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Abstract A principle of integrating neural  network 
modules  based on chaotic dynamics was s tudied on our 
two-moduled  Nozawa model .  Chaotic  neural  networks  rep- 
resent  each embedded  pa t te rn  as a low-dimensional  peri-  
odic orbit ,  and the others are shown as high-dimensional  
chaotic attractors.  This is equivalent  to W. F reeman ' s  "I  
don't know" and " I  know" states. In part icular ,  we noted  
that  the combinat ion of two-way inputs to each neural  net- 
work module  conflicted with e m b e d d e d  Hebb i an  corre- 
spondence,  I t  was found that  the interact ion be tween  the 
modules  genera ted  a novel  "1 know" state in addi t ion to the 
embedded  representat ion.  Chaotic  neural  ne twork  modules  
can autonomously  generate  novel  memor ies  or functions by 
this interaction.  The  result  suggests a functional  integrat ion 
in neural  networks  as it ought to be, e.g., fea ture  binding 
and gestalt. 

Key words Modular i ty  �9 Chaot ic  neural  ne twork  �9 Autono-  
mous integrat ion �9 Hebb ian  learning 

Introduction 

Funct ional  localizat ion with a module  structure exists in the 
bra in  as the cortical columns or areas, and a large number  of 
studies have been made  on each individual  function. Such 
functional  modular i ty  is effective in several  types of internal  
representat ion,  e.g., paral lel izat ion,  specialization,  and 
combinat ion.  On the other  hand, these modules  should inte- 
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grate functionally in order  to make the brain work as an 
informat ion system. Wha t  seems to be lacking is how to 
integrate the functional modules into an informat ion pro-  
cessing system. 

Several  a t tempts  have been  made  to develop informa- 
tion processing by combining such mult iple  functional  neu- 
ral netWork (NN) modules,  t~ These models  have been  
appl ied  as algori thms or control lers  to integrate  NN mod-  
ules. However ,  the bra in  autonomously  integrates  the mod-  
ules without  external  controls. 

We  have considered chaotic dynamics in NNs for inte- 
grating ne twork  modules.  This provides an e lement  of 
chaos in artificial and real  NNs, and is different  f rom the 
usual programs,  e.g., deterministic noise source, interactive 
searcher, novelty filter, and so on. 5 10 Chaotic NN modules  
are able to bo th  interact  and preserve their  module  struc- 
ture because  they are destabi l ized by weak per turbat ions .  
This in teract ion be tween NN modules  does not  always lead 
to functional  integration,  however,  al though it is known that 
coupling be tween  chaotic NN modules  does not  h inder  their 
pa t te rn  recall  with Hebb ian  learning. 11'12 

In this article, a two-module  chaotic NN mode l  is ana- 
lyzed for the case where  the relat ion between' the modules  is 
inconsistent with the e m b e d d e d  relationship.  

Model 

Two-module  Nozawa mode l  

A chaotic NN model  was p repared  in order  to study the 
interact ion be tween NN modules.  The  Nozawa model ,  ~3 
which is an artificial NN model  having chaotic behavior ,  is 
expanded  f rom a Hopfie ld- type 14 nonchaot ic  NN model  by 
adding a negat ive self-feedback connect ion at each neural  
element.  This was proved  to be equivalent  to a chaos neural  
network model .  15 

A modula r  neural  ne twork  model  is defined based  on the 
Nozawa mode l  to our  specifications. A two-module  Nozawa 
model  is now descr ibed based  on the Nozawa model  with an 
external  coupling term. 16 
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pi(n + f)= F,,,/nt{pi(n) } 

qi(n) = 1 - e ) Z  Ti, p](n ) + e Z Ti'~p'k(n ) + I i 
jr k = l  

where pi(n) is an internal  buffer  of the i-th neuron at dis- 
crete t ime n, and q~(n) is the control  pa ramete r  of the neu- 
ron i at n. T~j denotes  the connecting weight be tween the j - t h  
and i-th neurons,  and I, is the threshold value of neuron i. 

In eq. 2, p'k(n) is the k-th internal  buffer of the external  
module ,  and T;k is a connect ion weight from the k-th ele- 
ment  of the external  module.  The  parameters  e and M 
denote  the coupling ratio and  the number  o f  coupled 
elements, respectively,  from the external  module.  

The constant  values r(0 < r < 1) and [3(>0) are given as 

r =  1 -  , [ 3 -  R T  (4) 

where  R corresponds to the damping constant  of Hopf ie ld ' s  
model ,  and T is the connect ing weight for the negative 
self-feedback (T,~ = - T  < 0). So these constants have the 
values r = 0.7, [3 = 0.006, T = 15 in our computa t iona l  
experiments.  

The conceptual  d iagram of the two-module  NN mode l  is 
shown in Fig. 1 (N = 2). In this paper ,  the in te rmodule  
coupling is restr icted to one-way (flow-typed) project ion,  as 
in Fig. 1, because of previous observat ions of the influences 
of in termodule  couplings. 

E m b e d d e d  memor ies  

(1) where Vs( = {V,1 . . . . .  V,16}, s = 1, 2, 3) is the vector  pat tern.  
Similarly, the  coupling weights be tween the modules ,  T~e, 

are also given as 
(2) 

3 

Ti' k = s  - f)(2V;'k - 1) (6) 
S=I 

(3) 
The vector  pa t te rns  for modules  I and II  are wri t ten as V, = 
{Vsl . . . . .  Vs16} and Vs = {V;1 . . . . .  V;16}, respectively.  Hence,  
the in te rmodule  coupling weight T;k gives the pa t t e rn  corre- 
spondence be tween  modules  I and II  (C r C'; Fr F ' ;  4 r 
4 ') .  However ,  these are restr icted unidirect ional ly  from 
module  II to module  I. 

External  inputs 

The pat tern-recal l ing characteristics of chaotic NN models  
are well known from previous studies. 6-8'13 

Without  external  input, a chaotic NN model  recalls wan- 
dering e m b e d d e d  patterns.  Steady pa t te rn  recall  is shown 
with an external  input  which is an embedded  pat tern.  The 
Nozawa mode l  also has the  same features  of pa t t e rn  recall. 

The external  input  to the two-module  Nozawa mode l  is 
given in eq. 7 to the threshold/~ of eq. 2 according to the 
simple Nozawa model,  t3 

0.08T for k i = 0 

Ii = 0.09T for k~ = "nothing" (7) 

0.10T for k i = 1 

Let  the 16-dimensional input  vector  pa t te rn  be K = {kl, 
k2 . . . . .  k16}. These  constants (-~0.09) indicate the control  
pa ramete r  q~(n) where T~j = T;k = 0 in eq. 7. The  external  
input/~ is given so that  qz(n) stays near  the chaotic param-  
eter  region. 

The NN modules  of the two-module  Nozawa model  are 
called modules  I and II  (see Fig. 1). Two sets of three vector  
pat terns  were p repa red  for each NN module ,  {C,F,4} and 
{C' , f ' ,4 '} .  

The p repared  sets of vector  pat terns  were e m b e d d e d  
into each module  using Hebb ian  learning. 17 Hebb ian  learn- 
ing gives the following re la t ion with the embedding  vector  
pat terns,  which determines  the value of the coupling weight 
Tij be tween the neural  e lements  within a module.  

3 

Ti, = Z ( 2 V , . / -  1)(2Vsj-  1) (5) 
s = l  

Module I Module 11 

Inconsistent  condi t ion 

In the two-module  Nozawa model ,  this in te rmodule  cou- 
pling does not  hinder  the pa t te rn  recall  process of the NN 
modules  as long as the embedded  Hebb ian  correspondence  
is kept  be tween  each NN module.  11'12 

We now focus at tent ion on the more  interest ing case of 
the in te rmodule  coupling condit ion where  the two-module  
Nozawa mode l  does not  have e m b e d d e d  Hebb ian  corre- 
spondence with an external  input  pair, e.g., module  I has an 
external  input  C and module  II has F'. Such cases have an 
inconsistent condit ion as regards e m b e d d e d  Hebb ian  Corre- 
spondences.  The  inconsistent condit ion shown in Fig. 2 will 
now be examined.  

c @.F,  "(1)4- 
Fig. 1. Two-module (flow-type) neural network model Fig. 2. Inconsistent condition (C-F') 
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Fig .  3.  I n t e r n a l  s t a t e s  o f  t h e  N N  m o d u l e  (q4-qs) -  a E x t e r n a l  i n p u t  C. 
b N o  e x t e r n a l  i n p u t s  
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I n t e r n a l  d y n a m i c s  Fig .  4. B i f u r c a t i o n  m a p  o f  q4 w i t h  e x t e r n a l  c o n n e c t i o n  w e i g h t  e; M = 3 

"I know",  '"I .don't know" states 

Figure 3 shows a projec t ion  of the internal  dynamics with 
the variables q4 and q8 at module  I. The  internal  dynamics of 
a chaotic NN module  are broadly  divided into two types. 
Each e m b e d d e d  pa t te rn  is represented  as low-dimensional 
periodic orbit (Fig. 3a), and the o ther  cases are shown as 
high-dimensional chaotic orbits" (Fig. 3b). The per iodic  or- 
bits that  indicate each embedded  pa t te rn  are ra ther  un- 
stable, and change to chaotic behavior ,  as in Fig. 3b, owing 
to external  or in termodule  input  in the absence of Hebb ian  
correspondences.  

These  two types of internal  dynamics in the chaotic NN 
module  agree well with the role of "novelty filter" which is 
claimed by W. Freeman,  based on the rabbi t ' s  olfactory 
EEGs.  The low-dimensional  a t t ractor  (Fig. 3a) means  the "I 
know" state for the embedded  memories ,  and the chaotic 
a t t ractor  (Fig. 3b) indicates the " I  don't know" internal 
state. 

The influence of in te rmodule  coupling 

In the inconsistent condit ion (Fig. 2), the two-module  
Nozawa model  also shows " I  know" states for the embed-  
ded pat terns  C and F on module  I with ext reme 
in termodule  coupling parameters .  

The  two-module  Nozawa model  has two parameters ,  M 
and e, for the strength of in te rmodule  coupling (in eq. 2). M 
is the number  of in te rmodule  coupling elements,  and e is the 
in te rmodule  coupling ratio. When  there are no in te rmodule  
couplings (M -- 0, e = 0.0), a NN module  is equivalent  to a 
one-module  Nozawa model .  Then,  the internal  dynamics of 
module  I obey an external  input, i.e., they indicate an em- 
bedded  pa t te rn  C. In the other  ex t reme case when the mod-  
ules connect  with the strongest  parameters  (M = 16, e = 
1.0), module  I has exactly the same in te rmodule  inputs as 
module  II, i.e., they indicate an e m b e d d e d  pa t te rn  F. Both 
ext reme cases show the low-dimensional  " I  know" states. 

However ,  these will be  des t royed in spite of their  weak 
in te rmodule  coupling because  these e m b e d d e d  limit cycles 

are unstable,  as ment ioned  before.  Hence,  in termodule  cou- 
plings having no Hebb ian  correspondence  give a chaotic 
" I  don't know" state in almost all the M - e  pa rame te r  space. 
The NN modules  cannot  recognize the input  pairs  which do 
not  satisfy the embedded  Hebb ian  correspondences .  Gen-  
erally, only e m b e d d e d  internal  states with H e bb i a n  learning 
(eq. 5) are recognized by way of their  low-dimensional  
" I  know" states in chaotic NN modules,  and others  are 
classified as ~ don't know" high-dimension chaotic 
attractors.  

Genera t ing  novel  memor ies  by in termodule  couplings 

In the two-module  Nozawa model ,  it was found that  
in termodule  couplings not  only gave chaotic " I  don't know" 
states, but  also genera ted  a few novel  low-dimensional  "I  
know" states. These novel  " I  know" states were observed  in 
inconsistent  conditions.  

Figure  4 shows a bifurcat ion map of the internal  buffer q4 
with the pa rame te r  e. Low-dimensional  internal  states 
(novel " I  know" states) appear  as the windows over the 
bifurcat ion structure,  and innumerable  windows are  shown. 
However ,  a lmost  all the windows are l imited to a very nar- 
row region of in termodule  connect ion weight e, and cannot  
stably exist in opposi t ion to the fluctuation of e. In  Fig. 4, a 
low-dimensional  " I  know" state whose pa rame te r  region e 
is near  0.5 is the only stable state. 

The  low-dimensional  per iodic  orbi t  which appears  over 
the Joifurcation structure can be regarded  as an novel  inter- 
nal represen ta t ion  that  means " I  know" in the same sense as 
e m b e d d e d  pat terns  in Hebb ian  learning. However ,  these 
novel  " I  know" states do not  have any correspondence  to 
external  pat terns,  i.e., the novel representa t ions  are gener- 
ated based  only on the relat ion be tween  the e m b e d d e d  
patterns,  whose combinat ions  do not  have embedded  
Hebb ian  correspondences ,  e.g., C-F in the inconsistent 
condit ion.  

The  novel  "I know" representa t ion  that  is genera ted  by 
the interact ion be tween chaotic NN modules  can be consid- 



ered  as a mechanism to process various combinat ions  be- 
tween the local representa t ions  on each NN module ,  includ- 
ing nonexper ienced  ones. This result  f rom the two-module  
Nozawa model  suggests how the brain recognizes an object  
which it has not  memorized.  Thus, how the brain accepts 
inconsistent combinat ions  be tween  functional modules  can 
be explained. 

Conclusion 
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These mul t imodule  NN models  will be useful to examine 
the internal  representa t ions  of the  brain with nonl inear  cha- 
otic dynamics,  and may also provide a f ramework  by which 
to explain how the in teract ion-based bra in  works, e.g., the 
binding problem,  mul t imodal  cognition, gestalt,  and com- 
mon sense. 
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The chaotic NN mode l  shows two types of internal  repre-  
sentation,  the low-dimensional  " I  know"  states and the cha- 
otic " I  don't  know"  states. This categorizat ion plays the role 
of a novelty filter for external  inputs, as in F reeman ' s  bio- 
logical experiment .  

The  internal  representa t ions  of our chaotic model  are 
dynamic and interact  with external  inputs. Hence,  the 
"memor ies"  of the chaotic NN model  also seem to be dy- 
namic and interactive,  i.e., the memory  of a chaotic NN is 
in terpre ted  as a dynamic  process  that is generated,  de- 
stroyed, and modified, and is different  from computa t iona l  
memory  that is memorized ,  maintained,  and retr ieved.  

We also found that  o ther  "1 know"  states were genera ted  
by the interact ion be tween  chaotic NN modules.  These  can 
be in terpre ted  as novel  memories ,  and fur thermore  as novel  
functions in the NNs. This resul t  suggests that  the chaotic 
dynamics of the NNs play the role of an internal  mechanism 
to recognize unknown relat ions be tween each module ,  i.e., 
an autonomous integrator. 

To date the two-module  Nozawa model  is too abstract  to 
represent  realistic NNs in the brain. However ,  our model  
has not  made  any assumptions,  and is thus sufficiently 
simple to represent  NNs in general .  

Even  if the functional  modules  each have individual  rep- 
resentat ion,  their  in teract ion is not  always represen ted  by 
their  combination.  In  part icular ,  the internal  representa t ion  
of the NN module  which is given by the nonl inear  (chaotic) 
dynamics itself varies with the modula r  interaction.  There-  
fore, he feature  which is binding on the brain is not  consid- 
e red  to be merely  a process of combining each basic feature  
if chaotic dynamics exist universally in the NNs of the brain. 
The brain has mul t ip le  functional  modules  and sensory 
modali t ies,  and recognizes the world by integrating these 
features.  However ,  the brain cannot  experience and can 
not  learn all their  infinite combinat ions,  and we know we 
will be able to recognize some things which we are seeing 
for the very first t ime, e.g., a blue rose. Our  results give an 
explanation,  based on chaotic dynamics,  of how the brain 
constructs an internal  state by integrat ing many functional  
modules.  
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