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Summary 

Wilks [26] introduced two integral equations in connection with 
distribution problems in statistics. He called them Type A and Type B 
equations. Tre t te r  and Walster ([22], [24]) solved the Type B equation 
and obtained the  null and non-null distributions of the likelihood ratio 
criterion for test ing linear hypotheses in the multinormal case. In 
this article we present several types of solutions of these equations 
along with new equations called Types C, D, E and F with their  solu- 
tions. These include the integral equations satisfied by the  density of 
a random variable which is (a) product of independent real gamma 
variates;  (b) products of independent real beta variates;  (c) ratio of 
products of independent beta and gamma variates ; (d) arbi t rary powers 
of products of gamma and beta variates;  (e) arbitrary powers of pro- 
ducts and ratios of beta and gamma variates, and more general cases. 

1. Introduction 

In order to give a technique of deriving the distribution of a statis- 
tic when its h th  moment  is available Wilks [26] introduced two integral  
equations called Type A and Type B equations. Consider the  equation 

(1.1) xh f ( x )  dx= B~ T[ {1-'(%-b h)/l"(a~)} (Type A) 
3=t  

where h and a~'s are real and positive, B and f(x) are free of h. This 
he called Type A equation. Type B is given by (1.2). 

(1.2) :r,~f(x)dx=CB ~ [-[ {1-'(b~--kh)/I~(cjq-h)} (Type B) 
J = l  
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P 

where C=]-[ [F(cj)/F(b~)} and B and f (x)  are free of h. The b/s and 
3=1 

c / s  are two sets of positive numbers such that  there exists at least 
one way of pairing them so that  each b, is less than the correspond- 
ing c~. Without loss of generality we will assume that  b~<c,, i=1 ,  
�9 . . ,  p. Type A equation can result from the following situation. Let 
X = X ~ . . . X p  where X,, . . . ,  X~ are independent real gamma variates 
with the densities 

(1.3) A(x,) = [d~,F(a,)}-lx?,-le-*,/~, , 

x~>0, a , > 0 ,  d~>0 ,  i = l , . . . , p  

and f , (x0=0  elsewhere. If f (x)  is the density of X then the hth mo- 
ment  of X is given by (1.1) with B=dld2...dp. Thus X is structurally 
the product of p independent real gamma variates. In (1.2) change X 
to X/B then B will disappear from the right side. Hence for conven- 
ience we will assume B = I  in the following discussion. Let X = Y 1 . . .  
Yp where Y, . . - ,  Yp are independent real beta variables with the den- 
sity functions 

(1.4) g,(y,) = {r(a~ + fl,)Ie(a~)e(fl~)} x~',-'(1-- x,)&-', 

O<x~<l, a~>O, fl,>O, i--l,...,p 

and g,(y,)=0 elsewhere. Then the hth moment of X with a~=b,, a,+fl, 
=c ,  i = 1 , . . - ,  p gives (1.2) for B = I .  Thus f (x )  in (1.2) can be looked 
upon as the density of X where X is structurally a product of p inde- 
pendent real beta variables. X in (1.1) is associated with the deter- 
minant of the sample covariance matrix when the sample comes from 
a multivariate normal distribution. X in (1.2) is associated with several 
test  statistics for testing hypotheses on the parameters of one or more 
multivariate normal populations. It  is also connected with problems in 
geometric probability, see for example Mathai [8]. Since Type B is 
relatively more important than Type A as far as statistical applications 
are concerned we will look into the solution of Type B first. Through- 
out this article an empty product is interpreted as unity and the cor- 
responding empty sum as zero. All the parameters are assumed to be 
real unless otherwise specified. 

2. Solutions of Type B integral equation 

Wilks [26] gave a multiple integral representation for the solution 
of Type B equation. This is obtained by working out the density of 
a product of p independent real beta variables by the method of trans- 
formation of variables. His solution for B = I  is the following. 
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(2.1) 

where 

f(x)-Kxb~-~(1--xy~,-~p -~ f~o . . . f*o { ~  v~-b~-*(1--v,)rp-,-~p-,-l~-c~+~dv,} 

(2.2) ~ =  {v~+v~(1--vl)+ . . . +v~(1--vl)(1--v~). . .(1--v~_~)}(1--x) , 

z - - I  i - - 1  p 

r ~ = E  cp_j , fl~=~, b~_j, K = ] - [  F ( c J / { F ( b J F ( c ~ - b J } .  
J=O J=O 7,=1 

By induction he showed tha t  0 < ~ , < 1  for i = 1 ,  . . . ,  p--1.  By succes- 
sive integrat ion of (2.1) Wilks [25], [26] derived the exact densities in 
particular cases for the likelihood ratio statistics for test ing general 
linear hypothesis and independence of subvectors in multinormal popu- 
lations. By using Wilks' multiple integral representation Wald and 
Brookner [23] derived the null density for the problem of test ing in- 
dependence. 

Nair [20] showed tha t  f ( x )  of (i.2) satisfied the differential equation 

d 

He gave a general method of solving such a differential equation with 
the  help of the method of Frobenius and calculus of residues. We 
will show in Section 3 that  the differential equation (2.3) is a particular 
case of a differential equation coming from a more general moment  
s t ructure  and the  general solutions of such differential equations are 
also available. In a series of articles Davis, see for example Davis [4], 
worked out the  explicit unique solutions of (2.3) for particular cases 
and thus obtained the exact distributions of several test  statistics in 
particular cases. Mathai [13] used a general expansion of a G-function 
and derived an explicit general solution for (1.2) for B = I  in the  form 
of the following series which is suitable for computational purposes. 

(2.4) f ( x ) = C X ~ A j x B J ( - l o g  x)C~ , O < x < l  

and f ( x ) = 0  elsewhere, where C, A j, B e and Cj do not depend on x. 
Fur ther ,  C: is a non-negative integer such tha t  O<C~<=p-1. Explicit 
forms of A~, B~. and C~ will be given in Theorem 2 later on. This 
author has noticed tha t  (2.4) is the  most suitable form for computa- 
tional purposes compared to other series forms which will be discussed 
in the next  paragraphs. Computability of (2.4) is illustrated by com- 
put ing the  exact percentage points for several test  statistics, see for 
example Mathai and Katiyar [14]. 

Following the suggestion in Wilks [26], Tre t ter  and Walster [22] 
expanded ~ for i = 1 ,  . . - ,  p - 1  and obtained the density for Wilks' A 
in the  form of a multiple sum. They noted the recursive relationship 
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~=v,-{-(1--v~)~_1, i = 1 ,  . - . ,  p--1.  When k~ is a positive integer  ~ re- 
sults in a finite sum when expanded. Thus successive expansions lead 
to a finite sum. Then successive integrations give the final solution 
to (2.1). But note tha t  k~--b~-c~+1<0 in Wilks' representat ion and 
hence ~ for i --1,  . . . ,  p - 1  give multiple infinite series. They obtained 
a series of the  form 

(2.5) f(u) = Cu~X,a, (1 -- u) j 

where C, a and a s do not contain u and aj's involve multiple sums and 
products. By using (2.5) they derived the  exact null density of Wilks' 
A for tes t ing general linear hypothesis. Later  Walster and Tre t te r  [24] 
extended their  results to the  non-null case as well as to other  tes t  
criteria. By using the  same procedure Gupta [7] worked out the  ex- 
act null density of the likelihood ratio criterion for test ing sphericity. 
When p becomes large a~'s become unmanageably complicated in this 
multiple sum representation which then becomes unsuitable for com- 
putational purposes. This is a drawback in any multiple series repre- 
sentation. If a multiple sum representation is looked for then we will 
give the following new representation which is more compact and valid 
for general values of the parameters.  

LEMMA 1. I f  Y , "  ", Yp are independent real beta variates with 
the densities given in (1.4) and i f  U= Y~... Yp then the density of U, 
denoted by g(u), is given by 

(2.6) g(u)=Cpu'p-~(1-u) ~-L 

X f:'-. f: {P~ ~ t~-'(1-t~)~+~-~(1-t,_~t,_~"'t,_~(1-u))-"-~dt~ l , 
0 ~ u ~ l  

and g(u) =0 elsewhere, where, 

P 

(2.7) C~=]~{r(a~+~)/r'(~)r(~)}, ~ = Z I + . . . + ~ ,  r~=a~+~+~+~-~. 

PROOF. Consider two independent real beta variables Y1 and Y~ 
having densities given in (1.4). By t ransformation of variables it is 
trivial to note tha t  the density of U~= Y~Y~ is given by 

i~ t~_~_~(l_t)~_~(t_u~)~2_~dt h~(u~)=C~ u~-~ ~, 

where C2 is defined in (2.7). Make the substi tution 1-t~=(t-u~)/(1-u~). 
Then, 

h~(u~)=C~u;~-~(1-u')P~+~-I f: tf~-'(1-t'l'~-'(1-t~(1-u'))-r176 
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Now by induction and making the above substitution each t ime the 
result  follows. 

The form (2.6) is more convenient compared to Wilks' representa- 
tion (2.1) with  ~ defined in (2.2). I t  is readily seen tha t  each factor in 
(2.6) is expansible since O<t~_itp_2...tp_~(1-u)<l for i = 1 ,  . . . , p - 1 .  
In the persuit  of obtaining new results in Special Functions by using 
statistical techniques and get t ing  a multiple integral representation for 
a G-function Mathai and Saxena [19] arrived at the representat ion in 
(2.6). 

THEOREM 1. A solution of the Type B integral equation given in 
(1.2) with B = I ,  b~=a~, c~=a~+#~, i = 1 , . . . ,  p is given by 

(2.s) g(u):C, r(&) w,-~(1-u)~, -~ ~ ~ 
r = 0  

p--1 

• ]~ {(r,)~F(O,+R~)(1--u//(F(~+~+R~)r~!)}, O<u<l 

and g(u)=0 elsewhere, where Cp, 3/s are defined in (2.7), R~=r~+... 
+r~, R=(r~, . . . ,  rp_~) is the partitioning of the integer r such that r~>= 
0, i = 1 , - . . ,  p--l,  rl+...+r~_1=r. 

PROOF. Since 

00 

( i -  a(i-u))-~= 5] (r)~ar(l--u)*/r!, 
r = 0  

for 131<l, O<u<l 

where ( r ) r = r ( ~ - + l ) . . . ( r + r - 1 ) ,  by expanding and in tegrat ing out tl, 
�9 . . ,  t~_l in (2.6) the result follows. All the steps are valid in this case. 

In the  case of Wilks' A in the real null case the  parameters  are 
(see for example Matbai [12]) aj=(N-])/2, #j=q/2, ] = 1 ,  . . . , p ,  r j =  
(q - l ) /2 ,  j = l ,  . . . ,  p - l ,  N > p  and N is the sample size. Thus (2.8) 
gives a multiple series representation. But in Mathai [12] it is shown 
tha t  in the  case of Wilks' A one can get  the density as a finite sum 
for all cases, where p and q are not both odd, by using calculus of 
residues. Also it is shown in Mathai and Rathie [16] tha t  generalized 
partial fraction technique is applicable in this case. The general non- 
null case for Wilks' A is given in Mathai [9] and Walster and Tre t te r  
[24]. The main advantage of the representation in (2.8) is t ha t  it is 
a general representation for all parameters  in (1.4) and the distribu- 
tion function is available in terms of incomplete beta functions by te rm 
by te rm integration and the steps are all valid in this case. 

THEOREM 2. Consider the integral equation 

i x~ f(x)dx = C~ 
P 

(2.9) T[ {I~(a,+h)lr(a,+A+h)} =C~/(h) 
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where Cp is given in (2.7), a~, p~, i=1 ,  . . . ,  p are complex numbers such 
P 

that R(h) > --min R(aj), j =  1, . . . ,  p, ~ R(p~) + 1/2 >0  where R(.) denotes 

the real part of  (.), f (x)  is assumed to be real and defined and single 
valued almost everywhere for 0 < x < l  such that f (x )~O and absolutely 
integrable over the range (0, 1). Then f(x)  for  0 < x < l  is given by a 
series of  the form 

co 

(2.10) f(x)=Cp E/~,xf~(-log x) ~ , 0 < x < l  

and f ( x ) = 0  elsewhere, where /~, f i  and g, do not depend on x and O~ 
g ~ p - 1 .  

PROOF. From the conditions stated above f (x)  is available as the 
inverse Mellin transform of the r ight  side of (2.9) with h replaced by 
h--1. That is, 

f(x)=Cpx-~(2~i)-~ f ~+~ ~l(h)x-hdh , i = ( - 1 )  ~n 
J C--ioo 

where c~--minR(ai ) ,  3"=1 , - . - , p .  From the theory of G-functions 
f (x)  is defined for 0 < x < l  and it is available as the sum of the re- 
sidues at the poles of ~/(h). Let h=--a, ,  i=1, . . .  be the poles of ~(h) 
with orders b,, i = 1 ,  . . . .  Evidently l<=b~_p since there are only p 
gammas in the numerator of Z(h). The residue for a pole of order b 
at h = - - a  is given by 

�9 ~ b--:l. 

(2.11) a =  {1/(b-- 1)! } lira ~ {(h+a)bL1(h)x -h} 

= {x~/(b-1)!} / ( - l o g  x)~-l-rc~ 

where 

(2.12) cr= tim ~ {(h+a)b~l(h)}. 

Summing up the residues by using (2.11) one has 

f(x)=Cp ~ {x~-~/(b~ - 1)!}~-i( b~-I  )a~r(-log x)b~ -~-r , 0 ~ x  ~1  
2 = 1  = r 

where a~, is c~ of (2.12) with a and b replaced by a~ and b~ respective- 
ly. Since O~b~- l -r<__p-1  for all values of b~'s and r the result fol- 
lows. 
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3. Type C and Type D integral equations and their solutions 

Consider the  equation (3.1) which we will call Type C equation. 

(3.1) x~f(x)dx=Ca ~ ~/'(a~+h) ~[ r ( p : - h )  (Type C) 
J=l J = l  

where h is such tha t  the gamma products exist and C-~=T[ F(as) r [  F(p:). 
J = l  3 = 1  

A sufficient condition for the existence is that  m ~ 0 ,  m ' ~ 0 ,  m + m ' > = l ,  
a real and positive, -minR(a:)<R(h)<minR(~),  R(aj)>0, R(p~)>0, j 
=1, . . . ,  m, k=l ,  . . . ,  m', where R(-) denotes the real par t  of (-). f(x) 
is assumed to be real and defined and single valued almost everywhere 
for x>_0 and absolutely integrable over the range (0, co). For simpli- 
city we will assume that  the parameters  are all positive and tha t  f(x) 
is a density function. Since by changing x to x/a one can remove a 
from the r ight  side we will assume a = l  without  loss of generality. 
The h th  moment  of, 

(3.2) X=X~.. .X~/(Y~.. .  Y~,) 

can give (3.1) where X I , - . . ,  X~ and Y , . - . ,  Y~, are mutual ly  inde- 
pendent  real gamma random variables defined in (1.3). A typical ex- 
ample of (3.1) is the ratio of the  determinants  of two independent  
sample covariance matrices when the samples come from mult inormal 
populations. When m=m'=p  such a ratio of the Wilks' concept of 
generalized variances has applications in analysis of variance and other 
problems in statistics. 

A solution of (3.1) can be found by identifying it with a G-func- 
m . m '  tion of the  type G~,,~(x). Various existence conditions for f(x) of (3.1) 

are available from the existence conditions for the G-function, see for 
example Mathai and Saxena [18]. A computable series representat ion 
of the  type 

(3.3) f(x) = 2::ajxb~(log x)~ 

where a:, b: and c~ do not depend on x and O<=c~<=m-1 is available 
from Mathai [10] along with applications in statistics. Since the case 
m = m ' = p  is closely accociated with the  ratio of two independent gen- 
eralized variances we will give here another new representat ion for 
the  case m=-m'=p and a=l  in (3.1). 

LEMMA 2. Let re=raP=p,  a = l ,  a:, ~ ,  j = l ,  . . . ,  p be real positive 
numbers in Type C equation given in (3.1). Then the density of U, de- 
noted by g(u), is determined as follows where U=(I+X)  -~. 
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(3.4) g(u)=Cpu~l-~(1-u) "~-~ " " ~ ~-F[ t~+"~+l-l(1--t~)=~+~+l-~[ 
JO (~=i ) 

• (ut~... t~_, + (1 -- u)(1 -- t~) �9 �9 �9 (1 -- tp_~))-(=,+~,)dt, . . .  dtp_,, 

0<u<l, 

where C~ is defined in (2.7). 

PROOF. We will rewrite X of (3.2) in the form X=ZI...Z,, where 
Z,=X,/Y~ and it is trivial to note that Z~ has a beta type-2 density 
given by 

K,(z,) = {r(~, + #,)/r(~,)F(#~)} z:,-'(l+ z,)-~~ § ' , 

0<z~<oo,  a ,>0 ,  /9,>0 and K~(z,)=0 elsewhere,  i = 1 , . - . ,  p. Thus  f (x)  
of (3.1) is available as the  densi ty of the  p roduc t  of the  independent  
be ta  type-2 random variables Z , . - - ,  Z,. Le t  U~=Z~Zz. By t ransfor-  
mat ion  of variables the  densi ty of U,  denoted by P~(ul), is g iven by 

PJu~)=C2u['-~ f~ t=,-'~-'(l+t)-(=~+'-~'(1 + ujt)-{',+'~)dt . 

Change t to wg ~ to ge t  

Pl(u'):C~u['-1 I [  W[~+~'-i(1 + W~)-("'+~')(1-1- u~wl)-(=i+~Pdw, . 

By induct ion it  is easily seen t ha t  the  densi ty  of X is g iven by 

x (l+xw~-..wp_,)-~'~+~dw~...dwp_~, 0 < x <  oo 

where  Cp is defined in (2.7). Pu t  u = ( l + x )  -~, t ~ = ( l + w , )  -*, i = 1 ,  . - . ,  p - 1  
so t h a t  0 < u < l ,  0 < t ~ < l ,  i = 1 ,  . . . ,  p - 1  t hen  the  densi ty  of U reduces 
to (3.4). 

THEOREM 3. A solution of Type C equation of (3.1) with a = l ,  m 
= m'=p,  %, ~ ,  ]= 1, . . . ,  p real positive numbers, is, 

(3.5) f(x) =C~;~-*(l+x)-r ) 

x~, {(a~+~)Jr!/~ (-ly~ ~ r~ x~,(l+x)_~ 
r=o =o r2 

p--L 

x ]7 {~(~+~+~+n)F(~+A§ 
~=I 

F(a~+~+a~+~+~+~+r~} , 0 < x < o o  

and f (x)=O elsewhere, where C~ is given in (2.7). 

PROOF. Since u + ( 1 - - u ) = l  and 0 < t l - . - t ~ _ ~ < l ,  0<(1 - t~ ) . . . ( t - - t~_~)  
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<I we have 0<4)<1 where r  
Hence 

: 

r=O 

__~ r / T  \ rl / T  \ 
- m, ( ) ( - 1 y 1 E  

r=0 r l = 0 \  ,rl / r2=o \ T2 / 

X { ( i - - u ) ( l - - t , ) . . .  (I--tp_1)} ~-~2 

where for example, (a)~:a(aH-l)..-(a+r-1), ( m l:m!/{n!(m--n)!  ], O! 
\ / fb 

: 1 .  The factors containing t~ in (3.4) give 

-~ P(fll J- oz~ +I J- r2)P(al J- #~ +i Jr rl -- r2)/P(al -F fll-F a~+i H- fir +i + rl) �9 

Changing U back to X the result follows. 
For special values of the parameters a~'s, flj's, m and m' of (3.1) 

one can write f(x) in terms of elementary functions such as Bessel, 
Whittaker,  and Struve functions. Several such reduction formulae are 
available from Mathai and Saxena [18]. 

For the Type A equation given in (1.1) one can obtain a multiple 
integral representation by using the procedure discussed above by treat- 
ing X/B as a product of independent real gamma variables with para- 
meters al, . -- ,  ap. One such representation is given in Wilks [26]. But 
it is easy to note that  f(x) of (1.1) is nothing but a G-function of the 

p,o type Go,~(x). A general series representation of the type (3.3) is avail- 
able from Mathai [11]. Wilks [26] remarked that  he was unable to 
get explicit forms of f(x) for various particular values of p. This is 

p,0 due to the fact that for general parameter values Go,p(x) does not re- 
duce to elementary functions except for p=2 which leads to a Bessel 
function. For special values of the parameters several reduction for- 
mulae are available, see for example Mathai [11]. One such case is 
when a~:a+(i--1)/2, i=1, . . . ,  p. Combining the gammas by using the 
multiplication formula 

(3.6) P(mz) = (2~)(1-')nm ":-m jT[__, (z + ( j -  1)/m), m = 1, 2, . . .  

one gets from (1.1), 

f~ {P(x/B)l/'}~f(x)dx=F(Pa+S)/F(Pa)' s=ph.  

Hence p(X/B) wp has a gamma density with the parameter pa. In the 
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case of Wilks' generalized variance in the mult inormal case the  para- 
meters  a~'s differ by 1/2. Hence by combining the gammas by using 
(3.6) for m=2 the  number of gammas on the  r ight  side of (1.1) can 
be reduced. Bagai [1] obtained explicit expressions for the density of 
the generalized variance in the multinormal case in terms of multiple 
integrals and multiple series for p---2 to 10. 

Consider a more general case of integral equation for f(x) where 
f(x) will be assumed to be real, single valued and non-negative almost 
everywhere for x>__0 and absolutely integrable over the range (0, co), 
which we will call Type D equation. 

(3.7) f: xh-l f(x)dx=Ca~-~ { J=le[t T'(bj + h)~  F(1--aj--h)} / 

{jj[+lF(1-bj-h)j=~+f'(aj+h)} (TypeD)  

where C is a constant such tha t  f :  f(u)du--1, the points h=-v-b j ,  
j = l , . . . , m ,  v--O, 1, . . .  and h=l-aj-+-,L j - -1 , . . . ,n ,  2 = 0 . 1 , . . .  are 
separated, a~, j - 1 , . . . , p  and b~, j = l , . . . , q  are some complex num- 
bers. h is such tha t  -minR(b:)<R(h)<l-maxR(a~), 3"=1, . . . , m ,  k 
--1, . . . ,n.  m+n--p/2-q/2>O or m+n-p/2-q/2=O and 0 < ] x [ < l  in 
which case it is assumed that  f ( x ) = 0  for [x t:>l. 

Since by changing x to x/a one can get  rid of a ~-~ we will take a 
---1 in the  following discussions. A particular case of the gamma pro- 
duct is the h th  moment  of V where V=(X~...Xr)/(Y1... Y.,) where X~, 

�9 . . ,  X ,  YI, �9 --, Ys are mutually independent,  some of which are gamma 
variates and others are beta variates. But this does not exhaust  all 
possible cases in (3.7). From the gamma product in (3.7) it is easily 
seen tha t  f(x)  is a general G-function of the  type G~'q~(x). Existence 
conditions for f (x)  and a series representat ion of the  type (3.3) are 
available from Mathai and Saxena [18]. Also it should be remarked 
tha t  the integral  equations of Types A, B and C are special cases of 
Type D. For particular values of the  parameters  one can write the  
general G-function in terms of e lementary functions. Several such 
cases are available in the li terature,  see for example Mathai and Saxena 
[18]. In all such cases f(x) of (3.7) can be wri t ten in terms of ele- 
mentary  functions. 

f(x) in (3.7) also satisfies a homogeneous linear differential equa- 
tion of the  type 

(3.8) --1)'-~-nx ]-[ (0--ajq-1)--]-[ (#--bj x )=0  
J = l  3~1 

where t~ is the differential operator 0 = x ~  d . From (3.8)one can easil3r 
c t x  
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write down the differential equations satisfied by f(x) of Types A, B 
and C integral equations. For Type B Nair [20] derived the  differen- 
tial equation directly from the moment  expression. I t  is easy to verify 
tha t  Nair 's  differential equation is a particular case of (3.8). Also par- 
ticular cases of (3.8) are worked out by Davis in connection with vari- 
ous tes t  statistics, see for example Davis [4]. Hence one way of solv- 
ing for f(x) is to find the unique solutions of (3.8). But this procedure, 
in general, is complicated, see for example Nair [20] and it is more so 
when n r  0 and q r  

In some cases the hth moment  of the  density f(x) may not  have 
the  s t ruc ture  given in Types A to I) but  transformable to one of these 
types. As an example consider the h th  null moment  of U associated 
with the  likelibood ratio criterion for test ing sphericity in the  multi- 
normal case. Here 

(3.9) E (U~)= {p~hl-'(np/2)/l"(ph+np/2)} 
P 

• [[ {F(h+(n+l--j)/2)/F((n+l--j)/2)}. 
2 = 1  

By expanding 1-'(ph+np/2) with the help of the  multiplication formula 
(3.6) one can easily see that  (3.9) reduces to a Type B equation. 

4. Type E and Type F integral equations 

In all the  cases discussed in Sections 1 to 3 the integral equations 
have gamma products on the r ight  side with h having the  coefficient 
+__1. In this section we will consider two cases, which are applicable 
to statistical problems, where the coefficients of h are different from 
+__1. Consider the following equation which will be called Type E 
equation. 

(4.1) f:x~f(x)dx=Ca~F(bj+pjh)/~=F(as+a:h) (Type E) 

where h is such that  the gammas exist, a~, j = l ,  . . - ,  m', p j, j = l ,  . . . ,  
m and a are positive real numbers  and a / s  and b /s  in general could 
be complex numbers  but  we restr ict  them to be real numbers  for the  
t ime being, f(x) is assumed to be real, non-negative and single valued 
almost everywhere for x > 0  and absolutely integrable over the  range 

(0, oo) and C is a normalizing constant such tha t  f~ f(x)dx=l. Let 

7n ~n I m t  

(4.2) / = E / ~ j - - E  as and p ' = r [  ay ~[ ~ s .  
0=I J=l J=l J=l 

Then it is easy to show from the theory of H-functions, see Mathai 
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and Saxena [17], tha t  f(x) exists for all x if /~'>0 and for O<x<a/~' 
if y = 0 .  Thus when y=O we define f(x) in (4.1) to be f (x)~O for 
O<x<a/tg' and f(x)=O elsewhere. A special case of (4.1), the  case 
when y = 0  is the  moment  expression considered by Box [2]. Hence 
we will call this as Type E or Box's integral equation. Some simplifi- 
cations in Box's procedures may be seen from Gleser and Olkin [5]. 
A special case of the moment  s t ructure  in (4.1) can also be obtained 
by the  h th  moment  of the random variable V=X~.. .X~ where X1, . . . ,  
X~ are mutual ly  independent, some of which are powers of real beta 
random variables and the others are powers of real gamma or general- 
ized gamma variables. Many of the lii<elihood ratio tes t  criteria, in 
the  null cases, for testing hypotheses such as sphericity, equality of co- 
variance matrices,  equality of populations, H~o, H~c (in Wilks' notation), 
in mult inormal populations fall in the category of Type E. The exact 
null densities of many of these test  statistics are given in Mathai and 
Saxena [18] which give f(x) of (4.1) for various particular values of 
the  parameters .  A series representation in terms of gamma densities 
is available from Box [2] for the case Z '=0  when a / s  and p~'s can be 
made arbitrarily large whereas (aj-a~), j = l ,  . . . ,  m', (bj-flj), j = l ,  . . . ,  
~n are bounded. The general solution for (4.1) is available as a parti- 
cular case of the  computable representation of a general H-function 
given in Mathai and Saxena [17]. This is a series of the type (3.3). 
When a~'s and p~'s are rational numbers, tha t  is numbers  of the  type 
~j /n  3 '  ' where mj' and n~' are positive integers, there  exists a number  
N such tha t  Nflj=mj, j = l , . . . , m  and Naj=n~, j = l , . . . , m '  are all 
positive integers.  Replace h by Nh in (4.1). This is equivalent to 
considering the  h th  moment  of U where U = X  ~. That  is, 

(4.3) E (Uh)=C(a~) ~ IT F(bj+m~h F(a~+njh). 
] = 1  

Now expand all the  gammas in (4.3) by using the multiplication formula 
(3.6). Then the  density of U=X "v satisfies either Type B equation or 
a special case of Type D equation of which the general solutions are 
already discussed. The likelihood ratio statistics discussed earlier be- 
long to (4.3) which reduce to Type B when the  gammas are expanded. 
Densities of random r-contents associated with problems in geometric 
probabilities which are discussed in Mathai [8] and in the  references 
therein also belong to the type (4.3) which reduce to Type B. Thus 
only when at  least one of the  a / s  or/gs's in (4.1) is irrational (4.1) can 
not be reduced to the Type D equation. 

I t  is pointed out in (3.8) tha t  f(x) in Types A to D satisfies a 
homogeneous linear differential equation. But so far nobody has worked 
out a differential equation for f(x) in (4.1) when (4.1) can not be re- 
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duced to a Type D equation. Hence the method of differential equa- 
tion fails in (4.1) for the general case. 

Now we will consider the most general case in this category and 
call it Type F integral equation. 

(4.4) f: x~-lf(x)dx=Ca~-l~= F(bj+p,h) fT= F(1--aj--a~h)/ 

tj=~<-~-[.1F(1--bj--p,h) ,=~+~ F(a, +a,h)} 

(Type F) 

where the gamma products exist and the points h = - ( b s + v ) / p  j, j=l,  
�9 . . , m ,  v = 0 , 1 , . . ,  and h=(1-as+2)/as, j = l , . . . , n ,  a = 0 , 1 , . . ,  are 
separated, f(x) is assumed to be real single valued almost everywhere 
for x > 0  and absolutely integrable over (0, co). For simplicity we will 
assume that  all the parameters are real, %, j = l , . . - ,  p, /~3, j = l , . . . ,  
q are positive numbers but in general a s, 3"=1, . . . ,  p and b~, j = l ,  . . . ,  
q could be complex numbers. C is a normalizing constant such that  

f: f(x)dx=l. Let 

q P P q 

(4.5) t ~ = ~  P ~ - Z  aj and /~=-[T ay T[ ~7 ~ �9 
3=1 J = l  y = l  2=1  

From the theory of H-functions it is easy to show that, see Mathai 
and Saxena [17], f(x) is defined for all x when ~>0  and for O<x<a/~ 
when /~ = 0. 

A special case of the moment structure in (4.4) could be generated 
by the hth moment of W=XI.. .XJ(Y,. . .  Y,) where the random vari- 
ables X , . . . ,  Xr, Y , . . . ,  Y~ are real and mutually independent, some 
of them are powers of beta variables and others are powers of gamma 
variates or generalized gamma variates. It is easy to note that  the 
hth moment of W does not exhaust all possible cases in (4.4). If pro- 
ducts and ratios of independent likelihood ratio test criteria, such as 
the ones for testing sphericity, equality of covariance matrices, eqauli- 
ty of populations, in the multinormal case, are considered then the hth 
moment of such a quantity also falls into Type F equation. 

A general solution of Type F eqaution is available and a comput- 
able representation of f(x) in (4.4), whenever f(x) exists, is available 
from the computable representation of the H-function given in Mathai 
and Saxena [17]. For many special parameter values f(x) is available 
in terms of elementary special functions which are obtained from the 
many special cases of the H-function. 

When a, . . . . .  a~=l=~-- - - . . .  =~q Type F equation reduces to Type 
D equation. Also when al, ..., a~, ~, ..., G are rational numbers Type 
F can be reduced to Type D as discussed earlier. The technique of 
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differential equation fails because a differential equation for f (x)  of 
(4.4) is not available for general values of the parameters. Also it 
should be remarked that  the general solutions of Types D and F need 
not give a non-negative f (x)  for all parameters. Hence restrictions on 
the parameters become necessary if f (x)  is to be kept non-negative 
for all x. 

5. Type G equation and its solution 

In all the equations considered so far the right sides contain gam- 
ma products containing the complex variable h. The only other factors 
on the right sides are of the form a ~ where a is free of h. Here we 
will consider the case where a factor of the form (h+a) ~+~ is present. 
The hth null moments of the likelihood ratio criteria for testing the 
hypotheses H~: Z=X0, H2: /~=/~0, I=Xo where /~0 and X0 are given 
quantities, /~ and 2: are the parameters in a multinormal Np(/~, X), are 
of this type. They are 

and 

P 
E (~-~) = (2e/N)PN(~-~)nh -~Nh-~)n -[[ {F(Nh--  i)/2)/F(N-- i)/2)} 

~=1 

P 

(5.2) E (2~-I)-=(2e/N)P~r ]-[ {I '(Nh-i)/2)/I '((N--i)/2)} 
Z=I 

where N is the sample size. Hence we will consider the following in- 
tegral equation and call it Type G. 

(5.3) x~-If(x) dx=a~-lh-bh-k~ V[ {F(a~+~h)/F(aj+aj)} 
3=1 

p' 

• -[[ {F(a'j+a~.)/F(a'~+a;h)} (Type G) 
.7=1 

where f (x)  is assumed to be real, non-negative and single valued almost 
everywhere for x>__0 and absolutely integrable over (0, oo), a>0 ,  b, k 
do not contain h, R(h)>--min(R(aJa~), R(a~/ar 0), j-=l, . . . , p ,  r = l ,  
�9 . . ,  p', aj, j = l , . . . ,  p and a'~, r = l , . . . ,  p' are real and positive num- 
hers. R(.) denotes the real part of (.), p>=0, p'>__0, an empty product 
is interpreted as unity and an empty sum as zero. Generalizations of 
(5.3) along the lines of Type F equation can be given but there does 
not seem to be any test statistic in the current  l i terature having the 
hth moment of such a general nature. Hence we will confine to the 
solution of Type G. 

THEOREM 4. A solution of the Type G equation given in (5.3), when 
p' a~, j = l ,  . . . ,  p, a~, j = l ,  . . . ,  are bounded, a j, 3=1, . . . ,  p, a~, j = l ,  
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p p '  

�9 . . ,  p' can be made arbi trari ly  large, ~ a~--~,a~=tr b '=b+(p - -p ' ) / 2+  
3=i 3=i 

p' p 

~, a~ -- ~, a~ > O, is given by 
j=l j=l 

(5.4) f ( x ) = C  -~ ~ c~. {log C - l o g  x} b'+j-~ , 0 < x < C  
3=0  

and f(x)=O elsewhere, where c / s  do not contain x, 

(5.5) 
p p '  p p '  

C=a T[ ~? 17 ' -~ '  - ' ,  ' .  a 3 3e , p=71, a 3-71,a  s 
j=l j=l 3=I 3=I 

PROOF. When a~ is bounded and a 3 --~ co one has 

(5.6) F(a~ + ajh) = (2zc)m(ajh)~J+~3 ~-w~ 

{ h + ~ , ( i )  ( ) / ( (  + l ) h  ~)} •  --a~. r=~ - -  rBy+l a j  r r r a  

where By(a) are the Bernoulli polynomials defined by 

xe~ ~ -  i) = ~, xrB~(a)/r! . 
r=O 

Expanding all the gammas in (5.3) by using (5.6) one gets 

(5.7) 
p p" 

~(h)=;[  {F(aj+~h)/r(aj+a~)} 17 {$(a~ +~)/r(a~ +a'~h)} 
3=I 3=I 

p p' 

= ~ a]3 ~[a~-Se-,) h'hh \3='" '=' "/ exp {#}, 
3=I J=l / 

where p is defined in (5.5) and 

# = ~, #r ( -  1+ h -y) and 
r = l  

(5.8) 
fir----(--1/+1 {3:~ B~+~(aJ)/a'--~ B'+l(a~)/a~l / {r(r + 1)}. 

Since k = p ,  substituting (5.7) in (5.3) one gets 

f ;  x~-I f(x)dx=Ch-lh-b'e~ 
p'  p 

where C is defined in (5.5), # in (5.8) and b ' = b + ( p - p ' ) / 2 + Z  a '~-~,  aj. 
3=I 3=I 

Expanding e ~ and writing it as a power series in (l/h) one has 

co 

e ~ = ~, b3h -~ . 
3 = 0  

Then 
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3=0  

For computational purposes one many require the right side of (5.9) 
expressed in ascending powers of (1/a~) and (1/a~). In this case we 
may write 

e ~ ---- 1 + fl + fl2/2! + . . .  ---- 1 + {~ (1 /h ) - - , 8 , }  

+ {(j: +   ,12)(11h -  l(llh) + ( - + 
--I-.- �9 ~ * , 

From the conditions stated in (5.3) f(x) is available as the inverse 
Mellin transform of the right side of (5.9). Since aj--* co, a'--* oo for 
all j it is easy to note that  the right side of (5.9) goes to zero uni- 
formly with respect to arg h as I hl--* oo. Hence f(x) is available by 
term by term inversion. The inverse of h -(b'+j' is (-log x)b'+s-1/F(b'+j) 
for 0 < x < l  and zero elsewhere. Hence from (5.9) we have the den- 
sity of U=X/C, denoted by g(u), given by 

r 

(5.10) g(u)=~ c~(--log u) b'+j-1 , 0 < u < l  
y = 0  

and g(u)=O elsewhere, where c~=b:/F(b'+j). Thus f(x) is established 
as given in (5.4). 

Note that  if the right side of (5.9) contains the factor (h+d) -(b'+:) 
for d > 0  instead of h -r then in (5.10) there will be an additional 
factor u ~ on the right side. 

Identifying the parameters in (5.1) with the equation (5.3) we 
have, k=Np/2, b=-p/2, a=(2elN) Np/2, aj-=N]2, a~=.--j/2, j = l , . . . ,  p, 
p'--0. Hence Z a:=Np/2=k, C=I, b'=p(p+l)/4. The density of ~t is 
given by (5.4) with C=1, b'=p(p+l)/4. Comparing (5.2) and (5.3) one 
has a=(2e/N) ~pn, b=O, k=Np/2, aj=N/2, as=-j /2,  j = l , . . . ,  p, p'=O, 
b'=p/2+p(p+l)/4, C=I. Then the density of 2~ is given by (5.4) with 
C=1, b'--p/2+p(p+l)/4. 

The hth non-null moments of a large number of test criteria as- 
sociated with the multinormal populations have the structure of Type 
E or Type G multiplied by a hypergeometric function of one matrix 
argument,  see for example Mathai [9], Pillai and Jouris [21], or a hy- 
pergeometric function of many matrix arguments, see for example 
Mathai and Rathie [15]. In a number of other cases the hth non-null 
moments are not available in the li terature yet. In the cases where 
they are available it is seen that  the hypergeometric functions are ex- 
pansible in terms of zonal polynomials. For a discussion of zonal poly- 
nomials, see for example, Constantine [3], James [6]. Once these hy- 
pergeometric functions are expanded and the terms rearranged then 
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the kernel containing h falls in the category of Type E or Type G 
equation, see for example Mathai [9]. By modifying the equations 
Types A to G the corresponding non-null cases can be covered. Since 
in a large number of cases the non-null moments are not yet  available 
fur ther  discussion of integral equations to cover non-null cases in de- 
leted. 
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