
Artif Life Robotics (2003) 7:124-131 �9 ISAROB 2003
DOI 10.1007/s10015-003-0246-8

A n t h o n y J. Hirs t �9 Je f f rey J o h n s o n �9 M a r i a n P e t r e
B l a i n e A . Pr i ce �9 M i k e R i c h a r d s

What is the best programming environment/language for teaching robotics
using Lego Mindstorms?

Received and accepted: May 16, 2003

A b s t r a c t We are in the process of producing a range of
educat ional mater ia ls to teach robotics to a variety of au-
diences using the L E G O Mindstorms Robot ics Invent ion
System. We briefly review the programming environments
current ly available, and consider how appropr ia te they are
for each of our candidate audiences. There is the usual
t rade-off be tween ease of use and power. It is suggested
that no single programming environment is suitable for all
audiences. Instead, a progression of environments from
microworlds, through graphical p rogramming environ-
ments, to textual languages seems to provide the best way to
develop our teaching.

K e y w o r d s Programming educat ion �9 Robot ics educat ion �9
Progressive disclosure �9 Microworlds

Introduction

Robot ics has been shown by a number of researchers to be
motivat ing and beneficial in teaching science and technol-
ogy. 1 W e bel ieve that robots are a powerful way to mot ivate
learning. The construction and programming of robots uses
a wide range of scientific and engineering principles, which

A.J. Hirst (~)
Department of Telematics, The Open University, Walton Hall,
Milton Keynes MK7 6AA, UK
Tel. +44-1908-652789; Fax +44-1908-653658
e-mail: a.j.hirst@open.ac.uk

J. Johnson
Department of Design and Innovation, The Open University, Milton
Keynes, UK

M. Petre �9 B.A. Price �9 M. Richards
Department of Computing, The Open University, Milton Keynes,
UK

This work was presented in part at the 7th International Symposium on
Artificial Life and Robotics, Oita, Japan, January 16-18, 2002

are key skills in the modern technological economy. 2 This
range of skills necessitates teamwork, planning, and record
keeping.

We have taught subjects re la ted to robotics for many
years, and are beginning to formulate a new robot ics cur-
riculum. In col laborat ion with the in ternat ional RoboFes t a 3
and R o b o C u p 4 movements , we are engaged in a p rogram to
teach robot ics in schools as well as in this university. Previ-
ous exper ience with L E G O - b a s e d teaching mater ia ls has
made us well disposed toward the L E G O Mindstorms
Robot ics Invent ion System as a possible hardware pla t form
for robotics, engineering, and computing courses in school-
and undergraduate- leve l teaching. A n inevi table question
is: What is the best programming environment and language
for teaching robotics using Lego Mindstorms?

Given the depth and b read th of things that we in tend to
teach using Mindstorms, f rom simple programming to engi-
neering principles and simulation, and given the range of
audiences we intend to serve, from young children to ma-
ture universi ty students, the language issue is both complex
and crucial. Because the large-scale product ion of good-
quali ty teaching mater ia ls is expensive, the issue has eco-
nomic as well as pedagogic ramifications.

To a cer tain extent, the choice of envi ronment is further
complicated by the functionali ty required of the R C X brick
itself. Different PC-based programming environments ex-
pose the actual R C X brick hardware to varying degrees of
complexity. For a general course on programming, this is
not usually an issue. However , if the aim is to teach low-
level control, or interfacing techniques, then this factor
must be considered.

The way in which the user will be required to interact
with the robo t is also an impor tan t considerat ion. For ex-
ample, it is possible to download a p rogram to a robot so
that it runs autonomously. However , it is also possible to
control the robot via an infrared tether, in which case a
control p rogram may be run on a host PC, issuing com-
mands and receiving sensor data via the I R link. For
science-based activities, where the robot is used as a data-
logging platform, it may be desirable ei ther for the robot to
collect a batch of da ta before a host PC polls it and uploads

the data, or alternatively the data logger may return data to
the host PC continuously.

In this paper, we are not concerned with the division
between environment and language, and we give both the
terms language and environment a wide interpretation. For
example, we treat a drop-and-drag environment for creat-
ing code as a "language" in the same way as a conventional
textual language within an editing environment.

This paper is a synthesis of our research and analysis to
date. We do not at tempt to give a definitive answer to the
question at this stage, and we invite readers to contribute to
the discourse,

What are we teaching, to whom, and why?

There is currently a widespread appeal of robotics to adults
and children of both sexes. This is evident in the success of
television programmes featuring robots, and the growing
number of robot competitions. We have broad educational
aspirations, and would like to harness the interest and en-
thusiasm of all groups in this audience for wider educational
purposes. The programming environment- language choice
must accommodate those we are teaching, what we are
trying to teach them, and our deeper educational aims.

To whom are we trying to teach?

- Young children, less than 10 years old.
- School children, 10-18 years old.
- University students, 18+ years old.
- Adults in life-long learning.
- Teachers who are learning to support students.

The breadth of this list complicates the choice of en-
vironment and language. Al though we assume that some
students will commence our courses as novices to robotics,
the assumptions we can make about existing skills, speed of
learning, and appropriate conceptual level will differ among
groups. The needs of newly literate children are different
from those of highly literate university students, which are
different again from the needs of mature students returning
to education. This suggests that there is no one perfect
programming environment. Our goal must be pragmatic: to
serve as many students as possible while making the best
use of our resources.

What are we trying to teach and why?

Our plan is twofold:

- to teach robotics (and in particular, programming as it
relates to robot control) per se;

- to use robotics as a springboard to further motivate learn-
ing in a variety of subject areas.

Robotics itself is multidisciplinary, encompassing subjects
such as mechanical engineering, electronics, control, com-

125

munication, vision, real-time parallel computing, and sys-
tems design. All these are relevant in our teaching.

Robotics is also a vehicle for developing key skills (e.g.,
teamwork, critical thinking, planning, scientific observation,
and record keeping), for reinforcing skills in elementary
physics, mathematics, and numeracy, and for introducing
advanced concepts in simulation, artificial intelligence (A1),
and cognition. There is an increasing emphasis on using
robotics to support science activities, for example by pro-
viding programmable (and often mobile) data-logging
platforms.

Furthermore, robots raise profound questions about our
relationship with advanced technologies and their potential
that allow us to address ethical and social issues surround-
ing technology use.

Using robots to bridge the gulf between concept
and practice

Traditional methods of teaching computing tend to be
abstract, and students often have difficulties in reasoning
about program behavior and recognizing the relevance of
their activities. The trouble is that general-purpose lan-
guages are complex, in order to afford the necessary rich-
ness to the programmer. Unfortunately for the novice, this
often means you need to k n o w a lot to do a little.

Many languages require the user to type in a large
amount of syntactically obscure programming code to pro-
duce relatively trivial results. Either students have t o learn
the syntax before they can write any programs (which is
frustrating), or they have to enter code that is effectively
meaningless to them. A n alternative approach is to use a
graphical programming environment.

There are several advantages to teaching programming
(within the context of robot control) using a tailored envi-
ronment that provides strong visual cues and supports
syntactic correctness. For example, this approach:

- i s concrete, since students program things they can
handle, to behave in ways they can observe in the physi-
cal world;

- is incremental;
- is creative;
- admits of many solutions;
- allows manipulation within a constrained context;
- provides immediate feedback;
- has behavior (and thus encourages

anthropomorphization);
- uses a variety of skills;
- allows complete novices to create interesting outcomes

(e.g., "go collect a tennis ball" rather than "print 'Hello,
world' ").

Our experience so far is that programming with robots
helps learners to bridge the gap between concept and prac-
tice, and to derive principles for themselves from their own
experience.

126

Robots are appealing

The appeal of robots is evident in the success of television
programmes featuring robots, such as R o b o t W a r s and
T e c h n o G a m e s in the UK, that attract large audiences across
a wide range of ages. For over 75 years, robots have been
a staple of popular culture. Recent films such Steven
Spielberg's A . L have stimulated popular debate about the
potential of robotics, and the debut of the Sony AIBO has
attracted substantial media attention. Competitions involv-
ing robots are popular with participants and audiences
alike. Robots are attractive to adults and children of both
sexes.

How will students study what we teach?

- Supported distance learning.
- Classroom lesson.
- Extracurricula school clubs.
- Family learning/self-help groups.
- Independent exploration.

Multiple disciplines, multiple audiences, multiple learning
modes; all of these mean that our choice of programming
environment is sufficiently complex that there is unlikely to
be a single solution. Instead, we might ask: what is the best
p r o g r e s s i o n of environments and languages for teaching
robotics using Lego Mindstorms?

The system context

The RCX brick

Programming the Mindstorms processor br ick (the RCX
brick) as supplied requires a standalone computer where
code is composed, edited, and compiled. The compiled code
is downloaded to the brick, where it executes using a small
operating system implemented as the brick's f i r m w a r e .

Early releases of Mindstorms for the consumer market
(such as the Robotics Invention System (RIS) version 1.5)
were shipped with three integrated software components.

- F i r m w a r e that can be downloaded to the microcontroller
at the heart of the brick. This firmware implements a
virtual machine that will run bytecode downloaded from
a host machine (a disassembly of the original firmware is
also availableS).

- A n A c t i v e X con t ro l (the Spirit OCX) that can be used as
component-ware on an external host machine to write
programs that can be downloaded to run on the brick, as
well as sending direct commands to the brick running the
Lego firmware. Technical documentation released by
Lego as SDK1 describes the functions provided by the
Spirit OCX. Since this component is no longer available,
an open-source replacement has recently appeared. 6

- A graph ica l p r o g r a m m i n g l a n g u a g e - e n v i r o n m e n t (RCX
code) that uses a Lego block metaphor to construct pro-
grams out of small functional units.

The most recent release (RIS 2.0) provides a richer
graphical programming environment that uses a subset of
a textual programming language, the Lego PBrick script
code, as well as an improved version of the firmware. Tech-
nical documentation for the Lego script code is available as
part of SDK2. Programs are generated and saved from the
graphical environment as script code programs, which
means that as users increase in programming confidence,
they can move seamlessly from the graphical environment
to a text-based one. The script code is then compiled to a
bespoke byte code assembly language, the Lego assembler
language (LASM), which runs directly on the virtual
machine implemented by the Lego firmware. It is possible
to author programs directly in LASM if required. The ocx
component has also been replaced by the VPBrick COM
server, which can be reused within custom-built program-
ming environments.

For the educational market, Lego produce RoboLab,
which is implemented using LabView and uses the LabView
programming metaphor, specifically wiring functional
blocks together. The idea of progression is supported within
the RoboLab environment. A Pilot phase, for beginners,
uses a highly constrained environment in which users can
create linear programs from a small number of functional
blocks (for example, turn motor on/off, wait for a particular
sensor report). An Inventor phase offers a more flexible
graphical environment which supports a far richer medium,
including various forms of control flow, multitasking, and
variable manipulation. Different levels within the Inventor
area offer the same programming metaphor, but control
the amount of functionality available to the programmer.
Although a textual representation of the program can be
viewed, it is not possible for the student to author this code
directly.

The programming environments run almost exclusively
on the user's computer, although there are exceptions.
For example, the leJOS On-Board Programmer 7 uses the
RoboLab Pilot metaphor to allow users to program the
brick directly from the buttons on the brick itself. Typically,
the PC-based programming environments allow users to
compose, edit, and compile code, which they then download
to the brick to run on the firmware. The firmware shipped
with the brick imposes limitations on the types of command
that may be executed and on the number of variables avail-
able, for example, as well as tying the user into a proprietary
product. However, replacement firmware can be down-
loaded to provide different functionality. Indeed, there is a
very active community of open-source developers produc-
ing a. wide variety of packages for use with the RCX brick.
As a result, choosing a particular programming environ-
ment may require downloading new firmware.

Hardware and operating system choice

The Open University (OU), which specializes in distance
education on a global basis, specifies the so-called Wintel
machine for its students. For better or worse, this policy is
based primarily and pragmatically on the fact that some

90% of our students have this hardware-software platform,
and it is easier to support a single platform from a generic
help-desk servicing hundreds of thousands of students
world-wide.

Given this hardware default, the operating system is vir-
tually a fait accompli. The obvious contenders are variants
of Windows and Unix (Linux or Macintosh System X). The
O U ' s commitment to being as open and inclusive as possible
contradicts a one-platform approach. Therefore, a language
solution that is platform or OS "agnostic," such as Java,
would receive special consideration.

Using traditional programming languages

If the aim is to teach a traditional programming language
using a familiar environment but in the context of robotics,
this can be achieved in a variety 6f ways. For example, a
program may be written in a particular language and then
compiled into a raw form that can be run on the brick's
microcontroller directly. An example of this approach is
given by brickOS (formerly known as legOS), which pro-
vides a set of C libraries that implement core functionality
(motor and sensor drivers, for example). These libraries can
be included in a vanilla C program, which can then be cross-
compiled down to the RCX brick.

Alternatively, some replacement firmware can be down-
loaded to the brick, and then a language can be compiled
to run on this virtual machine, leJOS provides a compact
implementation of a Java virtual machine (JVM), and a set
of useful robotics-related Java classes. These classes can be
included in a native Java program, which can compiled to
run on the JVM implemented on the RCX.

A third approach makes use of the functionality pro-
vided originally by the Spirit.ocx component, and more
recently by the VPBrick API. In this case, the component
provides functionality that allows the user to communicate
with the brick, and write and download programs to it. For
example, this extra functionality can be straightforwardly
embedded within a Visual Basic or Visual C program. Many
of the earlier programming environments adopted this ap-
proach as a way of creating the environments themselves.

Choosing a programming environment

Our experience in teaching computing, 8'9 and the current
trends in software engineering and AI, give us some general
guidance in terms of desirable characteristics for program-
ming environments/languages.

A n object-based approach would support and integrate
with our existing curriculum, and is now considered the
basis of sound software engineering. Object-oriented pro-
gramming also makes it easy to represent and present com-
plex behaviors to novices. 8 We emphasize the importance of
providing software which is suitable for novices. Any pro-
gramming environment for novices must be robust: it
should behave reliably and consistently, and it must not
crash. Errors if they appear at all, must be meaningful.

127

The human-compute r interaction, end-user program-
ming, and visual programming literatures give us some
guidance about relevant concepts in language selection, as
described below.

Separation of domain manipulation f rom programming
per se

Microworlds are an educational tool, originally developed
by the MIT Logo Group, that allow students to explore and
manipulate a domain in a controlled way. 1~ The user can
manipulate data or phenomena in the microworld through
GUI devices such as push buttons and fill-out boxes, and see
the subsequent changes reflected on the screen.

In effect, users are "programming" the microwortd (al-
beit only to the extent of combining operations and manipu-
lating program parameters), but the syntax and structure of
the language are hidden under the interface. Hence, the
implementation is hidden, and users can concentrate on
the domain concepts, independently of the implementation
language. Moreover, users can learn fundamental program-
ming concepts that generalize across languages without
having to learn language syntax (cf. Soloway's 11 environ-
ment, which is designed to allow high-school students to
program by combining conceptual units or "plans" rather
than in a programming language).

The types of concept that can be learned from such an
environment include:

- that algorithms can be used to solve problems;
- that solutions can be decomposed into relatively small

components;
- that most tasks can be accomplished by using sequence,

iteration, choice;
- object concepts.

Microworlds have been used in the entry-level Open
University course Computing: An Object-Oriented Ap-
proach to teach the concepts behind object-oriented (OO)
technology. In an early example, the students are able to
send messages to an on-screen frog, telling it to hop left,
right, up, or down, setting its colour, and so on. In later
lessons they create subclasses of frogs with some inherited
properties and some novel properties particular to that
subclass.

Simulation: separation of control logic from
physical control

Simulation is a method which is commonplace in the field of
autonomous mobile robots for working out and testing con-
trol strategies in isolation from the physical system. Ideally,
the same program drives both the simulator and the robots.
Although simulations are often different from real systems,
simulators allow ideas to be tested, and they are good for
detecting bugs when the vagaries of real machines in real
environments are not available. This is pertinent to
Mindstorms, where the performance of individual sensors
and motors may vary. The effects of physical variations can

128

be addressed when the logic of the program and its imple-
mentation are correct. Although various RCX simulators
are available, we do not feel that they are stable enough for
student use at the present time.

Direct manipulation

Students using our "frogWorld" are only introduced to
the implementation language (in this case Smalltalk)
after fully exploring the microworld. By then, they should
have a firm grounding i n the concepts and be able to see
how they are applied in a more conventional programming
interface. 8

An important characteristic of the microworlds approach is
the direct manipulation of screen objects, without the impo-
sition of linguistic devices or explicit syntax. Hutchins et al. ~2
believe that with direct manipulation, novices can learn
basic functionality quickly, experts can work extremely
rapidly to achieve complex ends, and users can see immedi-
atel 5 if their actions are furthering goals. Hence, direct
manipulation is seen as highly desirable, characterized by
the provision of rapid, incremental, reversible operations
whose impact on the object of interest is immediately
evident. 13

Layering: progressive disclosure

A generalization of the microworlds approach is the "direct
manipulation programming environments" (e.g., the Alter-
native Reality Kitl4'lS), which provide both a domain-level
representation (e.g., a microworld or a control surface) and
an underlying code representation. A key advantage of lay-
ering is that it is possible for the user to build their concep-
tual model through interaction with the microworld (i.e., in
a controlled environment), and hence not get near the un-
derlying syntax until they have a well-established model of
the domain.

This sort of "layered" approach, which provides a
gradual revelation of functionality, so that the user can have
the simplest environment tha t meets their immediate needs,
but expose more functionality as needed, has long been
espoused. 16a7 It has been incorporated into some of the most
effective programming environments for novices and
young users, such as Repenning's AgentSheets, ~s a system
which also allows users to move from a simple, accessible
graphical environment to a textual environment when
more sophistication and precision is required. AgentSheets
has been used to create a rule-based programming environ-
ment - LEGOshee ts - as a forerunner to the Lego RCX
brick, MIT 's Programmable brick. To our knowledge, no
version of LEGOsheets has been produced for the RCX
brick) 9

Layering is also supported to a limited extent by the
RCX SDK2, which introduced the Mindscript language.
One apparent intention behind this language was to allow
users to see a script language version of the programme
produced using the graphical RCX language.

The BricxCC control centre (formerly RcxCC), an editor
originally developed to support nqc programming, uses
layering to reveal the compiled LASM byte code generated
from a particular nqc program. The BricxCC also offers
support for a range of programming environments (lejos,
brickOS, nqc, lsc), and as it matures it looks like a strong
candidate for a layered, textual programming IDE.

Readership

Graphical environments are seen as accessible and fun, and
direct manipulation potentially reduces the need for text
generation, which may be problematic for newly literate
children. Yet graphical environments have associated issues
of readership, 2~ such as:

- significant limits on the number of elements that fit on a
screen;

- discriminability of graphical elements;
- t h e need to develop effective reading or inspection

strategies;
- the difficulty of indexing into the code, of searching for

and identifying desired graphical entities;
- scalability;
- the importance of an effective graphical editor.

Criteria for choice

We derived a list of criteria for language selection. Our
primary concern has been an entry-level university course.
However, we also wish to reuse materials for use in schools,
and to support students in competitions such as RoboFes ta
and RoboCup. Hence, the detailed decisions refer to
university level, but the higher-level decisions (e.g., OO,
layering, multimode environments) are meant to generalize
across our diverse audience.

Relevant criteria for selecting a language include:

- e a s e of understanding and use (and suitability for
novices);

- rapid development;
- scalability (from simple programs to complex systems);
- general-purpose programming;
- convenient control of physical devices;
- robustness;
- support for maintenance;
- cost;
- c o m p a t i b i l i t y with existing course and curriculum

decisions;
- ease and cost of updating;
- longevity.

Comparison of RCX programming environments

From its first release, Lego Mindstorms proved very popu-
lar with the technically sophisticated hobbyist community.
Faced with the limited power of the standard RCX pro-
gramming environment described above, several people

129

Table i. A comparison of first generation Mindstorms programming environments

Summary

Package Language Requires LEGO fw Novice Low cost CS Power Development environment
type (--)Y (partially) applicable

RCX language Custom graphical VPB Y Y (Y) Drag-and-drop, plug together
(Lego) program blocks

Robolab Custom graphical Y Y ? Y Drag-and-drop, wire together
(Labview) program blocks, supports

communication between bricks
MindScript Script language VPB Y Y Y Text editor

LASM Byte-code VPB Y Y Y Text editor
Brick command Spirit commands OCX Y y Syntax checking text editor

Gordon's brick Spirit commands OCX Y y Drag-and-drop editor
programmer

BotCode Resembles O CX Y Y Syntax checking text editor
Spirit commands

Pro-Bot Resembles OCX Y Y - Y Text editor
Spirit commands

Finite-state Resembles OCX Y Y Y Dialogue
machine Spirit commands

Visual Basic Visual VPB Y Z y Y Microsoft Visual Studio
Basic (using

VPB API)

Visual C Visual C (using VPB Y - Y Y Microsoft Visual Studio
VPB API)

JavaScript (using embedded OCX Y Y Preferred editor
ActiveX
control)

Bot-Kit Dolphin OCX Y - Y Y Y - Y Language-sensitive text editor
Smalltalk

nqc C-like Y Y Y Language-sensitive, visual
editor available (Bricxcc)

Ada Ada nqc Y Y Y Y Language-sensitive editor
legOS/brickOS C gcc Y Y Preferred editor
librcx C gcc Y Preferred editor
leJOS Java JDK Y Y Y Preferred editor (visual

interface available)
pbForth Forth Y Y Console
MIT YBL Logo Y Y Console
TinySoar Soar brickOS Y Preferred editor
legolog Prolog prolog, nqc Y Y Y Preferred editor

Legend
Requires
Lego fw
Novice

Low cost
CS
Power

OCX = Spirit OCX; VPB = VPBrick component; JDK = Java Developer's kit; gcc = cross-compiler
Does the programming language use the Lego firmware?
Is the language suitable for novice users, incorporating direct-manipulation, layered functionality, multi-mode

environment (graphical and textual), robustness?
Is the programming language cheap to buy?
Is the language suitable for teaching principles of computer science?
Is the language powerful enough for advanced students to create complex systems?

c r e a t e d t h e i r own. M a n y m a d e u s e of t he A c t i v e X c o m p o -
n e n t a n d t he L e g o f i r m w a r e p r o v i d e d , b u t s o m e a p p r o a c h e s
led to t he c r e a t i o n of n e w f i r m w a r e in t he f o r m of s o f t w a r e
l ib ra r i e s t h a t cou ld b e l i n k e d i n t o " t r a d i t i o n a l " p r o g r a m -
m i n g l anguages . T a b l e 1 gives a s u m m a r y of t h e m o s t p o p u -

lar c o m m u n i t y - s o u r c e d p r o g r a m m i n g e n v i r o n m e n t s , a n d
T a b l e 2 gives t h e i r avai labi l i ty .

Conclusions

W e b e l i e v e t h a t r o b o t i c s is a su i t ab l e veh ic le for t e a c h i n g
a wide r a n g e of s t uden t s , n o m a t t e r w h a t t h e i r age or
b a c k g r o u n d . T h e L e g o M i n d s t o r m s ki t is an a p p r o p r i a t e
low-cos t so lu t ion . E v e n t h o u g h o u r w o r k c o m p a r i n g pro-

130

Table 2. Sources of Mindstorms programming environments

Package URL

RCX language/
Mindscript/LASM

Robolab
Brick command
Gordon's brick

programmer
BotCode
Pro-Bot
Finite-state machine
Bot-Kit
nqc
Ada
legOS/brickOS
librcx
leJOS
pbForth
MIT YBL
TinySoar
legolog
BrainStorm (Logo)

http://mindstorms.lego.com/eng/community/resources/default.asp

http://www.ceeo.tufts.edu/Robolab/
http://www.geocities.com/Area51/Nebula/8488/lego.html
http://www.umbra.demon.co.uk/gbp.html

[http://www.workshop3d.com/rcx/botcode.htm]
http://mapageweb.umontreal.ca/cousined/lego/4-RCX/PRO-BOT/
http://www.idi.ntnu.no/-petrovic/fsm
http://www.object-arts.com/Bower/Bot-Kit/Bot-Kit.htm
http://www.baumfamily.org/nqc/
http://www.usafa.af.mil/dfcs/adamindstorms.htm
http://brickos.sourceforge.net/
http://graphics.stanford.edu/-kekoa/rcx/tools.html#Librcx
http://lejos.sourceforge.net
http://www.hempeldesigngroup.com/lego/pbFO RTH/index.html
http://el.www.media.mit.edu/projects/ybl
http://tinysoar.sourceforge.net/rcx.html
http://www.cs.toronto.edu/cogrobo/Legolog/
Archived at http://robofesta.open.ac.uk/RCXprog

gramming environments/languages for Mindstorms is in-
complete, the investigations to date allow us to draw provi-
sional conclusions.

First, Mindstorms robotics provides an opportunity to
offer a microworld that bridges the gap between computing
abstractions and real-world activity. Well-designed micro-
worlds and simulations are useful teaching methods, provid-
ing a low-risk, controlled environment in which to learn and
develop a firm footing for further learning. Using such sys-
tems fosters confidence in using skills as well as teaching
those skills.

More advanced microworlds, in which the user can see
genuine program code being constructed and executed, are
excellent primers to advanced computer programming with
integrated development environments.

Second, although a wide range of programming environ-
ments has been created for the Mindstorms brick, none ful ly
meets our requirements f o r an introductory course. With the
exception of RoboLab, none of the graphical environments
is powerful enough for students to continue to advanced
work. The minimalist textual environments (text editors
and command-line compilers) are not robust or suppor-
tive enough for a novice - especially a young novice - to use.

Finally, we conclude that we need to take a progressive
approach, starting with a custom-built, graphical,
microworld-based system, and later moving to a more so-
phisticated programming environment.

The microworld-based system would introduce concepts
and simple programming in a language-independent,
object-based methodology, would use progressive disclo-
sure (e.g., a pseudocode view linked to the microworld
view) to help students map between domain actions and
code, and would serve as a bridge to a more traditional
programming environment such as one of those reviewed.

References

1. Beer RD, Chiel HJ, Drushel RF (1999) Using autonomous robot-
ics to teach science and engineering. Commun ACM 42(6):85-99

2. Wasserman E (2002) Why industry giants are playing with Lego.
Fortune 144(10):101-106

3. RoboFesta and RoboFesta-UK. http://www.robofesta, net, http://
www.robofesta-uk,org

4. Robo Cup. http://www.robocup.org
5. RCX hurdware internals and lirmware disassenbly, http://graphics.

stanford.edu/~kekoa/rcx/
6. Opensouree replacement for Spirit Active X Component. See the

phantom.dll at http://21405.gel.ulaval.ca/fichiers/
7. RCX brich on-board programming environment, http://robofesta.

open.ac.uk/OBP
8. Griffiths R, Holland S, Woodman M, et al. (1999) Separable UI

architectures in teaching object technology. Proceedings of the
30th International Conference on Technology of Object-Oriented
Languages and Systems, Tools USA '99, Santa Barbara, IEEE
Computer Society, Washington DC, pp 290-299

9. Woodman M, Griffiths R, Robinson H, et al. (1998) An object-
oriented approach to computing. Proceedings of the ACM Confer-
ence on Object-Oriented Programming, Systems and Languages,
OOPSLA '98, Vancouver, ACM Press, New York

10. Papert S (1980) Mindstorms, children, computers and powerful
ideas. Basic Books, New York

11. Soloway E (1986) Learning to program = learning to construct
mechanisms and explanations. Commun ACM 29:850-858

12. Hutchins E, Hollan J, Norman D (1986) Direct manipulation inter-
faces. In: Norman D, Draper S (eds) User-centred system design.
Lawrence Erlbaum, London, pp 87-119

13. ScJmeiderman B (1982) Designing the user interface, 2nd edn.
Addison Wesley, Reading

14. Smith R (1987) Experiences with the Alternate Reality Kit: an
example of the tension between literalism and magic. Proceedings
CHI + GI 87, ACMPress, New York, pp 61-67

15. National Instruments Labview solfware, http://www.natinst.com/
labview

16. Carroll JM, Carrithers C (1984) Training wheels in a user interface.
Commun ACM 27(8), 800-806

17. Carroll JM (1987) Minimalist design for active users (enhancing
system usability). Readings in HCI: a multi-disciplinary approach.
Morgan-Kaufmann, Los Altos, pp 621-626

18. Repenning A (2000) AgentSheets: an interactive simulation envi-
ronment with end-user programmable agents. Interaction 2000,

Tokyo. Available from http://www.cs.colorado.edu/-ralex/papers/
PDF/Interaction2000.pdf

19. Gindling J, Ioannidou A, Loh J, et al. (1995) LEGOsheets: a rule-
based programming, simulation and manipulation environment
for the LEGO programmable brick. Proceedings of the Visual

131

Languages Conference (Darmstadt). IEEE Computer Society
Press, Silver Spring, pp 172-179

20. Petre M (1995) Why looking isn't always seeing: readership skills
and graphical programming. Commun ACM 36(6):3344

