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Summary 

Consider a truncated exponential family of absolutely continuous 
distributions with natural parameter 0 and truncation parameter  r. 
Strong consistency and asymptotic normality are shown to hold for the 
maximum likelihood and maximum conditional likelihood estimates of 0 
with r unknown. Moreover, these two estimates are also shown to 
have the same limiting distribution, coinciding with that  of the maxi- 
mum likelihood estimate for 0 when r is assumed to be known. 

1. Introduction 

Let 

(i.i) f ( z :  0, r)--a(z) exp {Ou(z)}/b(O, r) , c < r _ _ z < d  

be a two-parameter density with respect to Lebesgue measure on the 
real line. Here, -oo<=c<d~_oo are known, a(z) is nonnegative and 
continuous a.s., and u(z) is absolutely continuous with du(z) /dx~O over 
(r, d) for r ~ F--(c ,  d). For each fixed r ~ F , l e t  0(r) denote the set of 
all values of 0 for which (1.1) is a density, i.e. 

O(r)= 

Clearly, O(rl)cO(r2) for rl, r~ ~ F with Y~<r2. Throughout this paper 
we shall assume that  for any r ~ F, O(r ) -O is a nonempty open subset 
of the real line. 

The family of distributions with densities of the form (1.1), where 
(0, r) ranges over 0 x F, is generally referred to as a truncated expo- 
nential family with natural parameter 0 and truncation parameter  r. 
Such a family, with r fixed, constitutes a regular exponential family 
of order 1. Thus, for any fixed r ~ F, log b(O, r) is strictly convex and 
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infinitely differentiable as a function of a e 8 and ~(~, r ) - a  ~ log b(tL r)/ 
aa ~, k = l ,  2 , . . . ,  is the kth cumulant  corresponding to (1.1). 

Examples of such a model are given by :  

Example 1.1. (i) Truncated N(12, a~=l) distribution; a(x)=exp 
(-x~/2), u(x)=x, 0=12, I"=R, 8(r)=R, v r ~ R. (ii) Truncated N(l~= 
0, a 2) distr ibution;  a(x)=l/(2~) ~/~, u(x)=-x~/2, O=l/a ~, F=R,  O(r)=R +, 
v r ~ R .  

Example 1.2. a(x)=jx j-l, u(x)=-xJ,  3"=1, 2 , . . . ,  F = R  if 3" is odd 
and R +, j is even, 8(r)=R +, v r ~ F. 

The t runca ted  exponential family plays an important  role in life 
testing.  I t  was first introduced by Hogg and Craig [5]. Some later 
references are, Fraser [4], Lwin [9], Huzurbazar [7], and Barndorff- 
Nielsen [2]. Other references, which deal with  special cases of this 
family, can be found in Johnson and Kotz ([8], Ch. 17, Section 7.1 and 
Ch. 13, Section 7). The lat ter  are mainly concerned with providing 
i terat ive methods for solving the maximum likelihood equation for t~. 

This paper first compares the asymptotic behaviour of two estima- 
tion procedures for the parameter  t~ with r considered as a nuisance 
parameter .  The two estimates considered are the ordinary maximum 
likelihood est imate (MLE) and the maximum conditional likelihood esti- 
mate  (MCLE), which is proposed as a reasonable competitor of the 
MLE. The asymptotic behaviour of these two estimates is then com- 
pared with tha t  of the MLE for t~ when r is considered to be known. 
Asymptotic behaviour of maximum conditional likelihood estimates for 
various families of distributions is discussed in a number  of references:  
e.g. Andersen [1], Huque and Katti  [6] and Barndorff-Nielsen and Cox 
[3]. 

Several remarks  concerning the  problem at hand should be made 
at this stage. 
1) Whereas there  is a substantial l i terature t reat ing the  asymptotic 
behaviour of the  MLE for r (in connection with the  asymptotic theory 
of ex t reme values), there does not seem to be any l i terature concern- 
ing the  asymptot ic  behaviour of the MLE for t~ in the presence of un- 
known truncat ion parameter.  
2) In the two-parameter  regular case (such as a two-parameter  expo- 
nential family) the  asymptotic normality of the  MLE for one of these 
parameters  can be obtained from the asymptotic joint distribution (i.e., 
bivariate normal) of the MLE's of both of them. In contrast  to the  
regular  case, such a procedure cannot directly be used in a t runcated 
exponential family since the l imiting joint distribution of the  MLE's 
for t~ and r is not, in general, bivariate normal. Thus, al ternative 
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tools are needed for deriving the asymptotic behaviour of the MLE 
for 0. 

The main results of the paper are presented in Theorem 2.1. It 
is shown there that  for samples of size n ~ 2 ,  the MLE and MCLE for 
0 exist with probability 1 and are given as the unique roots of the 
appropriate maximum likelihood equations. These two estimates are 
then shown to be strongly consistent for t~ with limiting distributions 
coinciding with that  of the MLE for 0 when r is known. Most deri- 
vations relying on standard techniques will be omitted for the sake of 
brevity. 

2. Main results 

Consider a random sample X ~ = ( X , . . . ,  X~) of i . i .d . r .v . ' s  with com- 
mon density (1.1), and let X(,~.. ._~X(~) be the corresponding order 
statistics of the sample X~. Let L~(t~, r) denote the likelihood function 

of t~ and r based on the sample X~, and t~ and ~n the MLE's for 0 and 

r, respectively. Clearly, ~ =  xc, and L~(0~, x(1)) = sup L~(t~, xc1)). 
0 E e  

The conditional model for 0 is obtained by elimination of r via con- 
ditioning on xc~). The conditional likelihood function of t~, denoted by 
L~(t~, xc,), is then proportional to the density of (X(2 , " ' ,  X(~) condi- 
tional on x(,, that  is, 

(2.1) L,~(t~, xc,)a:(n--1)! ~[ {a(xc,)) exp [8u(xc,))]/b(O, x(,)} , 

X ( n ) ~ - ~  " �9 �9 ~ X ( D  �9 

The expression on the right-hand side of (2.1) can be interpreted as 
the joint density of the order statistics of a random sample of size 
( n - l )  from a parent density, 

(2.2) g(y: ~, x(,)=a(y) exp {Ou(y)}/b(8, x(,)) , y>xc~) . 

From this viewpoint it is clear that  there exists a random permutation, 
say Y~,..., Y~, of the ( n - l ) !  permutations of (Xc2,-. ' ,  Xcn)) such that  
conditional on x(~, the Y~,..., Y~ are independently and identically dis- 
tributed r.v. 's  with common density of the form (2.2) (c.f. Quesenberry 
[10]). 

Since the form of g(y: ~, xc,) is as in (1.1) with x(, playing the 
role of r, it follows that  for all t~ e 0 and almost all x(,), the kth cumu- 
lant ( k= l ,  2 , . - . )  and the characteristic function of the conditional dis- 
tribution of u ( Y J  ( i = 2 , . . . ,  n) given xc,, exist and are given by ~(t~, 
x(,) and b(O+is, x(,)/b(O, x(~), respectively. 

The conditional likelihood function of 0 can now be written, with- 



220 SHAUL K. BAR-LEV 

n ^ 

out loss of generality, as L~(8, Xo~)=T[g(y~: 8, x(,), and the MCLE 8~ 
z = 2  

is tha t  value of 8 for which L~ attains its supremum. Three different 
al ternative approaches can be suggested to prove the asymptotic pro- 
perties of the  MCLE and MLE for 8. The first utilizes the asymptotic 
behaviour of X(1). The other two make use of the  representation of 
L~ based on the  random permutat ion (Y2,. . . ,  Y~) of (X(2),..., X(~)). We 
shall adopt one of the lat ter  approaches, which seems to be intrinsi- 
cally interest ing and may also lend itself to other  problems. 

The main results of this paper are contained in the following the- 
orem, in which 1~(8, xc,) and l~(8, xc,) are used for (1/(n-1))a logL~(8, 
xc,)/a8 and (1/n)a log L~(8, x(,)/aS, respectively. Fur thermore ,  tT~ will 
denote the MLE for 8 when r is known. 

THEOREM 2.1. Under the assumptions imposed in Section 1, 

( i )  For samples of  size n ~ 2 ,  ~ and ~ exist with probability 1 and 
are given as the unique roots of  the max imum likelihood equations, 

l~(t~, x ( , )=0  and l~(~, x(~)=0, respectively. 
(ii) Let 8o e 0 be the true parameter value, then as n--)oo, ~ and ~ 

converge almost surely to 8o. 
(iii) Each of  the following three random sequences has a l imiting N(O, 

1/2~(80, r)) distribution : n~/2(~- ~o), n~/2(~- 8o), and nl/"(~-- 8o). 

PROOF. 

( i )  Firs t  consider the problem of the existence and uniqueness of ~ .  
For given r, the exponential model (1.1) is regular with the Lebesgue 
measure as the  underlying dominating measure. Thus, by Corollaries 
9.4 and 9.6 in Barndorff-Nielsen [2], ~ exists with the probability 1 
and is given as the unique solution of the maximum likelihood equa- 

tion, ~,u(x~)/n--~(~,y)=O. Now note tha t  exactly the same argu- 
^ e  ment  works for ~ and 8~ with, in the first case 7 replaced by x(,, and 

in the  second case with x(~) replacing r and ~, u(y,) /(n-1) replacing 

u(x )ln. 
(ii) Henceforth we shall use Xi]) and Y? instead of X(I) and Y, respec- 
tively, to indicate the sample size according to which these r .v . ' s  

^C a . s .  
are defined. We first show tha t  8~ ,80. Let  ~>0 and define, 

7~ 

R~( + a) --- {log L,~(8o _ a, Xi't)) - log L~(80, X('t))}/(n -- 1) = _ (~ ~, u(Y3)](n-- 1) -- 

a . s .  n 

logb(8o+_~,X<q))+logb(80, Xi~)). Since, X~) "r and ~ ,u (YC) / (n -1 )=  
~=2 

l  ollo s (n/(n-1)) 
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(2.3) R~(+~) .... , • r ) - logb(~0•  r) + log b(O0, r ) < 0 ,  

where the inequality in (2.3) is obtained by using the strict  convexity 
of logb(8, r) as a function of 0 ~ O. The proof can now be completed 
by using arguments  similar to those in Rao ([11], Theorem (i), p. 364). 

The method of proof of the strong consistency of ~= is analogous. 
(iii) The limiting distribution of n~n(5=-Oo) is, clearly, N(0, 1/~(~0, r)). 
We show tha t  this is also the  limiting distribution of the other  two 

random sequences considered. Taylor expansions of l~(~, X(~)) and l~(~, 
X(~)) at  ~=~0 yield, respectively, 

(2.4) 

and 

(2.5) 

t~_2 (Y~)I( 1) (~ Zi )t 

C e 

n '/~ u (X , ) In -S , (~o ,  Xi~> 

= n'/~(#.-  Oo),~,(eo, X&)[1 + (~. - #o)~(~., Xc7))12.~,(#o, X3>)],  
I~.-Oo1<1#.-o01 a . s . .  

Clearly, the  terms in the square brackets on the r ight-hand sides of 
equations (2.4) and (2.5) converge almost surely to 1. Let C, and M, 
denote the expressions on the left-hand sides of (2.4) and (2.5), respec- 

tively. Then, C,~--M~=(1/n 'n) u(Y:9/(n-1)-u(X(~)) ,0. The proof 
= 

can now be completed by proving tha t  C~ ~,N(O, 2~(Oo, r)). For this 
purpose let p~(s, x~)) denote the characteristic function of C, conditional 
on x~>. An expression for p~(s, x~)) can be derived by exploiting the 
fact tha t  the r .v. 's  u(Y?), i = 2 , . . . ,  n, are conditionally independent 
given x~). Then, by a Taylor expansion of log b(Oo+isn'/~/(n-1), x~)) 
at 0=00, we obtain 

fl~(s, x~,)) = exp { -- (n/(n-- 1))(s~/2)22(8 ~ xS))} , 

I~~ v s . 

Now, since for all s, ~(s, X(~)) .... ,exp {-(s2/2)~2(~0, r)}, l/~=(s, X(~))[<I a.s. 
and E {exp (iC=)} = E  {~=(s,Xc~))}, the required result follows from the 
dominated convergence theorem. 

Fur the r  generalizations of the results of this paper to  higher  di- 
mensional ~ and r can be made by considering an absolutely continu- 
ous parametr ic  family of distributions possessing densities of the  form 
(see Hogg and Craig [5]), 
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f ( x :  0 , . . . ,  0~, rl, r z )=a(z )exp  O~u~(x) b(Ot,. . . ,  0~, rl, r2) , 

for -oo~c<r~<r~<d~_oo, where ( 0 , . . . ,  0~, r~, r~) are assumed to be 
unknown. It  would seem that  the derivations of the asymptotic pro- 
perties of the MLE and MCLE for ( 0 , . . . ,  0~) could be completed in a 
manner analogous to that  of the case of a density of the form (l.1). 
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