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Summary

Consistency and asymptotic normality of the m.l.e. are examined
in the non-i.i.d. case when the parameters are constrained. Inequality
constraints are considered as an application.

1. Introduction

Sometimes the parameters in a model are not functionally inde-
pendent, that is, there exist certain relations connecting them. Never-
theless, it may be undesirable to eliminate redundancies for reasons of
symmetry, or because the natural interpretation of the parameters
would be lost, or because of mathematical intractability.

The data have joint probability distribution of known form depend-
ing on a parameter 8 ¢ B*. The log-likelihood function [,(8), based on
n observations, is twice continuously differentiable in a neighbourhood
of 8,, the true parameter, and the information matrix is B,=E[—17(8,)]-
We assume throughout the “usual regularity conditions”: E [1(8,)]=0
and Var [14(8,)]=B,.

There are r constraints (0<r<k) of the form A(§)=0, where h=
(hy, -+, k,)*. The corresponding kX Jacobian matrix, {H},,=0k,[/24,,
is continuous and of full rank = at 6,; this prevents reduction to a
single constraint such as 3] k}(6)=0.

Often the parameter 8 is not identifiable in the model, and some
of the constraints are needed to achieve identifiability. In a sense made
more precise below this eorresponds to singularity of B,, and this is
encompassed in the results.

Aitchison and Silvey [1] consider the case of i.i.d. observations,
where B,=nB, is nonsingular. They prove, under certain conditions,
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asymptotic existence, consistency and asymptotic normality of a solu-
tion of the likelihood equations using an extension of the Cramér [3]
method.

Silvey [8] deals with the i.i.d. case, but allowing B, to be singular.
He uses the alternative approach to proof of consistency due to Wald
[9]. The paper is mainly concerned with testing the truth of A(6,)=
0, and consequently h(f,)#0 is allowed in the analysis, unlike the case
here. Also, more emphasis is placed here on the precise manner in
which the constraints may be used to construct a suitable nonsingular
version of B, and the connection with parameter identifiability.

The formal methods in Section 2, deriving asymptotic results for
the constrained m.l.e., stem from those of Aitchison and Silvey [1] and
Silvey [8], but the modifications are not automatice, as is illustrated by
Example 1 below. Also, attention is drawn to the enhanced efficiency
of the constrained m.l.e. over that of the unconstrained m.l.e. Section
3 contains some examples, the last of which provides a resolution of a
problem posed by Hudson [5]. In Section 4 the connection between
parameter identifiability, the information matrix, and constraints is ex-
plored, and auxiliary results are derived to support the foregoing theory.

2. Asymptotic results for the constrained m.l.e.

The likelihood equations for maximizing [.(8) subject to the con-
straints are I,(6)+ HA=0 and h(8)=0, where 1 is a vector of » Lagrange
multipliers. Application of the mean value theorem at 8, to these equa-
tions gives

(2.1) 1(8,)+1/(8,, 6)(6—0y)+H(8, 6)2=0 ,
2.2) H(8,, 0)(0—6,)=0 ;

the general notation H(8,, 8,) is used to convey that the rows of the
matrix are evaluated at possibly different points on the line segment
joining @, and 8,.

Suppose that the constraints 2,(8)=0 (i=1,---,s) are sufficient to
identify 6 in the sense detailed in Section 4. Let H be partitioned as
(H,, H,), where H, is kxs, and let G=(H,, H.M), where M is an arbi-
trary (r—s)-rowed matrix. Note that G7(8,, 8)(6—8,)=0 from (2.2).
Let B¥(6)=B,+G(6, 6)C,G"(6,, 8), where C, is positive definite. By
Lemma 5 below B¥(@) is nonsingular, as is H?(8,, 8)B*@)"'H(8, 8) for
@ near 6, (since H has full rank at 4,). Let

R.(0)=I.+ Bx(6)"{ll!(6,, 6)—G(8,, 6)C.G"(6,, 8)}
=BX6)'{B,+1/(6, 6)} ,
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Q.0)=BI(6)"H(@, 6){H"(6,, 6)B(6)"H(E, )},
w,(6)=[1.— Q.(0)H" (6., 6)1{B:(6)"'1:(6:) + R.(6)(6 —64)} -

If s=0, so that the model is identified without constraints and B, is
nonsingular, we can take C,=0 throughout, so B¥=B,.

THEOREM 1. There exists a consistent solution of the likelihood equa-
tions if for each 4>036 € (0, 4] s.t.

Prob [sup (8 —8,)"w,(8)< ¢*]—1 as n—oo (sup over |0 —6,|=3) .
Proor. Equation (2.1) is equivalent to
L(8)+ {1/(6,, 6)—G(6,, 6)C.G™(6,, 0)}(0—8,)+H(8, 0)A=0,
ie.,
(2.3) 1(6,)+BfO0){R(6)—L}(6—0,)+H(@, 6)A=0 .
Multiply (2.8) by H"(8,, 6)B}{6)™* and use (2.2) to obtain
H™(6,, 6)B¥(0)"'1)(6,)+H"(6,, 0)R.(6)(6 — ;)
+HT(6,, 0)BX0)"'H(8, 0)A=0 .
(2.4) s A=—{H"(6,, 0)Bx6)H(0, 6)}'H"(6,, 8)
- {B¥(0)7'1.(6,)+ R.(6)(0—6,)} .
On multiplying (2.3) by B*(8)' and substituting for 2 one obtains
(2.5) w,(6)—(6—6,)=0 .

The pair (2.4), (2.5) are equivalent to the original equations (2.1), (2.2):

if (2.5) has a solution, say #,, then 2, is defined by (2.4) and these are
solutions of (2.1), (2.2).

Now apply the equivalent of Brouwer’s fixed point theorem as in
Aitchison and Silvey [1]: a solution 6, exists, with lén—00[<8, if (86—
4,)" times (2.5) is strictly negative for |60—6,[=3.

THEOREM 2. There exists a consistent solution of the likelthood equa-
tions if for each 4>03K<oo, d>0, d>0, pef0,1] s.t. d<min (d, 4)
and
(i) |Q@)H"(6,, 8)\£K for |0—86,|<d and all n,

(ii) Prob [|B(0)7U(0,)|<pd(K++VEk ) ']—1 as n— oo when |68—86,|=3,
(iii) Prob [[R(O)|<(L—p}(K+vk )™ —1 as n— oo when [6—86,|=3.

ProoF. This is based on the following, which holds for |#—6,|=3:
‘(0H00)Twn(0)l§. 0 lwn(e)'é 6!11:_ Qn(e)HT(OOr 8)[
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- {IBX(6)7'L(6,) |+ 3| R.(O)]} -
From (i) sup |L,—Q.(0)H"(8,, 8)|<K-++k , supover|0—8,|=48. Hence
Prob [sup (6 —8,) 1w,(6) < 3" = Prob [sup |w.(8)|< 8]

(2.6) =Prob [{sup | BX(8)"'1,0,)|< pd(K+ V% )™
N {sup |R.(O)|<(L—p)(K+vE )}] .

Now R,(8) is 8-continuous and {8:|60—8,|=48} is compact, so (ii) implies
Prob [sup |R.(8)|<(1—p)(K++vk ) ']—1; similarly for B*6)1,(8,).
Hence (2.6)—1 and the criterion of Theorem 1 is fulfilled.

Theorem 2 gives a breakdown of the single condition of Theorem 1
into more manageable bits. The reduction depends ecritically upon (i),
that Q,(0)H"(8,, 8) should be bounded uniformly in both »n and &, and
this can fail as in Example 1 below. However, in many situations the
non-zero eigenvalues of B, will all have the same order of magnitude,
say O(b,), and then the choice C,=b,I will ensure that B*(@)b;' is bound-
ed uniformly in n (Lemma 5 below), and (i) follows; the i.i.d. case is
covered since there b,=n. In (ii) E|B}0)'l,(6,)|=trace [BX(6)'B,B}
(0)7'] and straightforward choices for C, and M will often suffice to
show that this tends to zero, so that Bx(6)7'l.(6)—>0. In (iii) E{R,
(6,)]=0 so stability of R,(8,), in the sense that |R.(8,)| is small, and
a certain continuity of R,(8) are called for.

In the nonsingular case Bf(6)=B, and (ii) reduces to trace B;'—0,
which would normally hold in practice. Also, (iii) becomes a condition
requiring B;'l/(8,, )+ 1. to be “small in probability ” near §,; such a
property is discussed in Crowder [4].

The following two theorems concern the asymptotic distribution of
the constrained m.l.e. We use the notations H,=H(6,, 8,), Q.,=Q.(6,),

%=DB%6,), and ~ to mean “is asymptotically distributed as”.

THEOREM 3. Suppose that o
(1) there is a consistent solution (@,, 1,) of the likelihood equations,
(ii) L(6)~N(©, By,

(i) R.6:)—0, Qu0.)—Qu—0, |QuSK<oovn.

i ()3 (7)) whr amti-@.52, Vo
B.Q7.

PROOF. Let p=HT(6, 6)BX6)"H(®, 6)2 and D,(6)= Gz‘(f(g;
- 0y

(;—Q,,(H)>. Then the likelihood equations (2.2), (2.3) can be written,

after multiplying the latter by B}(@)™', as



ON CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION 243

@.7) D,.(a)(”;"") =(BH@ 1 00)
Let D"o:(gf —(?’“), S0 D;o‘=<{’j';I?"°H"T %0> and

D—Ol (0)= <Ik“‘(Ik'—QnoHoT)Rn(0)+Qn0(H(007 0)"‘H0)T
ue v Ro(6)+(H(6,, 6)— Hy)"
—(Q.(0)— Qu)— Qu(H(6:, ) — H))TQn(e)> )
 L—(H(®, 6)— H)"Q.(0)
Under (i) and (iii) D' (0.)—> Iy, Hence, from (2.7),
0.—0,\ _ p-1[BA'1(6y)
(O Da(P )

using a matrix version of a theorem of Cramér ([3], §20.6). By (ii)
the asymptotic distribution of the right-hand side is N(0, V,), where

Vn:—‘ 7:01<B7>1<0_IB7:B7T0—1 0>(D;01 T .
0 0
The forms given above for V,, V,, follow after some matrix ma-
nipulation.

Condition (i) of Theorem 3 seems natural, and the behaviour in
(ii) is discussed in Crowder [4] based on the work of Brown [2] and

Scott [7]. Condition (iii) is designed to support D n(én)71k+, in the
proof ; alternatives are possible.
The variance matrices V,,, V,, are, in fact, independent of the par-

ticular choice of M, C,; this must be so since 6,, 1, are defined as
solutions of (2.1), (2.2) which do not involve M, C,, and the assertion
also follows from Lemma 6, Section 4. Since V, H,=0 variation orthog-

onal to the constraint surface is suppressed, i.e., Var (a?6,)~0 when-
ever a=Hpb for some b. Theorem 4 elaborates this point.

Let é,, be the “unconstrained ” m.l.e., satisfying the identifiability
constraints but not the rest. Then 8, will be consistent for 8, but, as
the next theorem shows, less efficient than 6, We use the notation
Q,,=B}"'H(H;BY 'H,)™", Hy=H(6, 6,), Hy=H,06,, 6,).

THEOREM 4. Let a%8, be a linear parametric function to be esti-
mated, where a is kx1. Then Var (a™6,)=Var (a’6,) with equality iff
Hji(I,— Q. H7)BY, 'a=0.

ProorF. Under the conditions assumed for consistency-and asymp-

totic normality of 6,, 6, will also be so, with asymptotic variance V7,
=(I,— Q.. H)B%™, from Theorem 3. Now
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Var (a”,)—Var (a”6,) ~a”(Q.H — Q. HZ)B}'a
=a”B " {H(H? B}, H)'HY — Hy(HZ B} H,)‘HZ} B 'a .

Also,

(HoTBZko_IH))_l=<IJ$ rfo-llgm Eg' ;ko_llfzo>

i B 'Hy, Hyi B Hy
= (F '+ FHI B, Hy BT HL By ™ H F ™
—ETHi B H o F™!
—F“HIEB;"O"‘HzoE“>
E—I

where
E=Hj(Bi™~Bi  HFHIBL™H, ,  F=HIBb H, .
Hence
Var (a"0,)—Var (a76)~ ()" (B7 Ba By )bl (B Br Hoy b
=|E"VH(Hy B, Hy F b, — b,[' 20,
where
b=HiBi“a, b=HiB%a.

The difference is zero if HiB*'H,F~'b,=b,, i.e., iff HiP,B} 'a
=0 where P,=I,—BY'HF'Hj=I—Q,H;.

The condition for equality of varianeces in Theorem 4 may be inter-
preted as follows. The matrix P,=(I,—Q,H?) is idempotent, non-
symmetric and satisfies HIP,=0. It therefore represents non-orthog-
onal projection into the subspace orthogonal to the columns of H,, i.e.,
the H,-constraint surface. The condition is that when B¥~'a is so pro-
jected, the resulting vector also lies within the H;-constraint surface;
since P,.BX"'=V/ is independent of M and C,, the set of vectors a
satisfying the condition is likewise independent of M and C,. In par-
ticular, this will always hold when there are only identifiablility con-
straints, i.e., when H, is null. In the identified case, when there are
no identifiability constraints, H, is null, B¥=RB,, P,=1I. and the condi-
tion reduces to Hj B;'a=0, i.e., B;'a lies within the constraint surface.

3. Examples

FEzample 1. We give a very simple, non-pathological case in which
condition (i) of Theorem 2 fails, but where it is possible to verify the
criterion in Theorem 1 directly. It thus shows that Theorem 1 is more
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sensitive than Theorem 2, and that straightforward adaptation of the
conditions for the i.i.d. case is not sufficient.

Suppose that y, (t=1,--.,%n) are independent, with distributions
N(0,+0,¢%, 1), where 0<p<1/2 and g is known, and that the constraint
18 4,=0. Thus k=2, r=1, s=0, B¥*=B,,

@, 0=B=(", ZU.) HO.0=;), @@= ).

0 0) B U(6)).
r, 1

Theorem 2 fails because Q.(8)H"(6,, 6) has an element O(nf). However,

B;'*l(8,) is constant in mean square so Theorem 1 will work if <0 (1)>
T

-B;*—0, which can be verified. In fact, the constrained m.l.e. §,,=
S yd~#/S1 7% is unbiased with variance (3]t %)"'—0.

where 7,=31t7?/>1t¥=0(nf); also R.(0)=0 so wn=<

Example 2. Inequality constraints. Suppose the model has log-
likelihood 1.(¢) and is identified in the parameters ¢, i.e., B,,=E[—03%,/
9¢*] is nonsingular. General inequality constraints can be written as
h($)=0 (:=1,---,r) and can be converted to equality constraints by

introducing r parameters ¢ and writing h(@)=¢?. Thus 0:(2) and

H=< %¢> Where (H¢)Lj:ahj/a¢i and w.zdlag (Qbu‘ %y (pr)- AH the con-

straints are required for identifiability so s=+ and H, is null. We have
t,c(a)=<i;>, l;’(ﬁ):(l(*;*’ g) and an(lf)w g) where (1,).=0l,/o¢, and (L,.),,
=0%,/0¢,0¢,. For convenience we will use the notation Hy=H(8,, 8,),
H,=H(6,, 6), H,=H(6, 8), with similar definitions for H, and ¥. Now
B}(6)=B,+ H,C.Hy, so

B*(a) — <B¢¢+H¢OIC1LH¢I(;1 - 2H¢OIC,L¢0T1>
" W, CHE  AT,CTL )

BrOy =\ (U2BLHTS )
" (YT HEB;  (U4HTNC: + Hp B Hn) T3

The conditions of Theorem 2 may be checked as follows:
(i) BXO)'H(,0)
— < B Hy— Hyo¥0'T )
(/205 H5 By [ Hy— HyoU 5Ty~ (12)T5'C T 5Ty
H"(6,, 6)BX(6)'H(9, 9)
— (-1 ~1 — B;;DC, -
__Cn w'm w'u and Qn(a)_ <(1/2)¢.0_11 ¢€1B;¢1DC"—-(1/2)@'&1> y
where D=H,¥'T— H,,. Uniform boundedness of Q,(8)H"(8,, 8) will

> . Hence
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then follow from that of B;!DC,, and this will obtain in the “usual
case” where the eigenvalues of B,, all have the same order of maghi-
tude; if they are all O(,) the choice C,=b,I suffices.
(ii) Trace [B}(6)™'B.B}(6)"]=trace (B;; + (/¥ H: B, H:,¥5)—0 iff
B;}—0, as would be expected in practice.
(i) R.(6)=BI(O)*B.+L(6n 0} =( ” /2)2;-1 Ut B3l D)1

01 01
Conditions under which B!l (o, @)+ I._, is “small in probability 7, for
an identified model, are discussed in Crowder [4].

Asymptotic normality of 6, obtains if the conditions of Theorem 3
hold, and these have been essentially covered above. The asymptotic
variance of 8, is V,=(I,— Q. HI)B%™

< B (1/2)B;, H, ¥ 5! >

1/2)%; 1H,T(,BM /AT HE By, ‘H,,,O?l’"
In particular, the asymptotic variance of ¢, is B;}, the same as that
of the unconstrained m.l.e. ﬁn, there being no gain in efficiency since
H, is null, as noted in Section 2. The reason for this is that ¢n and

q?,, are asymptotically equivalent, as a consequence of the assumption
that 8, is an interior point of the constraint space. For the boundary
case a different analysis is required, see Moran [6].

Example 3. A class of constrained regression problems. Hudson [5]
discusses polynomial regression where the regression function is con-
strained be non-positive, non-negative, non-increasing, non-decreasing,
convex, or concave over a specified interval. Suppose E(y|x)=p(x)_for
% € (a, b), where g(x) is a polynomial in z, then the constraint is of the
form p(x)<0, B(x)=0, f'(x)<0, B'(x)=0, B"(x)<0, or §"(z)=0 on (a,b).
Hudson remarks that such a constraint generates an infinite set of
linear inequalities on the regression coefficients, which makes conven-
tional statistical inference difficult. His paper concentrates on the com-
putational aspect of fitting the constrained regression by least-squares.
We show now that such a problem can be accomodated to some extent
within the present framework, and thus derive conventional (asymp-
totic) statistical inference.

The constrained polynomial function (8(x), or g'(x), or 8’(w)), say of
degree p, is expressible as 7(x)=7zr—a,) I] (*—2e,2+7;); the product
of quadratic factors runs over ¢=1,---, [p/2], and the linear factor (x
—a,) is absent if p is even. The constramt is equivalent to (1) r(z))=
0 (or =0) for some x,€ (a, b), and (2) r(x) has no real roots in (a,b).
Condition (2) may be broken down as (2a) & ¢ (a,b) (if p odd), and
(for each %) either (2b) &<y, (complex roots) or (2¢) ai=7y; and a;+(
—71)* ¢ (a,b). Condition (2a) can be expressed as (a,—a)(a—>b)—¢i=0,
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introducing a parameter ¢, and “either (2b) and (2¢)” similarly as

(4.1)  (et—7) min {(el—74), [+ (et — 1) V* —al [+ (i —7) "~ 0],
[al— (af - Tt)l-i{z—a] [(!,,—* ((23_ Tz)lf—“b]} - gbf =0 ’

where (z), denotes max (0, z). These constraint functions will be con-
tinuously differentiable in the neighbourhood of a true parameter which
does not lie on an implied boundary ; for example, min (2% 2*) has a con-
tinuous derivative everywhere except at z=1. The regression function
B(x) is obtainable from y(x), by integration if necessary. Thus, as soon
as an error distribution is specified for the regression, the problem
comes under the general outline of Example 2.

For illustration consider fitting a cubic curve which is monotone
increasing on (a, b). Corresponding to Hudson’s least-squares approach
we will take the usual Normal, homoscedastic model in which the ob-
servations y, (t=1,---,n) are independent N(B(x,), ¢*) variates. Now
B'(x)=1(x) =742 —20,2+711), 50 B(®)=0y+ 7,2} 3—ax*+7x). Constraint
(1) may be written as h(a;, vo, 715 ¢0)=8(2,) — ¢2=0, where x,€ (a, b) is
specified. Constraint (2) is hy(ey, 71, ¢)=0, where &, has the form (4.1).
The situation is thus covered by Example 2 with @¢=(a, a1, 70, 71y )7,
d=(¢o, ¢1)7. We will assume that the conditions for consistency and

asymptotic Normality of 8, hold, these being the standard ones for non-

linear regression. The asymptotic variance of gSn, the constrained esti-
mator, is Bj;;, the same as that of the unconstrained m.l.e.

4. ldentifiability, and the information and constraint matrices

Some particulars are listed in this section connecting parameter
identifiability, the information matrix, and the constraints. Although
some of this material is familiar in non-rigorous terms, it does not seem
readily available elsewhere in suitable form; it is needed to support the
work in Section 2.

We will say that there is local non-identifiability at &,, in the di-
rection of vector u, when u”l)(8,)=0 a.s. In this case the likelihood
1.(8) has zero derivative along u at 8, for all possible data, so u is tan-
gent at 6, to a contour of a.s. constant likelihood. Since E|u”l/(6,)]=
u’Bu, ul(8)=0 a.s. if Bu=0, i.e., ue U, the null space of B,.
Every @ has representation 6,+(6—8,), where 8,¢U, and 6—6,1U,
and identification is achieved by selecting a particular 6,.

The constraints, h(8)=0 (1=1,---,7), are linearized in (2.2) as
H*(8,,0)(6—6,)=0. In Lemma 1 H, represents the leading kxs sub-
matrix of the partition H(6,, 8)=[H,(6,, 8), H8,, )], 0<s=7.

LEMMA 1. If comstraints h,(0)=0 (i=1,.--,s) are sufficient for
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local identification at 8, then rank (B,, H)=k.

Proor. If rank (B,, H)<k there exist non-zero u< U, s.t. H 'u=
0. In that case the constraint H/,(68—6,)=0 satisfied by a particular &
would also be satisfied by 8+u, and identification would not be achieved.

Note that Lemma 1 does not show that [B,, H,(8,, 6;)] has full
rank. Only in the case of linear constraints will H,(8,, 8) be independ-
ent of 4.

The following lemmas are stated in general terms but with nota-
tion corresponding closely to their application here. Lemmas 2, 3 and
4 serve Lemma 5 which shows that the matrix B¥ is nonsingular and
gives a bound for its minimum eigenvalue.

LEMMA 2. Suppose U is a wvector subspace of R* spanned by the
columns of A (kXs) of rank s, 0<s<k. Let a=infu”AA%u, inf over
ue U with \ul=1. Then a>0.

Proor. Since u €U, u=Av for some v and 1=|uff=|Avf=v" A" Av
=|(A7 4)w

a=inf v” AT(AAT) Av=inf {(AT A)"*v}" (AT A) {(ATA)"*v} ,

inf over v s.t. [(ATA)"v|=1. Thus a is the smallest eigenvalue of A7 A,
which is positive definite since A has full rank.

LemMMA 3. Suppose B (kxk) is positive semidefinite with null space
U of dimension s, 0<s<k. Let b=infu”Bu, inf over ulU with |u|=
1. Then b>0.

Proor. The eigenvectors e, -+, e, of B span R* and correspond
to eigenvalues A;=:..=2,=0, 0<A,,£---S4,. Let E, be kx(k—s)
with columns e+, €, and A,=diag (4,41,- -+, ). Then u=Ew for

some v, and l=|u|=|E,v|=|v| since ETE,=1I,_,. Hence b=lirl1f (Ev)”-
vi=1
B(Ezv):lhllf UTsz=23+1>O.
vi=1

LEMMA 4. Let B be positive semidefinite with null space U and let
the columns of B and H, together span R*. Then H, 1s expressible as
A,+BA, where BA,=0 and the columns of A, span U.

ProoF. Each column of H, can be expressed uniquely as a,+a,
where a,¢ U and a, 1 U, i.e., there exist matrices A, (unique) and A,
(non-unique) such that H,=A,+ BA,, and BA,=0.

For arbitrary z ¢ R* we have z=Buv,+Hv, for some v, v;. Thus
z=Buv,+ A,v,, where v,=v,+ A,v,, so the columns of B and 4, together
span R*. If z¢ U then 0=Bz=B,, so v{Bv,;=0 and thus Bv,=0. It
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follows that z=A4,v,, so the columns of A, span U.

LEMMA 5. Let B, U, b and H, be defined as in Lemmas 2 and 3.
Let B*=B+GCG™ where C is positive definite with minimum eigen-
value ¢, and G s partitioned as (Hy, G,) in which G, is arbitrary. Then
inf 2” B¥*z=min {be?, ca(l—¢%)}, inf over |z|=1, for some a>0 and c¢€
(0, 1).

ProOOF. Let z=z 4z, where z,¢U, 2,1 U and |z|=1. Then z7B*z
=2z{ Bz;+2"GCG"z2b|z,[f+¢|G"z} (Lemma 2). Choose ¢€(0,1) s.t. &
Za(a+16/H,F)™; note that, since |H\f=|A,[+|BA4;}=|BA,} (Lemma 3),
e <a(a+16|BA,[)™ which implies 2¢|ATB|< {a(1—e)}2. If |z)=e
then z7B*z>=be?. Otherwise |z,f=1—|z,f=1—¢* and

|GTz=|H! z["+|GT2'=|(A,+ BA,)"z} (Lemma. 3)
=|A{z\+ A Bz,f 2( Al z|—| AT Bz 2| ATz, — 2| ATz || A Bz, -

But, when [z|<e, 2|47 Bz,|<2:|ATB|< {a(1—¢%)}'#/2 from above, and
|ATzf=alz, | (Lemmas 4 and 2) Za(l—¢?), so |G z=a(l—¢eY)/2.

LEMMA 6. Let B*=B+HKH?T, and suppose that B* and HT B*'H
are non-singular. Then Q=B*'HHTB*'H)" and V=(I-QH")B*™!
are both independent of K.

PRrROOF. Suppose K varies with a parameter z, but B and H do
not. Then 9Q/ox=—B*'H@K[ox)H*B*'H(H"B*'H)'+B*'H(H"-
B*'H)Y'H"B*'H(@K/ox)H" B*'H(H*B*"'H)=0 and 8Vjox=(I—QHT)
(—B*'H@K/[ox)H" B* )=—VH@K/[ox)H* B*'=0 since VH=0.
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