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Summary 

The optimality of estimation method is investigated in a curved 
exponential family. A risk function, which is an extension of a resid- 
ual sum of squares in regression analysis, is introduced. It is shown 
that  second order efficiency of an estimation method is equivalent to 
attain the minimum among limiting risks of all estimation methods. 

1. The main results 

Let ~ be an n-dimensional exponential family of densities on the 
sample space R ~ with respect to a carrier measure oJ. The family 
is expressed as 

f (x{  O) ~- exp (<x, 8>-  r 

by the natural parameter 8--(t~1,..., 8 ~) with the usual inner product 
< , > of R ~. The expectation parameter v - ( v 1 , " ' ,  w) of ~ is defined 
by the transformation of 8 into v: 

v[#]-- E X.  

Then the MLE of v or # based on a sample (xl , . . . ,  x~) is given by 

~_..1 (x~+ . . .+x~)  
N 

or ~-~-~[5], respectively. An m-dimensional curved exponential family 

is denoted by 3 .  That is, 

3 = { f ( x l a ( u ) ) : u e  U} , 

where U is an open set in R ~ and the image of the mapping 8(-) of u 

Key words: Exponential family, Kullback-Leibler divergence, minimum contrast estimator, 
maximum likelihood method, second order efficiency. 
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into 8 with the Jacobian matrix of rank m is non-flat. Notice that  

the ~n-component parameter u is used only to name 3 .  The family 
is invariant under transformations of parameter spaces. 

Assume that  (x~,..., x.v) is a sample from a density of 3 .  We 
concern with a class of all estimation methods which correctly map 

under parameter  transformations of 3 .  That is, for any one-to-one 
parameter  transformation g of u into r, the estimator ~ of r by the 
method of estimation satisfies 

( i . I )  ~ = g ( ~ )  . 

with the estimator ~ of u by the same method. The maximum likeli- 
hood method enjoys (1.1) (see Efron [2]). The property is equivalent 
that  the summary:  

f = f ( - [  0(~)) 

based on the method is invariant under transformations of parameters.  
All minimum contrast methods have the property (1.1) (cf. Drossos and 
Philippou [3]). Notice that  many minimum contrast methods are also 
invariant under one-to-one transformations of the sample space. We 
compare these methods of estimation, identifying estimators which map 
correctly each other as an estimation method. There is a confusing 
aspect. The superiority relations between two estimators does not gen- 
erally conserve by comparing their mean square errors for various pa- 
rameter  spaces with one-to-one correspondance. Should we consider 
which method is superior to others ? This phenomenon is caused owing 
that  the risk function, i.e. mean square error in this case, is not in- 
variant under parameter  transformations. 

In a linear regression analysis, the sum of squares plays an im- 
portant role for inference and enables us to associate a simple geomet- 
ric interpretation. So we extend a residual sum of squares to the 

curved model 3 .  That is, 

sN( , u) =--12 (5- ~(~))PG(~y(u)) (5 ~7(~)) 

for an estimator ~ of u, where v-v[0(u)] and G(v) is the Fisher infor- 
mation matrix of 7. This quantity S~(~, u) gives an account of the 
difference between the canonical sufficient statistic 5 and the fitted value 
v(~). So we adopt 

u)-E u) 
as a risk function. The risk function RN is invariant under transfor- 
mations of parameter  spaces. 
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We inves t iga te  the  relations be tween  the  risk R~ and asymptot ic  
efficiencies. The informat ion loss in reducing f rom the  sample to a 
s tat is t ic  T is defined by the  difference be tween  Fisher  informat ion  
mat r ices  of the  sample and T, say z/~(T, u). A Fisher-consis tent  esti- 
ma to r  ~ of u is said to be first order  efficient if 

(1.2) lim 1 dr(ft, u)=O 
N ~  Y 

where  0 is a zero matr ix .  Note  t h a t  the  condition (1.2) is equivalent  
to the  definition of BAN for ~. F u r t h e r m o r e  the  es t imator  ~% is said 
to be second order  efficient if the  l imit ing informat ion  loss due to ~ is 
a m i n i m u m  among  those of all o ther  first order  efficient es t imators  in 
the  sense of nonnegat ive  definitness of mat r ices  (cf. Ghosh and Sub- 
r a m a n y a m  [6]). 

Hencefo r th  we identify an es t imator  wi th  a me thod  of es t imat ion 
in the  above text .  The following theorems  will be proved in the  nex t  
section. 

THEOREM 1. First order e~ciency of a Fisher-consistent estimator 
~t is equivalent to each of the following conditions (i), (ii) and  (iii) : 
( i ) lim N[R~v(~, u ) -R~(~ ,  u)]>__0 

N~oo 

for  any Fisher-consistent estimator ~. 
(ii) lim (N/2) E [ (v(~) -  v(u))'a(6(u))(V(~)- v(u))} = m/2. 

(iii) lim N[R~(~t, u)] =(n-m)~2.  
N~r 

F u r t h e r m o r e  

THEOREM 2. A first order e t~cient estimator ~ is second order ef- 
ficient i f  and only i f  

lim N2[R,v(~, u ) -  R.v(~, u)] >= 0 

for  all first order e~eient estimators ~. 

Theorems  1 and 2 tell us t h a t  the  risk R,v exactly discr iminates  
the  first and second order  efficiencies of es t imators ,  respectively.  Theo- 
r em 1 is only a geometrical  version of famous x~-decomposition theo- 
rems  (cf. F igu re  1). 

We choose the  expected Kullback-Leibler d ivergence 

R,~-(u, u) -- E PKL(f~, f ~(~)) , 

as a r isk funct ion,  where  

PKL(f, f~)-- I f~(x) [log fl(x)-- log f2(x)] ~ {dx} 
J 
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x 

Ir/(u ')  ; u' ~ U] 

1 

Fig. 1. The right triangle. 

Let ~ be first order efficient estimator of u. The triangle with sides 
of 4 ~ - [ ~ - - ~ )  I, q'N-[~7(~)-~7(u)[ and q~-1~7(u)--s converges to the right 
triangle with 4 ~ - Z - ~ ,  ~ and v ~ - ,  where I~l 2 denotes ~7'G(O(u))Tq. 

The risk R* is invariant under transformations of both parameter  spaces 
and sample spaces. However one may not regard the risk R* as a 
reasonable measure of optimality in the class of estimators since the 
maximum likelihood estimator is nothing but the minimizer of the 
Kullback-Leibler divergence PKL. 

This question is answered by the assertion: 
Theorems 1 and 2 are valid for the risk R* in place of R~. 
The function 

R*(~, u)-R*(~,  u) 

is closely related to the discrimination rate of pxL, introduced by Kuboki 
[7], in the case including a sufficient statistic. 

The author introduced a class of second order efficient estimators 
which are defined by minimizers of the corresponding contrast functions 
p's (cf. Eguchi [4]). In practice the above assertion holds for all these 
contrast functions p in addition to PKL. Let .C(u) be the likelihood 
function of the parameter u. It  follows that  

(1.8) log .E(u,)--log ..C(U2)=N{pKL(O, U2)--p~L(O', UO} 

for all u~ and u~ in U, where 

p L(0, U)-- P L(L, f,c.)) �9 

From (1.8) it follows 

COROLLARY 1. A Fisher-consistent estimator ~ is first order efficient 
i f  and only i f  
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lira E [ _F(ll) 1 <1 
~-~ L.t~(~) J =  

f o r  all Fisher-consistent estimators (t. Fur thermore  the estimator ~t is 
second order e~cient i f  and only i f  

lim E [ _F(~) ~ < 1  
~-~ L.s J -- 

f o r  all f i rs t  order efficient estimators ~. 

Corollary 1 may be extended to a smooth parametric family with 
some regularity conditions. 

2. Proof of  Theorem 2 

Theorem 2 will be shown in terms of differential geometric ap- 
proach, which is originated by S. Amari. Refer Amari [1] with respect 

to the information metric g, the exponential connection /~ and the mix- 

ture /~. We state only an outline of the proof owing to avoiding tedi- 
ous calculuses (cf. Eguchi [5] for the detail proof). 

Take an n x ( n - m )  matrix B• of full rank to satisfy 

B(u)'G(8(u))B'-(u) = O ,  

where B(u) is the Jacobian matrix t~(u) and G(t~) is the Fisher infor- 

mation matrix of 8. The tangent space Ts of ~ at f in ~ is decom- 

posed into the tangent and the normal spaces, say Tf and TT, of which 
bases are expressed as 

and 

{ e ~ ( u ) - ~ - v ~ ( u ) }  ~.~ . . . ,~ , 

{e~(u) - B~(u)e~(u)} ~:, ... 

{e~(u) =-- B](u)e~(u) } ~=~+~ ... ~ , 

respectively, where B~(u) and Bi(u) are elements of matrices B(u) and 

B:(u), respectively. The induced components of g to T~ and T7 are 
expressed as 

gab(U) = E {e~(u)eb(u)} and ~,,(u) = E {e~(u)e,(u)} , 

respectively. 
The second fundamental tensor of ~ with respect to /~ and /~ are 

denoted /~r and /:/, respectively. The components of /~ and /~r are ex- 
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pressed as 

and 

H~b~(U) = BI(u)O~[B~(u)g~j(O(u))] 

e 

H:~(u) = Bi(u)g~(#(u))O~Bi(u) 

with respect to the parameter  u with O~=_O/au% Henceforth we omit 
the  a rguments  of the above geometric quantit ies at  the  t rue value and 
freely raise and lower their  indices, e.g. 

e * e  

e 2 =-- ~'"(u)e,(u) H2~ = Hcba(U)~"'(U) , 

where ~b(U) and ~a"(u) are the inverses of ~ba(u) and ~a(u), respectively. 
For  a first order efficient est imator /e, the  set 

{f(" 18); ~(0)=u} 

is called the  ancillary subspace by Amari [1], of which the  second 

fundamental  tensor at  f = f ( .  I O(u)) with respect t o / ~  is denoted by/~r. 
Then we can rewri te  Theorem 7 in Amari [1] in the  convenient fo rm:  

THEOREM A. Let ~ be a f irst  order e~cient estimator with the second 

fundamenta l  tensor I2I o f  the ancillary subspace. Then 

I ~ ~ 1 ^ 
( 2 . 1 )  "b2 - -  u '~ = ~ - -  -~- F~ebe  ~ + H~ebe  ~ - -  .-~ H2~e2e" + 0(11 e l[ ~) . 

Furthermore the estimator ~ is second order e.~cient i f  and only i f  the 

tensor I:I vanishes over ~ .  

Theorem A is the same as Theorem 1 (ii) in Ghosh and Subramanyam 
[6] in the  case of one parameter .  

To prove Theorem 2, we prepare 

LEMMA. Let ~ be a f irst  order e~cient estimator with the tensor [-I. 
It holds that 

1 ~2 1 " 1 ^ " 1 m =- -llrl[ + yIIHII: +- IIHll:-(H, TII-y(H, T ) ,  

where 

e e e 

H 2--H~Hf ~ ~ b2 dpWaz~ W 
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e w% e m 
- -  c~ c - - b d ~  (H, H)=H~H~g~r g~, , 

(H, T ) - H  ~'r~ ~ 7.b~7,,, 
b 2  .L g p U a c } /  U 

with the tensor T-- ~ -  /~. 

})ROOF. The statistic e~(u) is expanded as 

(2.3) e~(~) = B~e~ + B~M ~-  18~B~#e b _ 8~B~e~Ab 

_ 1 ~oa~B~#ebeo+O([le[14) 

by Taylor's theorem, where A~--e~--(C~'--u' 9. I t  follows from Lemma 
tha t  the substitution of (2.1) into (2.3) leads (2.2) by taking the  ex- 
pectation since the identity 

holds. This completes the proof. 

The proof of Theorem 2 is easily seen from Lemma. Let  ~ be 
second order efficient estimator. I t  holds for any first order efficient 

est imator ~ with the second fundamental  tensor / i / t h a t  

lim N2[RN(~, u ) -  R~v(~, u)] = 1 I[ H[[~>= 0 
5 

since the te rm 

is common among all first order efficient estimators. The inverse as- 

sertion is clear since II/~ll=0 implies _f/=o. 

Remark. Consider a submodel of a multinormal family with known 

covariance matr ix  Z. Since the  connection /~ coinsides with /~, 

E e( iO,X_u 1 ( ~  ) N N 2 +l[H][2 + O ( Y - 3 ) '  

with F - ~ = / "  and H-PI=/-L In this model the  expectation of sum 
of squares is always smaller than ( n - m ) / N  at any t rue  value for suf- 
ficiently large N. 
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