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Abstract A principle of integrating neural network
modules based on chaotic dynamics was studied on our
two-moduled Nozawa model. Chaotic neural networks rep-
resent each embedded pattern as a low-dimensional peri-
odic orbit, and the others are shown as high-dimensional
chaotic attractors. This is equivalent to W. Freeman’s “/
don’t know” and “I know” states. In particular, we noted
that the combination of two-way inputs to each neural net-
work module conflicted with embedded Hebbian corre-
spondence. It was found that the interaction between the
modules generated a novel “I know” state in addition to the
embedded representation. Chaotic neural network modules
can autonomously generate novel memories or functions by
this interaction. The result suggests a functional integration
in neural networks as it ought to be, e.g., feature binding
and gestalt.

Key words Modularity - Chaotic neural network - Autono-
mous integration - Hebbian learning

Introduction

Functional localization with a module structure exists in the
brain as the cortical columns or areas, and a large number of
studies have been made on each individual function. Such
functional modularity is effective in several types of internal
representation, e.g., parallelization, specialization, and
combination. On the other hand, these modules should inte-
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grate functionally in order to make the brain work as an
information system. What seems to be lacking is kow to
integrate the functional modules into an information pro-
cessing system.

Several attempts have been made to develop informa-
tion processing by combining such multiple functional neu-
ral network (NN) modules." These models have been
applied as algorithms or controllers to integrate NN mod-
ules. However, the brain autonomously integrates the mod-
ules without external controls.

We have considered chaotic dynamics in NNs for inte-
grating network modules. This provides an element of
chaos in artificial and real NNs, and is different from the
usual programs, e.g., deterministic noise source, interactive
searcher, novelty filter, and so on.”® Chaotic NN modules
are able to both interact and preserve their module struc-
ture because they are destabilized by weak perturbations.
This interaction between NN modules does not always lead
to functional integration, however, although it is known that
coupling between chaotic NN modules does not hinder their
pattern recall with Hebbian learning.'""

In this article, a two-module chaotic NN model is ana-
lyzed for the case where the relation between the modules is
inconsistent with the embedded relationship.

Model
Two-module Nozawa model

A chaotic NN model was prepared in order to study the
interaction between NN modules. The Nozawa model,”
which is an artificial NN model having chaotic behavior, is
expanded from a Hopfield-type'* nonchaotic NN model by
adding a negative self-feedback connection at each neural
element. This was proved to be equivalent to a chaos neural
network model.”

A modular neural network model is defined based on the
Nozawa model to our specifications. A two-module Nozawa
model is now described based on the Nozawa model with an
external coupling term."®



pi(n+1)=F, (n){Pi(n)} (1
ale) = 1ol - Sl @

where p,(n) is an internal buffer of the i-th neuron at dis-
crete time n, and g,(n) is the control parameter of the neu-
ron i at n. T denotes the connecting weight between the j-th
and i-th neurons, and /; is the threshold value of neuron i.

In eq. 2, pi(n) is the k-th internal buffer of the external
module, and T}, is a connection weight from the k-th ele-
ment of the external module. The parameters € and M
denote the coupling ratio and the number of coupled
elements, respectively, from the external module.

The constant values (0 < r < 1) and B(>0) are given as

o

b= =T

(4)
where R corresponds to the damping constant of Hopfield’s
model, and T is the connecting weight for the negative
self-feedback (7, = —T < 0). So these constants have the
values r = 0.7, p = 0.006, T = 15 in our computational
experiments.

The conceptual diagram of the two-module NN model is
shown in Fig. 1 (N = 2). In this paper, the intermodule
coupling is restricted to one-way (flow-typed) projection, as
in Fig. 1, because of previous observations of the influences
of intermodule couplings.

Embedded memories

The NN modules of the two-module Nozawa model are
called modules I and II (see Fig. 1). Two sets of three vector
patterns were prepared for each NN module, {C,F,4} and
{C",F' 4}

The prepared sets of vector patterns were embedded
into each module using Hebbian learning.”” Hebbian learn-
ing gives the following relation with the embedding vector
patterns, which determines the value of the coupling weight
T; between the neural elements within a module.

Ty = 30V - 12y - 1) ©

s=1

Module II

Module 1

Fig. 1. Two-module (flow-type) neural network model
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where V(= {V, ..., Vil s =1, 2, 3) is the vector pattern.
Similarly, the coupling weights between the modules, 77,
are also given as

3

Ti= (Ve -

s=1

DR2vi - 1) 6)

The vector patterns for modules I and IT are written as V, =
Vi, ..., Vel and V] = {VI ..., Vi, respectively. Hence,
the intermodule coupling weight T, gives the pattern corre-
spondence between modulesland I (C = C; F o F 4 <
4"). However, these are restricted unidirectionally from

module II to module 1.

External inputs

The pattern-recalling characteristics of chaotic NN models
are well known from previous studies."®"

Without external input, a chaotic NN model recalls wan-
dering embedded patterns. Steady pattern recall is shown
with an external input which is an embedded pattern. The
Nozawa model also has the same features of pattern recall.

The external input to the two-module Nozawa model is
given in eq. 7 to the threshold [; of eq. 2 according to the
simple Nozawa model."”

0.08T fork, =0
I, = 30.09T for k; = “nothing” ()
0.10T fork; =1

Let the 16-dimensional input vector pattern be K = {k,,
ky, ..., kig}. These constants (=0.09) indicate the control
parameter g,(n) where T; = T} = 0in eq. 7. The external
input /; is given so that g,(n) stays near the chaotic param-

eter region.

Inconsistent condition

In the two-module Nozawa model, this intermodule cou-
pling does not hinder the pattern recall process of the NN
modules as long as the embedded Hebbian correspondence
is kept between each NN module.""

We now focus attention on the more interesting case of
the intermodule coupling condition where the two-module
Nozawa model does not have embedded Hebbian corre-
spondence with an external input pair, e.g., module I has an
external input C and module II has F’. Such cases have an
inconsistent condition as regards embedded Hebbian corre-
spondences. The inconsistent condition shown in Fig. 2 will
now be examined.

C\ ’F,

Fig. 2. Inconsistent condition (C-F")
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Fig. 3. Internal states of the NN module (g,~¢,)- a External input C.
b No external inputs

Internal dynamics
“I know”, “I don’t know” states

Figure 3 shows a projection of the internal dynamics with
the variables g, and gz at module I. The internal dynamics of
a chaotic NN module are broadly divided into two types.
Each embedded pattern is represented as low-dimensional
periodic orbit (Fig. 3a), and the other cases are shown as
high-dimensional chaotic orbits (Fig. 3b). The periodic or-
bits that indicate each embedded pattern are rather un-
stable, and change to chaotic behavior, as in Fig. 3b, owing
to external or infermodule input in the absence of Hebbian
correspondences.

These two types of internal dynamics in the chaotic NN
module agree well with the role of “novelty filter” which is
claimed by W. Freeman, based on the rabbit’s olfactory
EEGs. The low-dimensional attractor (Fig. 3a) means the “/
know” state for the embedded memories, and the chaotic
attractor (Fig. 3b) indicates the “I don’t know” internal
state.

The influence of intermodule coupling

In the inconsistent condition (Fig. 2), the two-module
Nozawa model also shows “I know” states for the embed-
ded patterns C and F on module 1 with extreme
intermodule coupling parameters.

The two-module Nozawa model has two parameters, M
and &, for the strength of intermodule coupling (in eq. 2). M
is the number of intermodule coupling elements, and ¢ is the
intermodule coupling ratio. When there are no intermodule
couplings (M = 0, ¢ = 0.0), a NN module is equivalent to a
one-module Nozawa model. Then, the internal dynamics of
module I obey an external input, i.e., they indicate an em-
bedded pattern C. In the other extreme case when the mod-
ules connect with the strongest parameters (M = 16, ¢ =
1.0), module I has exactly the same intermodule inputs as
module II, i.e., they indicate an embedded pattern F. Both
extreme cases show the low-dimensional “I know” states.

However, these will be destroyed in spite of their weak
intermodule coupling because these embedded limit cycles
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Fig. 4. Bifurcation map of ¢, with external connection weight e; M = 3

are unstable, as mentioned before. Hence, intermodule cou-
plings having no Hebbian correspondence give a chaotic
“I don’t know” state in almost all the M—e parameter space.
The NN modules cannot recognize the input pairs which do
not satisfy the embedded Hebbian correspondences. Gen-
erally, only embedded internal states with Hebbian learning
(eq. 5) are recognized by way of their low-dimensional
“I know” states in chaotic NN modules, and others are
classified as “I down’t know” high-dimension chaotic
attractors.

Generating novel memories by intermodule couplings

In the two-module Nozawa model, it was found that
intermodule couplings not only gave chaotic “I don’t know”
states, but also generated a few novel low-dimensional “/
know” states. These novel “I know” states were observed in
inconsistent conditions.

Figure 4 shows a bifurcation map of the internal buffer g,
with the parameter e. Low-dimensional internal states
(novel “I know” states) appear as the windows over the
bifurcation structure, and innumerable windows are shown.
However, almost all the windows are limited to a very nar-
row region of intermodule connection weight €, and cannot
stably exist in opposition to the fluctuation of €. In Fig. 4, a
low-dimensional “I know” state whose parameter region €
is near 0.5 is the only stable state.

The low-dimensional periodic orbit which appears over
the bifurcation structure can be regarded as an novel inter-
nal representation that means “J know” in the same sense as
embedded patterns in Hebbian learning. However, these
novel “I know” states do not have any correspondence to
external patterns, i.e., the novel representations are gener-
ated based only on the relation between the embedded
patterns, whose combinations do not have embedded
Hebbian correspondences, e.g., C-F in the inconsistent
condition.

The novel “I know” representation that is generated by
the interaction between chaotic NN modules can be consid-



ered as a mechanism to process various combinations be-
tween the local representations on each NN module, includ-
ing nonexperienced ones. This result from the two-module
Nozawa model suggests how the brain recognizes an object
which it has not memorized. Thus, how the brain accepts
inconsistent combinations between functional modules can
be explained.

Conclusion

The chaotic NN model shows two types of internal repre-
sentation, the low-dimensional “I know” states and the cha-
otic “I don’t know” states. This categorization plays the role
of a novelty filter for external inputs, as in Freeman’s bio-
logical experiment. '

The internal representations of our chaotic model are
dynamic and interact with external inputs. Hence, the
“memories” of the chaotic NN model also seem to be dy-
namic and interactive, i.e., the memory of a chaotic NN is
interpreted as a dynamic process that is generated, de-
stroyed, and modified, and is different from computational
miemory that is memorized, maintained, and retrieved.

We also found that other “7 know” states were generated
by the interaction between chaotic NN modules. These can
be interpreted as novel memories, and furthermore as novel
functions in the NNs. This result suggests that the chaotic
dynamics of the NNs play the role of an internal mechanism
to recognize unknown relations between each module, i.e.,
an autonomous integrator.

To date the two-module Nozawa model is too abstract to
represent realistic NNs in the brain. However, our model
has not made any assumptions, and is thus sufficiently
simple to represent NNs in general.

Even if the functional modules each have individual rep-
resentation, their interaction is not always represented by
their combination. In particular, the internal representation
of the NN module which is given by the nonlinear (chaotic)
dynamics itself varies with the modular interaction. There-
fore, he feature which is binding on the brain is not consid-
ered to be merely a process of combining each basic feature
if chaotic dynamics exist universally in the NNs of the brain.
The brain has multiple functional modules and sensory
modalities, and recognizes the world by integrating these
features. However, the brain cannot experience and can
not learn all their infinite combinations, and we know we
will be able to recognize some things which we are seeing
for the very first time, e.g., a blue rose. Our results give an
explanation, based on chaotic dynamics, of how the brain
constructs an internal state by integrating many functional
modules.
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These multimodule NN models will be useful to examine
the internal representations of the brain with nonlinear cha-
otic dynamics, and may also provide a framework by which
to explain how the interaction-based brain works, e.g., the
binding problem, multimodal cognition, gestalt, and com-
mon sense.
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