,14.79 34.05 44�9 .5742 34.05 37.16 .3340 23.44 
44.79,37.15 44�9 .5742 37.20 37.16] .3340 25.05 
52.5011}.49 53.20 .5970 11.49 45.641.23951 7.76 
52.50113.03 53.20 .5970 12.96 45.64: .2395 8.22 
52.50113.82 53.20 .5970 13.70 45.64 .2395 8.45 
52�9 53�9 .5970 14.46 45.64 .2395 8.68 
52.50115.42 53.20 .5970 15.22 45 64 �9 8.92 
52.50116.24 53.20 .5970 16.00 45.64 �9 9.15 
52.50117.91 '53.20 .5970 17.58 45.64 / .23951 9.63 
45.76129.61 45�9 .5960 29.62 38.311.3609 ~1 29 
45.76131.64 45�9 .5960 31.65 38.311.3609 22133 
45.76133.74 ~ , ~- - i .~ c i43.82 .5960 33.74 38.311.3609123.39 
4D 76 33 91 45.82 �9 35.90 38�9 
.I5�9149 45.82 .5960 38.14 3 8 . 3 1  .3609125.56 
38.74i46 78 38.56 .5902 46.35 31.14 .4262i36.12 
38.71,',50.37 38.56 5902 49.99 31.14! �9 
38 . 74 i 54 .13 i 38. 56 15902 53.81 3 1 . 1 4  .42o2140.82 
38.74158.09i38�9 .5902 57.84 31.14 .426243 .29  
38.74i62 26 38.56 �9 62.08 31.14 .4262 45.85 
32.30167.50 32.51 .5825 65.70 25.48 ' .4591 53.53 
32.30 72.95 32.51 .5825 71.23 25.48 .4591 57.41 
32.30 78.77 32.51 .5825 77.15 25.48 .4591 61.48 
38"711 " 875738.50.603652.7331.32.4486140.44 
38.71 5938.50.603657.4931.32.4486143.40 
38.71 62.61 38.50 .6036 62.55 31�9 .4486146.48 
31.99 71.58 31.721 .5981 70.53 25.09 .4874157.62 
31.99 78.74 31.72 .5981 77.74 2 5 . 0 9  .4874162.70 
31.99,86.52 31.72 .5981185�9 25 .09  .4874168.11 

m~* W ' Go 

33.67 3 
33.67 3. 
33.67 .3596 3. c 
33.67 .3596 4. 
33.67 .35961 4.~ 
33.67 �9 / 4.(  
33.67 .3596[ 5.1 
41.58 .5117118.~ 
41.58 .5117120.1 
41.58 .5117 22.( 
41.58 �9 23.:: 
41.58 �9 2-i.~ 
41.58 .5117 26 .1  
' i l .58  .5117 28. c 
44.14 �9162 

54,r, ., c 44.14 , ,,) 22.c 
44.14 .5475 24.~ 
44.14 .5475 26. 
44.14 .5475 28.(; 
44.14 .5475129. r 
:1-1.14 �9 3 l . (  
51.45 .5519 2.~ 
51.45 .5519 4.[  
51 �9 �9 5. 
51.45 .5519 6�9163 
51.45 .5519 7.E 
51.45 .5519 8 . .  ~ 
51.45 .5519 10." 
46.09 .5801 24.L 
46.09 .5801 2?.( 
46.09 .5801 29.~ 
46.09 .5801 32." 
46.09 .5801 34. 
38.83 .5797 42. 
38.83 .5797146.~ 
38.83 .5797151. 
38.83 . 579755 .  
38.83 .5797 60. 
32.76 .5756'63.  
32.76 .5756 69. 
32.76 .5756 75.,  
38.79 .5948:50. 
38.79 .5948 55. 
38.79 .5948 60.1 
31.93 .5923 68.( 
31.93 .5923 76. 
31.93 .5923 84.[ 

is the best linear unbiased estimator under (2.1.1), is an efficiency robust 
estimator, in the sense that it sustains, by and large, its bestness vis- 
a-vis the competing estimators considered in the face of unforeseen 
model deviations that are envisaged via the model (2.1.4) and are re- 
flected through the values of 3 displayed in Tables 1, 2 and 3. 
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