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Summary 

Consistency and asymptotic normali ty of the  m.l.e, are  examined 
in the  non-i.i.d, case when the  parameters  are constrained. Inequali ty 
constraints  are  considered as an application. 

1. Introduction 

Sometimes the  parameters  in a model are not functionally inde- 
pendent,  tha t  is, there  exist certain relations connecting them. Never-  
theless, it may  be undesirable to eliminate redundancies for reasons of 
symmet ry ,  or because the natura l  interpretat ion of the  paramete rs  
would be lost, or because of mathemat ica l  intractabil i ty.  

The data  have joint probability distribution of known form depend- 
ing on a pa ramete r  0 e R ~. The log-likelihood function l~(0), based on 
n observations, is twice continuously differentiable in a neighbourhood 
of 00, the  t rue  parameter ,  and the  information mat r ix  is B~=E [-/~I(00)]. 
We assume throughout  the  "usual  regular i ty  condi t ions":  E [l'~(Oo)]=O 
and Var [/~(00)]=B~. 

There  are  r constraints ( 0 < r < k )  of the  form h(O)=O, where  h =  
(h i , - - ' ,  hr) r. The corresponding k x r  Jacobian matr ix,  {H}~j=~h~/a~,, 
is continuous and of full rank r at  00; this prevents  reduction to a 
single constraint  such as :E h~(O)=O. 

Often the  paramete r  0 is not  identifiable in the  model, and some 
of the  constraints  are needed to achieve identifiability. In a sense made 
more precise below this corresponds to singulari ty of B~, and this is 
encompassed in the  results. 

Aitchison and Silvey [1] consider the  case of i.i.d, observations, 
where  B,,=nB1 is nonsingular. They prove, under  certain conditions, 
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asymptotic existence, consistency and asymptotic normality of a solu- 
tion of the  likelihood equations using an extension of the Cram~r [3] 
method.  

Silvey [8] deals with the i.i.d, case, but  allowing BI to be singular. 
He uses the  alternative approach to proof of consistency due to Wald 
[9]. The paper is mainly concerned with test ing the t ru th  of h(Oo)= 
0, and consequently h(Oo)r is allowed in the  analysis, unlike the  case 
here. Also, more emphasis is placed here on the precise manner  in 
which the  constraints may be used to construct  a suitable nonsingular 
version of B~ and the connection with parameter  identifiability. 

The formal methods in Section 2, deriving asymptotic results for 
the  constrained m.l.e., stem from those of Aitchison and Silvey [1] and 
Silvey [8], but  the  modifications are not automatic, as is i l lustrated by 
Example I below. Also, at tention is drawn to the  enhanced efficiency 
of the  constrained m.l.e, over tha t  of the unconstrained m.l.e. Section 
3 contains some examples, the last of which provides a resolution of a 
problem posed by Hudson [5]. In Section 4 the connection between 
parameter  identifiability, the information matrix,  and constraints is ex- 
plored, and auxiliary results are derived to support the  foregoing theory.  

2. Asymptotic results for the constrained m.l.e. 

The likelihood equations for maximizing l~(O) subject to the  con- 
straints are l~(O)+H,~= 0 and h(O)= 0, where 2 is a vector of r Lagrange 
multipliers. Application of the mean value theorem at 00 to these equa- 
tions gives 

(2.1) 

(2.2) 

I It UOo) + C (Oo, o) ( a -  ao) + H(a, = 0 ,  

H (Oo, o)(O-Oo)=O ; 

the general notation H(O, 02) is used to convey that the rows of the 
matrix are evaluated at possibly different points on the line segment 
joining 0~ and 02. 

Suppose that the constraints h,(0)=0 (/=I,..., s) are sufficient to 
identify 0 in the sense detailed in Section 4. Let H be partitioned as 
(//i, Hz), where //i is k• and let G=(II, H2M), where M is an arbi- 
trary (r-s)-rowed matrix. Note that Gr(00, 0)(0-00)=0 from (2.2). 
Let B*(O)=B~+G(Oo, O)CnGr(Oo, 0), where C, is positive definite. By 
Lemma 5 below B*(O) is nonsingular, as is Hr(Oo, O)B*(O)-tH(O, O) for 
@ near 00 (since H has full rank at 00). Let  

R,~(O) = I~ + B*(O) -~ {/'~'(0o, @)-- G(Oo, O)C~Gr(Oo, 0)} 

=B*(O) O)}, 
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Q.( O) = B*( O)-IH( O, O){Hr(Oo, O)B*( O)-~ H( O, 0)}-i, 

w,(O) = [ I~ -  Q~( O)Hr ( Oo, 0)] { B*( O)-~ l'~( Oo) + R~( O) ( 0 -  0o)} �9 

If s=0,  so that  the model is identified without constraints and B~ is 
nonsingular, we can take C~=0 throughout, so B*=B~. 

THEOREM 1. There exists a consistent solution of the likelihood equa- 
tions i f  for  each ~ > 0 ~  ~ (0, z/] s.t. 

Prob [sup (O-Oo)rw~(O)<~]-+l as n---~c~ (sup over [O-Ool=~) �9 

PROOF. Equation (2.1) is equivalent to 

Z'~( Oo) + { t': ( ao, O) - G( Oo, O)C~Gr ( Oo, O)} ( 0 -  Oo) + H ( O , O ),~ = O,  

i.e.~ 

(2.3) l'~(Oo) + B*(O) {R~(0)-- h} (0-- 00) + H(O, 0)2 = 0 .  

Multiply (2.3) by Hr(00, a)B*~(O) -I and use (2.2) to obtain 

Hr(00, O)B*(O)-ll~(Oo) + Hr(00, O)R~(O) ( 0 -  0o) 

+ H~(Oo, O)B*(O)-IH(O, 0)2 = 0 .  

(2.4) .'. 2 = - -  {Hr(Oo, O)BZ(O)-IH(O, O)}-lHr(Oo, O) 

�9 {B*  (0)-1l'~(0o)+ R~(O)(0 - O0)}. 

On multiplying (2.3) by B*(O) -I and substituting for 2 one obtains 

(2.5) w~(o) - (a-ao)=O . 

The pair (2.4), (2.5) are equivalent to the original equations (2.1), (2.2) : 

if (2.5) has a solution, say 0,,, then J~ is defined by (2.4) and these are 
solutions of (2.1), (2.2). 

Now apply the equivalent of Brouwer's fixed point theorem as in 

Aitchison and Silvey [1]: a solution t~ exists, with lt~-001<~, if ( 0 -  
00) r times (2.5) is strictly negative for 10-00[=~. 

THEOREM 2. There exists a consistent solution of the likelihood equa- 
tions i f  for  each d > 0 3 K < ~ ,  d>0,  3>0, p e [0, 1] s.t. 3<rain(d,  d) 
and 
(i)  
(ii) 
(iii) 

[Q~(O)H~(Oo, O)I~K for IO-Ool~d and all n, 
Prob [IB*(O)-II'~(Oo)I<p~(K+4-k-)-']--.1 as n---,o~ when 10-0o1=~, 
Prob [IR=(O)I<(1-p)(K+4u as n ~ o o  when 10--001--~. 

PROOF. This is based on the following, which holds for I O-O0l=~: 

l ( o -  OoYW~(O) l~_ ~ [w~(O) l< ~ l I~-  O,~(O)H~(Oo, O)[ 
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�9 {IB*~(0)-~l'~(00)l+ a l R ~ ( 0 ) ] } .  

From (i) sup [h-Q~(O)H~(Oo, O)[~g+~/-k, sup over [0-00[=5. 

( i )  
(ii) 

(iii) 

Then (,~0:) 7 N ( (  0~ 

B ~Qno . 

Hence 

Prob [sup ( 0 -  00) TWo(0) < 52] >__-- Prob [sup Iw,(O) l< 5] 

(2.6) >=Prob [{sup [B*(O)-~l'~(Oo)I<p#(K+4T) -~} 

N {sup I R~(O) I < (1 -- p) (KH- 4~- )-~} ] .  

Now R~(O) is 0-continuous and {0: ]0-0o1=8} is compact, so (ii) implies 
Prob [supIR~(0)J<(1--p)(K§ ; similarly for B*(O)-~l'(Oo). 
Hence (2.6)-+1 and the criterion of Theorem 1 is fulfilled. 

Theorem 2 gives a breakdown of the single condition of Theorem 1 
into more manageable bits. The reduction depends critically upon (i), 
that  Q~(O)Hr(Oo, 0) should be bounded uniformly in both n and 0, and 
this can fail as in Example 1 below. However, in many situations the 
non-zero eigenvalues of B~ will all have the same order of magnitude, 
say O(b~), and then the choice C~=b~I will ensure that  B*(O)b; ~ is bound- 
ed uniformly in n (Lemma 5 below), and (i) follows; the i.i.d, case is 
covered since there b~=n. In (ii) E IB*(O)-~l'~(Oo)l~=trace[B*(O)-lB~B * 
(0) -1] and straightforward choices for C~ and M will often suffice to 
show that  this tends to zero, so that  B* -11' (0) ~(00)-~0. In (iii) E[R~ 

P 

(00)]=0 so stability of R,(Oo), in the sense that  I R,(Oo)[ is small, and 
a certain continuity of R,(O) are called for. 

In the nonsingular case B*(O)=B~ and (ii) reduces to trace B;~---~O, 
which would normally hold in practice. Also, (iii) becomes a condition 

- -1  t /  ~ , ,  . requiring B, ln(00, O)+L to be small in probability near 00, such a 
property is discussed in Crowder [4]. 

The following two theorems concern the asymptotic distribution of 
the constrained m.l.e. We use the notations Ito=H(Oo, 00), Q~o=Q~(Oo), 
B*-B*<O ~ and to mean "is asymptotically distributed as"  n 0 - -  n k 0 / ,  ' ~  

THEOREM 3. Suppose that 
there is a consistent solution (0~, ]~) of the likelihood equations, 
r~(Oo) 7 N(O, B~), 

R~(O~)-~.O, Q~(O~)-Q~oTO, ]Q~o[~K<c~ v n .  

( : ~ , O ) )  where TZ-- 'L ~ H,r 'B *-~ V~z=Q~o" , �9 n l  - -  ~, k ~ ~ n O  0 ] nO , 

PROOF. Let p = Hr(00, O)B*(O)-lH(O, 0)2 and 

;Q,,(0)) .  Then the likelihood equations (2.2), (2.3) 

after multiplying the latter by B*(O) -~, as 

D~(O) = (L-R~(O) 
\HY(O0, O) 

can be writ ten,  
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- \  0 /"  

Let -Q~ so Q~ and 
I-/o ~ o /'  " ~ ~  L / 

D;)D.(O) = ( I~-- (I~- Q~oHor)R.(O) + Q.o(H(Oo, 0) - Ho) r 
\HrR~(O) + (H(Oo, 0 ) -  Ho) r 

- (O~(o)-  O~o)- Q~o(H(Oo, o)- HoYO~(O)~. 
L -  (H(Oo, 0 ) -  Ho)r o~(o) / 

Under (i) and (iii) D;)D~(On)Th+~. Hence, from (2.7), 

p = j ~ . o \  o / '  

using a matrix version of a theorem of Cram6r ([3], w 20.6). By (ii) 
the asymptotic distribution of the right-hand side is N(0, V~), where 

The forms given above for V~, V,~ follow after some matrix ma- 
nipulation. 

Condition (i) of Theorem 3 seems natural, and the behaviour in 
(ii) is discussed in Crowder [4] based on the work of Brown [2] and 

Scott [7]. Condition (iii) is designed to support D2o~D=(O=)TI~+~ in the 

proof; alternatives are possible. 
The variance matrices V=~, V=~ are, in fact, independent of the par- 

ticular choice of M, C~; this must be so since t~=, ]~ are defined as 
solutions of (2.1), (2.2) which do not involve M, C~, and the assertion 
also follows from Lemma 6, Section 4. Since V~Ho=O variation orthog- 

onal to the constraint surface is suppressed, i.e., Var (ar0~)~0 when- 
ever a=Itob for some b. Theorem 4 elaborates this point. 

Let 0~ be the "unconstrained" m.l.e., satisfying the identifiability 

constraints but not the rest. Then t~= will be consistent for 00 but, as 

the next theorem shows, less efficient than t?~. We use the notation 
Q'.o= B*o-tH~o(H~B*o-~H~o)-L Hto= H~(Oo, Oo), H2o= H2(Oo, 0o). 

THEOREM 4. Let arOo be a linear parametric function to be esti- 

mated, where a is k x l .  Then Var(ar0~)>=Var(art~n) with equality iff 
T / T * - - 1  _ _  I-I~o (I~- Q~oH~o )B=o a -  O. 

PROOF. Under the conditions assumed for consistency-and asymp- 

totic normality of 0=, t~ will also be so, with asymptotic variance V~'~ 
=(L-QLH~ro)B*o-L from Theorem 3. Now 
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Var(arO.)  a r"  r r , r ,-1 - V  r ( a  O.)~a (Q.oHo -Q.otI~o)B.o a 
T * - i  T * - i  - 1  T T * --1 - 1  T ---a B.o {Ho(HoB.o Ho) Ho-H~o(H~oB,~o //io) H~o}B*o - l a .  

Also, 

/H , r~ . -1H,  H, r B  * -IH, ~ \ / T - T r I ~ * - I H , ~ - I - -  / 1o~,~o 1o lo no 2o~ 
L~..:o a--no 0/ - -  ~ T J ' T ] ~ *  -1T-T T * -1 

---:o---.o =~1o H~o B.o H2d 
--1 --1 T * --1 --1 T * --1 --1 _ ( F § F I-I, o B.o ILoE tLo B.o H~oF 

- \ ~-lH.rr~* -1H, F-1 - - . a ~  20 .la~ n0  10 

- I  T , - I  - t  - F  H 0B.o H 0E 
E-~ / 

where  

~_H,T[ Ic~, - 1  , - 1  - 1  T * - 1  -B.o HIoF H~oB~o )H~o a t ~  ~ 20 \ -~J 'nO 

Hence 

T * - - 1  F =  H10 B n o  I - I , o  . 

- - l i t  T * --1 --I 2 ~ =]E (I-LoB,~o tI~oF b l - b d  = 0  

where  

e.#~l - -  ~ I T T ~ *  - - l r e  ~ - -  1 ~ ,  . e . , eT 'TT~* - - l ~ e  
- - ~ 1 0 - t ~ e T z 0  tab , e J 2 ~  20 n0  t4,  �9 

The difference is zero iff r .-1 -1 r . -1 I-I~oBno H~oF bl=b~, i.e., iff H..oPr, B~o a 
= 0 where  t>, = h--B*olI-I loF-1g~ = h - -  Q~oI-I~ro �9 

The condition for equality of variances in Theorem 4 may  be inter-  
pre ted  as follows. The mat r ix  P,=(L-Q~oH~ro) is idempotent,  non- 
symmet r i c  and satisfies /-/~rP~=0. I t  the re fore  represents  non-orthog- 
onal projection into the subspace orthogonal to the  columns of//~0, i.e., 
the  Hi-constraint  surface. The condition is t ha t  when  B*,0-1-u is so pro- 
jected,  the  resul t ing vector also lies within the  H2-constraint sur face ;  
since P,,.B*~o-I-V, ' -  ~ is independent of M and C,, the  set of vectors  a 
sat isfying the  condition is likewise independent  of M and C,. In par- 
ticular, this will always hold when there  are  only identifiablility con- 
straints ,  i.e., when  H2 is null. In the  identified case, when there  are  
no identifiability constraints, //~ is null, B*o=B,,, P , = L  and the  condi- 
tion reduces to I-LroB;la=O, i.e., B ; l a  lies within the  constraint  surface.  

3. Examples 

Example  1. We give a very  simple, non-pathological case in which 
condition (i) of Theorem 2 fails, bu t  where  it is possible to ver i fy  the  
cri terion in Theorem I directly. I t  thus  shows tha t  Theorem 1 is more  
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sensitive than Theorem 2, and that  straightforward adaptation of the 
conditions for the i.i.d, case is not sufficient. 

Suppose that  Yt ( t = l , . . . ,  n) are independent, with distributions 
N(O~+O~ -~, 1), where 0</~<1/2 and ~ is known, and that  the constraint 
is 0t=0. Thus k=2,  ~=1, s=0, B*=B, ,  

--l'~'(eo, a)= B~ = -~ ~ t-~U , 

where ~==~] t-a/~,*-~a=O(r ; also 

H(e0, e ) =  0 ' 

R (O)=o so  o=(o 
~'a 1 /  

Theorem 2 fails because Q~,(O)Hr(Oo, O) has an element 0(r However, 

B;ml:(Oo) is constant in mean square so Theorem I will work if (0 0~ \ / 
�9 B;'/~-~0, which can be verified. In fact, the constrained m.l.e, d~= 
52, y,~-a/~ ~-~ is unbiased with variance (~, $-~)-L~0. 

Exa'mple 2. Inequality constraints. Suppose the model has log- 
likelihood l~(r and is identified in the parameters ~, i.e., B~+=E [--~l,,/ 
3~] is nonsingular. General inequality constraints can be writ ten as 
h~(~)>=0 ( i = 1 , . . . ,  r) and can be converted to equality constraints by 

introducing r parameters ~ and writing h,(~)=r Thus 0 = ( ~ )  and 

con- 

straints are required for identifiability so s=v and //2 is null. We have 

/~,(0)=(~), li'(O)=(l~ ' 00) and B~=( B~ 00) where (l~),=~l,,/~r and (l~)~ 

=~/J~r162 For convenience we will use the notation H00=H(O0, a0), 
Ho, = H(Oo, O), I-I~,= H(O, 0), with similar definitions for H~ and ~'. Now 
B*(O)= B,,+ Ho~C,,Ho r, so 

B r 
B*W - ( n~, l - -  T 

( 

- 

4~'o~C~V~ / '  

(1/2)B;~Hoo,V~ t 

The conditions of Theorem 2 may be checked as follows: 
( i ) B*(O)-~H(O, O) 

= ( B-;~[ H~"- H~~ ~ Hence 
\ (1/2)~'~IHr,BZ [H+I,- H~o~ '~ , ]  - -  (1/2)~';~C;~r~l~'~J" 

H~'(Oo, O)B*(O)-'H(O, O) 
_ B ~ D C ~  - 

- - C ~ ' ~ V ~  and O,,(O)- ((1/2)~. ~tffoiB;~DC, _(1/2)~. t), 
where D=H~Iz~'~t~'ol-H~o, Uniform boundedness of Q,~(O)Hr(8o, O) will 
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then follow from tha t  of BT3DC,~, and this will obtain in the  "usual  
case" where the  eigenvalues of B~+ all have the same order of magni- 
t ude ;  if they are all O(b~) the choice C,,=b,~I suffices. 
( ii ) Trace [B*(O)-IB,~B*(O) -~] = trace (B~  + (1/4)~'~H~,B;~H~o~'~) ~ 0 iff 
BT}-.-.~O, as would be expected in practice. 

__ / k h _ , .  - ' l  (iii) Rn(O)=B*(#)-'IB~+I'~'(Oo, @)} - ++(r r 

Conditions under  which B;Tl++(r ~ ) + h - ,  is "small  in probability ", for 
an identified model, are discussed in Crowder [4]. 

Asymptotic normality of 6, obtains if the  conditions of Theorem 3 
hold, and these have been essentially covered above. The asymptotic 

variance of t~ is V~=(h-Q~oHJ)B *-~ 
= (. B ; ~ ,  (l/2)BZH~o~'o' 

\(I/2)~';IHJooBZ (li4)~'o~H~BZH~o~';'/" 
In particular, the  asymptotic variance of ~ is B77, the same as tha t  

of the  unconstrained m.l.e. ~,, there  being no gain in efficiency since 

H~ is null, as noted in Section 2. The reason for this is tha t  ~ and 

~ are asymptotically equivalent, as a consequence of the assumption 
tha t  #0 is an interior point of the constraint  space. For the boundary 
case a different analysis is required, see Moran [6]. 

Example 3. A class of  constrained regression problems. Hudson [5] 
discusses polynomial regression where the  regression function is con- 
strained be non-positive, non-negative, non-increasing, non-decreasing, 
convex, or concave over a specified interval. Suppose E (yXx)=p(x).for 
x ~ (a, b), where  p(x) is a polynomial in x, then the constraint is of the  
form p(x)_~0, p(x)~0, ~'(x)<:0, p'(x)>=0, ~"(x)_<_0, or ~"(x)~0 on (a, b). 
Hudson remarks that  such a constraint generates an infinite set of 
linear inequalities on the regression coefficients, which makes conven- 
tional statistical inference difficult. His paper concentrates on the  com- 
putational aspect of fitting the constrained regression by least-squares. 
We show now tha t  such a problem can be accomodated to some ex ten t  
within the  present  framework, and thus derive conventional (asymp- 
totic) statistical inference. 

The constrained polynomial function (/~(x), or ~'(x), or p"(x)), say of 
degree p, is expressible as r(x)=ro(x-ao)T[ (x2-2a~x+r~); the  product  
of quadratic factors runs over i = 1 , . . . ,  [p/2], and the linear factor (x 
-a0) is absent if p is even. The constraint is equivalent to (1) r(x0)>__ 
0 (or ~0)  for some x0 e (a, b), and (2) r(x) has no real roots in (a, b). 
Condition (2) may be broken down as (2a) a0~ (a, b) (if p odd), and 
(for each i) either (2b) a':<r~ (complex roots) or (2c) a~',>_r~ and a~+_(a ~, 
--r~)l/~ (a, b). Condition (2a) can be expressed as ( a 0 - a ) ( a 0 - b ) - r  
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introducing a pa ramete r  r and " e i t h e r  (2b) and (2c)" similarly as 

2 1/2 2 1/2 (4.1) (a2~-- r~) min {(a~--r~), [a~+(a~--r~)+ --a][a~+(a~--r~)+ --b], 
0/2 1/2 ~ 2 1/2 [ ~ -  ( ~ -  y~)§ - a ]  [ ~-  ( < -  r~)§ - hi} - r = 0 

where  (z)+ denotes max (0, z). These constraint  functions will be con- 
t inuously differentiable in the neighbourhood of a t rue  pa ramete r  which 
does not lie on an implied boundary ; for example, min (z 2, z 3) has a con- 
t inuous derivat ive everywhere  except  at  z = l .  The regression function 
/~(x) is obtainable from r(x), by integrat ion if necessary. Thus, as soon 
as an er ror  distribution is specified for the  regression, the  problem 
comes under  the  general  outline of Example 2. 

For  illustration consider fi t t ing a cubic curve which is monotone 
increasing on (a, b). Corresponding to Hudson's least-squares approach 
we will take  the  usual Normal, homoscedastic model in which the  ob- 
servations y~ ( t= l , . . . ,  n) are independent  N(~(x~), a 2) variates.  Now 
~'(x)=r(x)=ro(X2--2~ix+r~), so ~(x)=ao+Yo(X3/3--a~x2+r~x ). Constraint  
(1) may  be wr i t t en  as h~(a~, r0, r ,  r162  where  x0 e (a, b) is 
specified. Constraint (2) is h2(~, ;'~, r where  h2 has the  form (4.1). 
The situation is thus covered by Example 2 with r  a ,  ~'0, r~, a) r, 
~=( r  r We will assume tha t  the  conditions for consistency and 

asymptotic  Normali ty  of t~ hold, these being the  standard ones for non- 

linear regression. The asymptotic variance of r the constrained esti- 
mator ,  is B -~ the same as tha t  of the  unconstrained m.l.e. 

4. Identifiability, and the information and constraint matrices 

Some particulars are listed in this section connecting pa ramete r  
identifiability, the information matr ix ,  and the constraints.  Al though 
some of this mater ial  is familiar in non-rigorous terms,  it does not  seem 
readily available elsewhere in suitable fo rm;  it is needed to support the  
work in Section 2. 

We will say tha t  there  is local non-identifiability at 60, in the  di- 
rection of vector  u, when url~(Oo)=O a.s. In this case the  likelihood 
l~(O) has zero derivative along u at  00 for all possible data, so u is tan- 
gent  at 00 to a contour of a.s. constant  likelihood. Since Elu~l~(00)L~= 
urB~u, UTl~(Oo)-=O a.s. iff BnU=0, i.e., u e U~, the  null space of Bn. 
Every  0 has representat ion 0~+(0--0~), where  0~e U~ and O-O~iU~, 
and identification is achieved by selecting a part icular  0~. 

The constraints,  h:(0)=0 ( i = 1 , . . . ,  r), are  linearized in (2.2) as 
Hr(Oo, 0)(0--00)=0. In Lemma 1 H~ represents  the  leading k x s  sub- 
mat r ix  of the  partit ion H(Oo, O)=[Hl(Oo, 0), I-I2(Oo, 0)], O<_s~r. 

LEMMA 1. I f  constraints h~(0)=0 ( i = 1 , . . . ,  s) are sul~cient for 
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local identification at 0o then rank (B~,/-/~)=k. 

PROOF. If rank (Bn,/-/~)<k there exist non-zero u e U~ s.t. H f u =  
0. In that  case the constraint H~r(0-00)=0 satisfied by a particular 6 
would also be satisfied by 0 + u ,  and identification would not be achieved. 

Note that  Lemma I does not show that  [B,,/-/~(00, 00)] has full 
rank. 0nly in the case of linear constraints will H1(00, 8) be independ- 
ent of 6. 

The following lemmas are stated in general terms but with nota- 
tion corresponding closely to their application here. Lemmas 2, 3 and 
4 serve Lemma 5 which shows that  the matrix B* is nonsingular and 
gives a bound for its minimum eigenvalue. 

LEMMA 2. Suppose U is a vector subspace of R ~ spanned by the 
columns of A (k• of  rank s, O<s~_k. Let a = i n f u r A A r u ,  inf over 
u ~ U with lu l= l .  Then a>0.  

PROOF. Since u ~ U, u = A v  for some v and l=[u]2=[Av[2=vrArAv 
=[(ArA)'/2v[ 2. 

a = i n f  v rA r (A A r )A v=i n f  {(ArA)lnv}r(ArA) {(ArA)'nv} , 

inf over v s.t. [(ArA)I/~v]=l. Thus a is the smallest eigenvalue of A r A ,  
which is positive definite since A has full rank. 

LEMMA 3. Suppose B (k • k) is positive semidefinite with null space 
U of dimension s, O<=s<k. Let b= in furBu ,  inf over u_kU with [ul= 
1. Then b > O. 

PROOF. The eigenvectors e , . . . ,  e~ of B span R ~ and correspond 
to eigenvalues ~ - - . . . = ~ s = O ,  0<~s+~__...~2~. Let E2 be k •  
with columns es§  e~, and A2=d iag (L+ , . . . ,  ~). Then u=E2v for 
some v, and l=lul=]E2v]=[v I since ErE2=h_~. Hence b = i n f  (E2v) r. 

Ivi=i 
B(E~v) = inf vrA2v= ~+~>0. 

IVI=I 

LEMMA 4. Let B be positive semidefinite with null space U and let 
the columns of B and ~ together span R ~. Then tll is expressible as 
A~+BA2 where BA~=O and the columns of A~ span U. 

PROOF. Each column of ~ can be expressed uniquely as a~+a~ 
where a le  U and a~lU,  i.e., there exist matrices A~ (unique) and A~ 
(non-unique) such that  H~ = A~+ BA~, and BA~ = O. 

For arbi t rary z~ R ~ we have z=Bv~+H~v~ for some v,  v~. Thus 
z=Bv~+A~v~, where v~=v~+A~.v2, so the columns of B and A~ together  
span R ~. If z ~ U then O=Bz=B~v~, so vrB~v~=O and thus Bv~=O. It  
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follows tha t  z=Atv2,  so the columns of At span U. 

LEMMA 5. Let B,  U, b and H~ be defined as in  L e m m a s  2 and 3. 
Let B * = B + G C G  r where C is positive definite wi th  m i n i m u m  eigen- 
value c, and G is partitioned as (I-I~, G2) in  which G2 is arbi trary .  Then 
infzrB*z>=min{br ca(1-r inf over ]z l= l ,  f o r  some a > 0  and r 
(o, 1). 

PROOF. Let  z=z~+z2 where  z~ ~ U, z 2 •  and Izl--1. Then z r B * z  
=z~Bz2+zrGCGrz>=blz212+c]GTzl 2 (Lemma 2). Choose r ~ (0, 1) s.t. r 
_<_a(a+16[/-/,[2)-'; note that ,  since IH,]2=tAt[2+]BA2L2>_]BA2[ ~ (Lemma 3), 
r -' which implies 2r162 If  [z2]>__~ 
then  zrB*z>=br 2. Otherwise Izd2=l-Iz21~>=l-r ~ and 

[Grz[~=IH~rz]2+IGrz]2>-](At+BA2)rzl ~ (Lemma 3) 

= [A[z,+A~Bz212>=(tAr~z~l-lA~Bz2[) 5>=[Arz~[2-21Arz~llAr~Bz2t . 

But, when ]z21<r 21Ar,.Bz21~_2~]ArBl~_{a(1--~2)}'n/2 f rom above, and 
[Arz,12>=alztl 2 (Lemmas 4 and 2) >__a(1-~2), so [Grzl2>=a(1-r 

LEMMA 6. Let B * = B §  r, and suppose that B*  and H r B * - t H  
are non-singular.  Then Q = B * - ' H ( H r B * - ' H )  -~ and V = ( I - Q H r ) B  *-~ 
are both independent o f  K.  

PROOF. Suppose K varies with a pa ramete r  x, but  B and H do 
not. Then ~ Q / ~ x = - B * - t H ( ~ K / a x ) H r B * - t H ( H r B * - ~ H ) - ' + B * - t H ( H T .  
B * - ' H ) - ~ H r B * - ~ H ( ~ K / ~ x ) H T B * - t H ( H r B * - ~ H )  = 0 and ~V/~x = ( I - -  Q H  r) 
�9 ( - B * - ' H ( ~ K / ~ x ) H r B  *-') -= - V H ( a K / ~ z ) H r B  *-t = 0 since V I I =  O. 
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