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Abstract. Consider the problem of estimating 0 = O(P) based on data x, 
from an unknown distribution P. Given a family of estimators T,,~ of 
O(P), the goal is to choose fl among fle I so that the resulting estimator is 
as good as possible. Typically, fl can be regarded as a tuning or 
smoothing parameter, and proper choice of fl is essential for good 
performance of T,,p. In this paper, we discuss the theory of fl being 
chosen by the bootstrap. Specifically, the bootstrap estimate of fl, ]~,, is 
chosen to minimize an empirical bootstrap estimate of risk. A general 
theory is presented to establish the consistency and weak convergence 
properties of these estimators. Confidence intervals for O(P) based on 
T~,#. are also asymptotically valid. Several applications of the theory are 
presented, including optimal choice of trimming proportion, bandwidth 
selection in density estimation and optimal combinations of estimates. 

Key words and phrases: Bandwidth selection, bootstrap, confidence 
limits, density estimation, risk function. 

1. Introduction 

The bootstrap, first introduced by Efron (1979), is a general powerful 
technique predominantly used to estimate the sampling distribution of a 
statistic or an approximate pivot in order to construct confidence regions 
and hypothesis tests. Little theoretical attention has been given to other 
potential uses of the bootstrap, though Beran (1986) explored the bootstrap 
in the context  of  estimating the power of a test, and he mentions the 
possibility of choosing among different test statistics by taking the one with 
the largest estimated power. A relatively unexplored area of great potential 
use of the bootstrap is the estimation of risk functions of various esti- 
mators, with the goal of choosing the estimator with the best risk proper- 
ties. Hall and Martin (1988) consider using the bootstrap to determine a 
shrinkage parameter  in estimates of location based on an L 1 loss function. 
In this paper, we develop a general f ramework in which to establish 
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fundamenta l  consistency and weak convergence results of est imators 
obtained by minimizing an empirical boots t rap estimate of risk over a 
given class of estimators. 

To develop the problem, given data  xn f rom an u n k n o w n  distr ibution 
P on a sample  space S, the problem is to estimate and construct  a 
confidence region for some unknown  quanti ty O(P). Although not neces- 
sary, assume now that  0 ( . )  is real-valued. The dis tr ibut ion P is u n k n o w n  
and is assumed to belong to a family P of distributions. Let {Tn,p: f l e  I} be 
a class of estimators based on xn indexed by fl in L The fundamenta l  
p roblem addressed in this paper is how to choose fl so that  the resulting 
es t imator  is best among the given class. In general, fl may be though t  of as 
a tuning parameter ,  smoothing parameter ,  complexi ty parameter ,  etc. 
Given a loss funct ion l, and some sequence of norming  constants  rn, the 
risk of using Tn,p as an estimator of O(P) is 

(1.1) Rn(~, P)  = Ee{l[rnl r~,a - 0(P)I ]} .  

Let Qn be an estimate of P. The boots t rap estimate of risk is then 
Rn(fl, Qn). Not  worrying about  problems of existence and uniqueness in the 
present section, define/~n to be the value of fl minimizing Rn(fl, 0n). The 
resulting est imator is Tn.~,. 

Note  that  the normalizing sequence rn in (1.1) is chosen so that  
rn[Tn, p - 0 (P) ]  has a nondegenerate  limiting distribution. As expected, this 
is needed to obtain a useful (nondegenerate) asymptot ic  theory. However,  
in practice, one typically does not  need to know the sequence rn. For  
example,  if 1 is squared error, the value of fl minimizing (I.1) is, in fact, 
independent  of the choice of rn because rn is just a scaling factor. In smooth  
problems, rn = n 1/2 works for any loss function. 

The boots t rap  method described here may be viewed as a compet i tor  
to cross-validation. Both are computer-intensive and applicable to complex 
problems. An introductory account of cross validation is given in Stone 
(1974). Some special examples that  we develop are now described. 

Example  1. Mean  versus median.  Suppose xn consists of n indepen- 
dent  identically distr ibuted observations f rom a symmetric  distr ibution P 
on the real line. A theoretically interesting question,  though  perhaps not  
practically impor tant ,  is whether  or not  to use the sample mean  or the 
sample median  as an estimate of location. Thus,  in this case, Tn, l is the 
sample mean,  Tn, z is the sample median,  and I =  {1,2}. As simple as this 
example  may seem, we discuss it because it is a striking case where the 
method  of cross validation fails miserably. Indeed, as argued in Stone 
(1977), if the actual popula t ion is normally distributed, the method  of cross 
val idat ion chooses the median over the mean with probabil i ty approxi-  
mately 0.5008, for large n. The criterion is based on a squared error loss 
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function. If the criterion is changed to absolute error loss function, this 
large sample probability is about 0.5673. Moreover, a procedure that 
randomly selects (independent of x,) the median with probability 0.5673 
and the mean with probability 0.4327 has efficiency relative to the sample 
mean of 0.794, which is superior to the efficiency, 0.711, of the cross- 
validatory estimator. In contrast, regardless of the loss function, the 
bootstrap method with Qn equal to the empirical distribution function of 
the data selects the sample median with probability approaching zero as n 
gets large. In fact, even for sample sizes as small as 10, the bootstrap 
method has an efficiency, with respect to squared error loss, of 0.95 (see 
Table 1). 

A more interesting and difficult problem is the following. 

Example 2. Choosing a trimming proportion. As in Example 1, 
suppose x= consists of a sample of size n from a symmetric distribution P 
on the real line. Let O(P) be the median of P. Let T,,p be a trimmed mean 
estimator of O(P) with trimming parameter ft. Specifically, if F is a 
distribution function on the line, and F-l(x)= inf {y: F(y)>_ x}, consider 
the functional 

Tp(F) = (1 - 2fl)-~f'-PF-'(t)dt. 

When fl = 1/2, T~(F) is defined to be F-l(1/2). Then, the fl-trimmed mean 
is defined to be Tn,p = Ta(fl'n), where fl', is the empirical distribution of the 
sample. This example is studied in L6ger (1988), where the bootstrap 
approach is shown to be successful. Not surprisingly, the method of cross 
validation fails for this problem (see Pruitt (1988)). One might conjecture, 
however, that cross-validation might behave well if fl is restricted to 

Table I. Combining the mean and median 10,000 simulations, 100 bootstrap replications. 

Situation 1: Normaldata 

n=10 n=20 n=40 

Standardized MSE of Xn 1.00 1.00 1.00 
Standardized MSE of Med 1.384 1.479 1.517 
Standardized MSE of ?'hoot 1.048 1.079 1.088 

Situation 2: Double exponential data 

n= 10 n=20 n=40 

Standardized MSE of .~, 2.006 2.009 2.001 
Standardized MSE of Med 1.466 1.335 1.242 
Standardized MSE of ~PBoor 1.745 1.567 1.432 
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I =  [e, I /2 - e] for some e > 0, since jackknife type estimates of variance of 
the sample median are known to be inconsistent. Even with such a 
restriction, Pruitt (1988) argues that cross-validation misbehaves. 

In Example 2, we restrict attention to the class of trimmed mean 
estimators for reasons of simplicity, robustness and mathematical tracta- 
bility. The cost is a possible loss of efficiency. However, it is known that a 
good choice of trimming proportion leads to an estimator which has good 
efficiency properties, even if it is not fully adaptive. For further discussion 
of this compromise approach, see Cox and Hinkley ((1974), Section 9.4). 

Example 2 is more theoretically challenging than Example 1 because 
of the ambitious goal of choosing the best estimator among an infinite class 
of estimators. Another  such example is choosing the smoothing or 
bandwidth parameter in density estimation. A distinct difference between 
density estimation problems and the two previous examples is that esti- 
mators are not smooth functionals of the distribution and do not converge 
at the usual n -~/2 rate. Nevertheless, the methods described in Section 2 are 
applicable. 

Example 3. Bandwidth selection in density estimation. Consider 
the problem of estimating an unknown density function f on the real line 
based on a sample xn = (X1,..., Xn) of size n from f. Specifically, consider 
estimating f at some fixed point t. A kernel density estimate off( t )  with 
bandwidth parameter fl is given by 

(1.2) b , e ( t )  = ,= ,  

for some (fixed) choice of kernel K. The question is how to choose fl well 
to estimate f ( t ) .  Alternatively, one may wish to estimate f ( t )  for all t and 
construct a confidence band for f ( . ) .  In any case, care must be given so 
that Qn is chosen properly. As will be seen, with an appropriately smooth 
choice of 0n, the bootstrap approach will yield an "optimal" choice of 
bandwidth parameter and also allow the construction of confidence 
regions. 

In Section 2, a general methodology is described to analyze such 
problems. Several applications of the theory are discussed in Section 3. To 
summarize the main results of the paper, it is shown under conditions 
spelled out in Section 2 that the bootstrap choice of fl, fin, converges to the 
optimal fl in I. Typically, the optimal fl, fie, depends on the unknown 
probability P generating the data. Thus, the bootstrap approach "adapts" 
itself to the data to construct an (asymptotically) optimal estimator among 
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the given class. Moreover, the order of the difference between T,,r and T,,~, 
is easily obtained. In addition, bootstrap confidence limits for O(P) based 
on the bootstrap estimator T,,r are asymptotically valid. The main results 
can be deduced from a single uniform weak convergence assumption. This 
assumption, with appropriate modifications when necessary, is verified in 
the examples. A modest simulation was done relating to Example 1. More 
extensive simulation results have already been reported (see L6ger (1988) in 
the context of Example 2 and Faraway and Jhun (1988) in the context of 
Example 3). The numerical results are all extremely encouraging. The goal 
here, however, is not to establish the direct applicability of the bootstrap 
method in a specific problem; rather, it is to provide a general framework 
and theory for a wide class of problems. 

Note that the main conclusions in this paper are developed for general 
loss functions, though the abstract formulation in Section 2 applies to 
general bounded, continuous loss functions. See Technical Remark 8 in 
Section 2 to see what additional assumptions are needed to include 
unbounded loss functions; typically, this just involves extra moment  condi- 
tions. In any case, the theory and proofs do not rely on the particular form 
of the loss function in order to establish the claimed asymptotic properties. 
This stands in contrast to cross validation, where squared error loss is 
predominantly used to ease technical manipulations. More important, 
consistency and optimality properties for cross validation actually depend 
on the loss function (see Bowman et al. (1984)). Finally, Pruitt (1988) 
suggest that the success of cross validation hinges on the problem being 
hard enough so that "best" estimates converge at rates slower than n -1/2, 
such as density estimation. In contrast, the bootstrap approach appears to 
be a powerful, successful approach in both regular and "hard" problems. 

2. General formulation and analysis 

Let x, = (X~,. . . ,  X , )  be a sample of size n from an unknown distribu- 
tion P on some arbitrary sample space S. The distribution P is assumed to 
belong to a family P.  The model P may be "parametric" or "nonpara- 
metric". The framework presented in this section applies outside the i.i.d. 
case, but for simplicity we focus on this case for now. The problem is to 
estimate and construct a confidence region for some parameter O(P). The 
range {0(P): P ~P} will be denoted O. Usually,/9(.) is real-valued, but a 
more abstract treatment is possible and necessary for some applications. 
For now, however, assume 0( . )  is real-valued. 

Attention is focused on some class of estimators for 0(P),  denoted by 
T~,p - T~,~(x,), where fl ranges over some index set I. The first question is 
to choose fl, say/~, so that the resulting estimator T,,~ is best in some sense 
from the class of estimators {T~.p: f le I}. Typically, the law of r,,[Tn, p - 0(P)] 
converges weakly under P to a normal distribution with mean 0 and 
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variance o'2(fl, P), for some choice of scale constants r,. In smooth 
problems, rn = n 1/2. Since P is unknown, az(fl, P) is usually unknown. 
Usually, a2(fl, P) possesses a unique minimum in fl, so that the question is 
(asymptotically) meaningful. 

Let 0n be an estimate of P based on xn. A bootstrap estimate of 
a2(fl, P) is then o-2(l~, an). One possible approach to choosing fl (and hence 
Tn,p) is to choose a value of fl minimizing a2(fl, O.n). This is the approach 
taken by Jaeckel (1971) in the context of choosing a trimming proportion. 
Three main drawbacks are apparent with this approach if one desires a 
more general abstract theory. First, the analytical form of a2(fl, P) is often 
unknown. Second, since the choice of fl is based on an asymptotic 
expression, a2(fl, P), for the "finite sample efficiency" of Tn,~, presumably a 
better (more ambitious) approach would be to estimate some finite sample 
characteristic of the distribution of Tn,~. Third, even for fixed fl, it need not 
be the case that a2(fl, Qn) - a2(fl, P) in probability. Usually, fairly strong 
(or at least additional) assumptions that we will make are needed to obtain 
convergence of second moments. The approach taken below bypasses these 
difficulties. Later, we will explain the additional assumptions needed in 
Jaeckel's approach. 

We now begin the general formulation. Slight variations are sometimes 
needed in application to examples. The goal of this section is not to 
provide a theorem which easily covers all applications. Rather, it is to 
present a fairly abstract formulation showing the structure and common 
features present in many typical examples. 

The index set I is usually a subset of Euclidean space. In general, 
assume I is a metric space (or possibly a semi-metric space) with metric dr. 
Introduce a loss function l, which is just an increasing map from the 
nonnegative real numbers to the nonnegative real numbers. Unless explicit- 
ly stated otherwise, we will assume l is bounded and uniformly continuous. 
The risk of using Tn,p as an estimate of O(P) is then given by (1.1). More 
generally, one need not assume the loss of estimating O(P) by Tn,~ is a 
function of [Tn,~ - 0(P)I, though we restrict attention to this case here. In 
fact, the theory developed in this section may easily be generalized to that l 
can depend on (fl, 0), as long as it is assumed the family of functions {l/~,o} is 
uniformly bounded and equicontinuous (see Pollard (1984), p. 74). 

Let Qn be an estimate of P. A bootstrap estimate of Rn(fl, P) is then 
Rn(fl, Qn). Of course, the bootstrap estimate depends on 0n, and may be 
good or bad depending on such a choice. A bootstrap choice of fl, say/~n, is 
the value of fl minimizing Rn(fl, Qn). In cases of nonuniqueness or non- 
existence of a minimizing fl, let/~n be any random variable that satisfies 

R.(/~,, Q~) < inf R.(fl, Q~) + ~ ,  
fie! 
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where e, is any sequence of positive numbers tending to zero. 
In general, the calculation of ft, involves resampling or simulation.  

Specifically, for i = 1,..., B, let y,,i be a sample of size n f rom 0~. Then,  a 
stochastic approximat ion  to R~(fl, On) based on B replicated data  sets f rom 
0n is given by 

B 

D.,8(/7, G )  = ,__Z/[r.I Tn,fl(yn, i) - -  O ( G ) I ] I  B . 

A boots t rap choice of fl would then involve minimizing this approximat ion  
over ft. In some applications,  the set I of possible values of fl may be quite 
large so that  this approach may not be computat ional ly  feasible. Instead, 
one may choose fl values over some subset In of /, where I,  becomes 
"dense" in L This subset may be determined by approximat ing  I by some 
fixed set of a finite number  of fl values, so that  these points form a "grid" 
or some e net. Alternatively, the fl values may be chosen at r andom by 
some probabili ty measure on L This may be viewed as a stochastic search 
procedure,  as discussed by Beran and Millar (1987). In general, the theory 
presented in this paper applies even when such approximat ions  are invoked. 

We now begin the theoretical development.  For  fixed fl, let J,(fl,  P )  be 
the law of rn[Tn,~ - 0(P)]  under  P. The following assumpt ion  is weak, and 
is easy to check in applications. Assume that J,,(fl, P) converges weakly to 
the law, J(fl, P), of a r andom variable Z(fl, P). It then follows that  

R.(fl, P) --* E[Z(fl, P)] = R(fl, P) .  

To ensure that  the problem of choosing fl is (asymptotically) well-defined, 
assume there exists a unique fie in I so that, for any 6 > 0, 

(2.1) inf R(f l ,  P )  > R(f le ,  P )  . {p: a~(K&)>~} 

This may be weakened somewhat,  but for ease of exposition, we will 
assume (2.1). 

To study the uniform behavior of R,,(fl, P), and subsequent  processes 
indexed by fl, we introduce the following terminology.  Let Loo(I) be the 
metric space of real-valued bounded  functions on /, equipped with the 
metric induced by the uniform norm 1. Ix defined by: if zl and -7.2 are 
elements in L=(I), then 

121 - -  221  ~'~ sup I z l ( / 7 )  - z2(fl)l  . 

Endow L=(I) with the a-field generated by the open balls. Let 
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(2.2) Zn(fl, Xn, P)  = zn[Tn,p- O(P)].  

Regard Z , ( . ,  xn, P)  as a random element of L=(I). Issues of measurability 
will essentially be ignored because, in all the examples considered, the 
processes will be universally separable (see Pollard (1984), p. 38). In fact, 
for statistical purposes, there seems no loss in assuming I is countable so 
that questions of measurability are easily handled. 

Let Jn(P) be the distribution, in Loo(I), of Z n ( . , x , , P )  under P. We 
wish to study the asymptotic behavior of Jn(P). In general, we say a 
sequence of probability measures v, on L=(I) converges weakly to a 
probability measure v if all bounded, continuous, measurable real-valued 

funct ionsfdef ined on Loo(I) satisfy f fdvn -- f fdv. 

THEOREM 2.1. Let C1, be a set o f  sequences {Pn; n _> 1} of  probability 
measures containing the sequence {P, P,.. .  }. Suppose that, for  every 
sequence {Pn} e C?, Jn(P~) converges weakly to a common limit law J(P),  
where J(P) is the law o f  a process on L=(I) whose paths are continuous 
and lie in a separable subset o f  Lo,(I). Also, assume (2.1) and that l is 
bounded and continuous. 

(i) Then, 

(2.3) sup ]Rn(fl ,  P,,) - R ( f l ,  P)[ ---- O. 

(ii) l f  x~ = (Xl,... ,  X.) is a sample f rom P, let O.n be an estimate o f  P 
based on Xn. Assume that Q: falls in Ce with probability one under P. 
T h e n ,  

(2.4) sup [Rn(fl ,  On) - R ( f l ,  P)I  - -  0 
fie1 

almost surely. Define fl. to be any random variable satisfying 

(2.5) R,,(fin, O,) < inf Rn(fl ,  On) -[- F.n , 
fle l 

where e. is any sequence of  positive numbers tending to O. Then, 

(2.6) d,(fl,, fie) --. 0 

almost surely. 
(iii) I f  ~. is any sequence satisfying dI(~n, fie) -- 0 in probability under 

P, then the law o f  rn[Tn,:o- O(P)] tends weakly to J(fle, P). In particular, 
set T. =- Tn,~., and let Ln(P) be the law of  zn[Tn - O(P)] under P. Then, 
L.(  P ) tends weakly to J(fle, P ). 
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(iv) Finally, 

T n [ L  - T . M  - -  0 

in probability. 

PROOF. (i) Let Z~(-) and Z ( . )  be processes on L~(I) with distribu- 
tions J~(P~) and J(P). By Dudley's version of Skorohod's  almost sure 
representation theorem (see Pollard (1984), Section IV.3), we might as well 
assume these processes are defined on a common probability space and 

sup I g d H )  - z (H) l  o 

almost surely. Then, 

sup IR,~(fl, Pn)- R(fl, P)[ < El s u p  f l ( I Z ~ ( f i ) i )  - t(lZ(fl)l)[ ]. 

By the assumptions on l, the expression inside the expectation tends to 0 
a.s., so we can apply dominated convergence. If you are worried about the 
measurability of this expression, argue as on Pollard ((1984), p. 74). 

(ii) By (2.3), (2.4) trivially follows. Now, (2.6) follows by (2.1) and 
(2.4). 

(iii) Let Zn(-) and Z( . )  be processes with laws J,(P) and J(P). The 
assumptions imply (Zn(.),p,) converges weakly under P, on the product 
space of L~(I)x L to the law of (Z(.),Te). By Skorohod's  almost sure 
representation theorem, there exists Z*, 7" and Z*, all defined on a 
common probability space, such that (Z*, 7*) has the same distribution as 
(Z~, p,), Z* has the same distribution as Z, 

sup I Z * ( f l )  - Z * ( f l ) l  ~ 0 
pe t  

almost surely and 7" -- ye almost surely. Since Z*(.  ) has continuous paths, 
it follows that Z*(7*) --- Z*(ye) almost surely. Hence, the law of Z*(7*), 
which is equal to the law of r~[T~,~. - 0(P)], converges weakly to the law of 
Z*(Te), which is equal to J(fle, P). 

(iv) The proof of (iii) shows Z*(7*) - Z*(?e) -- 0 almost surely. The 
result follows. 

The above theorem is analogous to Theorem 1 of Beran (1984), where 
a general result on the asymptotic consistency of the bootstrap method is 
given in the context of estimating a sampling distribution. Beran introduces 
Ce as a device indicating the assumption of smoothness of &(fl, P)  in P 
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(for fixed fl), so that the weak convergence of Jn(fl, P) to J(fl, P) is 
(locally) uniform in P in some sense. Here, we have the added complexity 
that we are studying the behavior of an entire class of estimators, so that it 
becomes fruitful to study Jn(P) as a distribution on L=(I). 

To summarize Theorem 2.1, (2.3) and (2.4) combine to yield the result 
that the bootstrap estimate of risk, Rn(fl, Qn) is (asymptotically) uniformly 
close in fl to the actual risk R~(fl, P) of the estimator T~,~. By (2.6), the 
resulting bootstrap choice/~, of fl asymptotically tends to the "optimal" 
value fie. Finally, the resulting estimator T,,~. is asymptotically equivalent 
to the "best" choice T,,~,, as they have the same asymptotic distributions. In 
fact, the difference T,,~,- T,,~, is o(r,~ 1) in probability. Note that the proof 
shows other possible equivalent statements of Theorem 2.1 are possible. 
For example, let fle,, be the value of fl minimizing the finite sample risk 
function Rn(fl, P) (or at least minimizing it within ~n analogous to (2.5)). 
Then, the estimator T~,~. is equal to Tn,p~. to o(r,~ 1) in probability. 

In nice "smooth" problems, the asymptotic distribution J(fl, P) of 
nl/Z[T,,,a - 0(P)] is normal with mean 0 and variance az(fl, P). In this case, 
regardless of the actual loss function, fie in (2.1) is simply the value of fl 
minimizing a2(fl, P). Hence, for any choice of loss function l used in the 
construction of the bootstrap estimate/~., we have, under the conditions of 
Theorem 2.1, ft. --- fie a.s. Thus, the loss function may be viewed merely as 
a means to a construction of a "good" estimate, and the actual choice may 
not be crucial. 

Based on the data-based bootstrap estimator T.,/~., it may be desired to 
form a confidence region for O(P). This involves estimating the distribu- 
tion, L.(P),  of r.[T.,~. - 0(P)]. The bootstrap solution is to estimate L.(P)  
by L.(Q.). In general, the calculation of L.(Q.) would involve a double 
bootstrap, because the calculation of the estimator T.,~~ itself involves a 
bootstrap loop. To describe the consistency of this bootstrap approxi- 
mation, we need some terminology. Let L,,(x,P) and J(x, fl, P) be the 
cumulative distribution functions corresponding to the laws Ln(P) and 
J(fl, P ). Also, let 

L~1(a, P)  = inf {x: L.(x, P) >_ a}, 
X 

and similarly define J- l (a ,  fl, P). Theorem 2.2 below establishes the consis- 
tency of bootstrap confidence limits for O(P) based on the data-based 
bootstrap choice of ft. 

THEOREM 2.2. Assume the conditions of Theorem 2.1. Also, assume 
J(x, fie, P) is continuous and strictly increasing on its support as a function 
ofx.  

(i) Then, 
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sup IL,(x, P) - Ln(x, 0n)l -* 0 

almost surely. 
(ii) 

P{rn[:/'. - O(P)] _> L~,l(a, ~.)} -- 1 - a .  

Hence, the nominal i - a one-sided confidence interval 

( - r - rZ % 2 ( c t ,  On)] 

has an asymptotic coverage probability equal to 1 - a. 

PROOF. (i) Let {Pn} be any sequence in Cp. By an analogous argu- 
ment  to Theorem 2. l(i0, Pn tends in probability under  Pn to 7e. Now, argue 
as in the p roo f  of Theorem 2.1(iii), letting Z . ( . )  be a process with law 
J.(P.) instead of Jn(P). The same argument  shows L.(P.) tends weakly to 
J(fle, P). Since Qn falls in Ce with probability one (under P )  and the limit 
distr ibution J( . ,  fie, P) is continuous,  (i) follows. 

(ii) By (i) and the assumptions on the limit law J(.  ,fie, P), L~l(a, Qn) 
tends to J-~(a, fle, P) in probabil i ty under  P. Also, the law under  P of 
r n [ T ~ - 0 ( P ) ]  tends weakly to J(fle, P) by Theorem 2.1(iii). Combin ing  
these facts yields the result. 

We conclude this section with some remarks on the above theorems. 
The reader may wish to skip to Section 3 at a first reading. 

Technical Remarks. 
1. In smoo th  problems, it is easy to see why the assumpt ion  in 

Theorem 2.1 of J,(Pn) converging weakly to J(P) should be true. Indeed,  
the analysis of J,(Pn) can be deduced f rom smoothness  of the estimators 
Tn, p. To see why, consider the case where Tn,p is a funct ional  T~(. ) on P ,  
and Tn,~(xn) = Tp(Pn), where Pn is the empirical measure based on a sample 
of size n. Often, Ta(.)  is differentiable in the sense that  it satisfies an 
approximat ion  like 

T~(Pn) = Ta(P) + f fa, ed(Pn - P) + Rn,a(Pn, P) , 

where the remainder  term R.,a(P., P) tends to 0 as Pn tends to P in an 
appropriate  sense. Suppose,  further,  that  the remainder  term Rn,p is small, 
uniformly in ft. Then,  the analysis of Jn(Pn) can be deduced f rom the term 

ffp, pod(Pn- e.). F r o m  the linear structure, J.(Pn) should behave like the 
distribution of a mean 0 Gaussian process Z . ( .  ) on Loo(I) with covariance 
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Cov [z.(fl,), zn(fl2)] --- fJk.p.h. , podPn. 

With entropy and conditions of smoothness in P on thefp.p, this argument 
can be formalized by appealing to the many recent results on central limit 
theorems for empirical processes indexed by classes of functions (see, e.g. 
Pollard (1984) and Sheehy and Wellner (1988)). 

2. Applying a central limit theorem as explained in the above remark 
typically allows one to conclude that the limiting distribution J(P) is the 
taw of a process on L~o(I) whose paths are uniformly continuous with 
respect to some metric dl. If the metric dr also makes I totally bounded, 
then the paths of this limiting process lie in a separable subset of L~(I). 

3. The assumption that J(x, fle, P) is continuous and strictly in- 
creasing on its support  is usually easy to verify; direct considerations often 
yield that J(x, tip, P) is a Gaussian distribution function. 

4. The weak convergence of Jn(Pn) to J(P) may be too strong. 
However, we can sometimes argue from direct considerations that the 
bootstrap choice, fin, of fl lies in some subset I0 (usually compact) of I with 
probability tending to one. Then, it may be possible to apply the above 
theorems with I replaced by I0 to obtain the same conclusions. 

5. The hypotheses and conclusions of Theorems 2.1 and 2.2 may 
vary to obtain almost sure convergence results or convergence in proba- 
bility results. We do not dwell on this technical distinction and the possible 
variations of the main theme of fundamental convergence results. However, 
in some applications, we may be forced to settle for a result like (2.6) with 
almost sure convergence replaced by convergence in probability. 

6. An alternative route to proving (iii) and (iv) of Theorem 2.1 is the 
following. By some method, argue that (2.6) holds. Then, show that the 
sequence of processes Zn(fl, xn, Pn) defined by (2.2), where x~ is a sample 
from P,, is stochastically equicontinuous whenever {Pn} ~ Ce. For the 
definition of stochastic equicontinuity, see Pollard ((1984), p. 139). This is 
slightly weaker than the hypothesis of Jn(Pn) converging weakly to J(P). 
However, the stronger hypothesis tidily yields the main results quite 
readily. 

7. A more general result is possible by letting the estimate 0n of P 
depend on ft. That is, let ft, be the bootstrap choice of fl obtained by 
minimizing R,(fl, O.n.p), where O_.n.~ is an estimate of P which may depend 
on ft. The reason one might wish to allow this possibility is that Rn(fl, Q.n) 
may be a good estimate of the risk of T,,~ for some fl, but it may not be for 
all ft. To illustrate this point, consider Example 1 introduced in Section 1, 
with l being squared error loss. If Qn is the empirical distribution of the 
data, the bootstrap estimate of variance of the sample mean is just 02/rt, 
where 02 is the usual bootstrap estimate of the population variance. This 
estimate is quite good; on the other hand, the bootstrap estimate of the 



BOOTSTRAP CHOICE OF TUNING PARAMETERS 721 

variance of the sample median need not be so good. In general, its 
convergence rate is much slower than if we replace Q, by a smoother 
estimate of P (see Hall et aL (1989)). 

8. It may be desirable and convenient to consider unbounded loss 
functions. However, additional assumptions are generally needed to estab- 
lish the results given in Theorems 2.1 and 2.2. Recall Z, defined in (2.2). 
One essentially needs to show that the collection of random variables 
l iZ.(fl ,  x.,  P.)I as fl and n varies is uniformly integrable with {P.} in Ce. 
Consider Example 1 introduced in Section 1 with squared error loss. The 
bootstrap estimate of risk for the sample median is not consistent without 
an additional moment  assumption which is not needed to show weak 
convergence of the bootstrap sampling distribution of the sample median. 
See Ghosh et aL (1984). Unfortunately, verifying the uniform integrability 
assumption can be difficult. However, in some examples where estimators 
are sums of independent random variables, the special properties of mean 
squared error can be exploited for a direct calculation (see Example 3 in 
Section 3). 

9. An alternative approach for a bootstrap choice of fl which does 
not make explicit use of a loss function and does not need additional 
assumptions to the ones given in Theorems 2.1 and 2.2 is the following. 
For each fixed fl, let C..~(1 - 2a) be a nominal 1 - 2a bootstrap confidence 
interval for O(P) based on the estimator T.,p, so that 

C. ,e (1  - 2 a )  = [ L , ~  - z ~ ' J . - l ( 1  - a ,  fl ,  Q . ) ,  ~F.,~ - r ~ l j ~ - ' ( a ,  fl,  Q . ) 1 .  

Let ft, be the value of fl such that the length of C,,p is minimized. That is, 
ft, is the value of fl such that the nominal 1 - 2a confidence interval based 
on T,,~ has the shortest length. Then, the conclusions of Theorems 2.1 and 
2.2 hold for such a choice of ft,. In particular, suppose J(fl, P)  is asymp- 
totically normal with mean 0 and variance o'2(fl, P). Then,/~, converges a.s. 
to fie minimizing a2(fl, P). This approach is used in L6ger (1988). 

3. Applications and examples 

Example 2 (continued). Consider the situation of Example 2 intro- 
duced in Section 1. The goal is to choose a trimming proportion fl among fl 
in I = [e, I /2  - e], for some e > 0. We now give a sketch of why the results 
of the theorems in Section 2 hold. An alternative direct approach to this 
example is well-studied in L6ger (1988), and makes direct use of Technical 
Remarks 1 and 6 of Section 2. 

Let q , ( - )  be the quantile process defined by 

q.(t) = nV2[['~l(t) - F-l(t)] . 
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To proceed in applying Theorems 2.1 and 2.2, we must study the process 

= n /2[Tp(P.) - 

Then, 

Z,(fl) = (1 - 2fl)-lfpl-Pq,(t)dt. 

Regard Z , ( . ) =  T(q,(.)) as a map taking qn in L=([e, I - e ] )  to Z, in 
Loo(1). Since this map is linear and even uniformly continuous, the weak 
convergence properties of Zn(') can be derived from known properties of 
the quantile process. Moreover, bootstrap versions of these processes 
behave (asymptotically) as the original processes, by virtue of the validity 
of bootstrapping the quantile process (see Bickel and Freedman (1981), for 
example). In summary, the bootstrap allows one to choose an (asymp- 
totically) optimal trimming proportion in I without assumptions on P, 
other than those used for establishing the bootstrap consistency of the 
quantile process. As in Section 2, we have assumed that I is bounded (see 
Lrger (1988) for the case of squared error loss). Extensive simulation 
results in Lrger (1988) are extremely encouraging for this example. 

Example 4. Linear combinations of estimates. Given two esti- 
mators U, = Un(x,) and V, = V~(x,) of some parameter 0, the problem is to 
combine them to produce a more efficient estimator. Let 

(3.1) T..p= flU. + (1 - p)  V. , 

so that the problem is to choose fl optimally among fl in the real line, or 
possibly some restricted subset of the real line. Let ]~ be the bootstrap 
estimate as defined by (2.5). Let D~(P I'l) be the distribution of zn[U~ - 0, 
V~ - 0] under pInl for some sequence rn tending to infinity. Note that we 
are not necessarily assuming that the data xn is made up of n independent 
and identically distributed components; however, when xn is a sample of 
size n from a fixed distribution P, then pill is just the product law pn. The 
parameter 0 is still regarded as some functional of p~l.  We will assume 
Assumption A, given below, to be verified in two subexamples. The 
assumption essentially amounts to being able to bootstrap the joint distri- 
bution of (U~, V~), and hence we can draw on well-known theory for its 
verification. The true data distribution is denoted P0 ~1, and the true value 
of 0 is 00 = O(Potn)). 

ASSUMPTION A. Let Co be a set of sequences of distributions {p/~)} 
of x,, containing the sequence Po ~n/and satisfying Dn(P Inl) converges weakly 
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to a cont inuous  limit distr ibution Do, whenever {pI,)} e Co. If (Uo, Vo) has 
distr ibution Do, then 

(3.2) E[llflUo + (1 - f l )V0l]  

has a unique minimum,  flo, in fl; that  is, assume (2.1). 

The first result below applies to a boots t rap choice of fl in an index set 
I which is a bounded  subset of the real line. The choice I =  [0, 1] cor- 
responds to choosing some convex combinat ion of Un and V',. 

THEOREM 3.1. (Bounded I)  Assume Assumption A with the opti- 
mal flo belonging to a bounded set L Let Q', be an estimate o f  Po ~',) based on 
xn, such that {Q,} falls in Co with probability one. Then, the assumptions o f  
Theorem 2.1 and Theorem 2.2 are satisfied. Consequently, the bootstrap 
estimate ft, (in I)  satisfies fi', ~ flo almost surely. Moreover, bootstrap 
confidence intervals for  0 based on T,,D. are asymptotically valid in the 
sense o f  Theorem 2.2. 

Typically, the distribution Do of (U0, V0) is asymptotically bivariate 
Gaussian with mean 0 and covariance matrix Z =  (a,.j). In this case, 
regardless of the loss function (as long as it is assumed to be increasing), 
the value of fl minimizing (3.2) is 

( 3 . 3 )  f lo  = a2 ,2  - al,2 
0"1, 1 q- 0"2,2 - -  20"1,2 

and is well-defined so that  (3.2) holds. 

PROOF OF THEOREM 3.1. The proof  of Theorem 3.1 is immediate  
f rom the fact that,  whenever (X',, Y',) converges in distr ibut ion to (X, Y) in 
R 2, then the distribution of fiX,, + (1 -f l )Y' , ,  regarded as a r andom element 
of L~(I) ,  converges weakly to the law of the process f i X +  ( 1 -  fl)Y. 
Indeed,  the mapping  g f rom R 2 to Loo[0, 1] taking (x ,y)  into the funct ion  
g(x,y)  = fix + (1 - fl)y is uniformly continuous:  

Ilg(x,y) - g(x',,y',)ll = sup Ifl(x', - x) + (1 - fl)(y', - y)l 
p 

_< M max [Ix', - xl, lY', - Y[], 

where M = sup {fl: fl :~ I}. Hence, the weak convergence of the processes 
under  study follows f rom the cont inuous mapping theorem. 

In general,  the optimal flo need not be known to belong to some 
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bounded set L For example, in the asymptotically bivariate Gaussian case, 
the solution fl0 given by (3.3) will not necessarily lie in a bounded set, and it 
may be desirable to choose a linear combination of Un and Vn by allowing 
fl to be any real number. The next result covers this case. Note, however, 
that the main weak convergence assumption of Theorem 2.1 and Theorem 
2.2 is not implied by these assumptions as it does not hold. Nevertheless, 
the main conclusions of the theorems all follow. See Technical Remarks 4 
and 6 of the previous section to appreciate why. 

THEOREM 3.2. (Unbounded I) Let Co be a set o f  sequences o f  
distributions {pin)} of  x, satisfying Assumption A. Also, assume (3.2). Let 
0.~ be an estimate o f  Po ~n) based on xn, such that {Qn} falls in Co with 
probability one. Then, the conclusions o f  Theorem 2.1 and Theorem 2.2 all 
hold. In particular, the bootstrap estimate ~ (in I) satisfies fl, --- flo almost 
surely. Moreover, bootstrap confidence intervals for  0 based on Tn.~. are 
asymptotically valid in the sense o f  Theorem 2.2. 

PROOF OF THEOREM 3.2. To prove the theorem, the following small 
result is needed. The family of functions indexed by fl in R, mapping (u, o) 
in R 2 to l{flu + (1 - fl)o} in R, is equicontinuous; that is, for all (u, o) and 

> 0, there exists a ~ > 0, depending possibly on (u, v) but not on fl, such 
that 

II(u,o) - l(x,y)l < e 

whenever p((u, o), (x,y)) < ~. Here, p is the usual Euclidean metric. This 
result is left to the reader to prove; note the importance of assuming l 
bounded, continuous and monotone on the positive half of the real line. 
The result would be false if l(t)= [t[, for example. Now, it follows from 
this result (see Pollard (1984), p. 74, equation 20) that, for any sequence 
{pInl} in Co, the risk function 

R.(p.  = + (l - p )v .  - o(P n )l }] 

tends to (3.2) uniformly in ft. Hence, the bootstrap estimate of risk, 
Rn(fl, O.n), tends to (3.2) uniformly in fl with probability one. Thus, by the 
uniqueness assumption of fl0 minimizing (3.2), the bootstrap estimate ]~n 
tends to the (asymptotically) optimal value fl0. Note that we are not 
claiming that the distribution of the process rn[U, + ( 1 - f l ) V n -  0(P~n))], 
regarded as a random element of L~(R), converges to a weak limit. 
Nevertheless, (2.3) and (2.4) hold as well. To see why, given that ft, --fl0 
almost surely, one can restrict attention to fl values in some compact subset 
I0 and apply Theorem 3.1 to obtain all of the conclusions of Theorems 2.1 
and 2.2. 
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Example 4(1). Combining the sample mean and sample median. Let 
x, be a sample of size n from a symmetric law on the line having a 
distribution function F. The problem is to estimate O(F)= F-1(1/2). Let 
U,(x,) be the sample mean and let V,(x,) be the sample median. The 
following proposition establishes the validity of the hypotheses of the two 
previous theorems. 

PROPOSITION 3.1. Fix F, a symmetric distribution on the line with 
unique median O(F) and having a finite (nonzero)variance 0-2(F). Let CF be 
the set o f  sequences of  distributions {F,} satisfying Fn converges weakly to 
F, 0-2(F,) ~ 0-2(F) and 

(3.4) !ira nt/2 [ F . ( O ( F . ) + n - l / 2 x ) - l ] = x f ( O ( F ) )  

for  every real x. Let {F,} be any sequence in Cr and let x* be a sample o f  
size n from F,. Then, the joint distribution of  

n'/2[U.(x *) - O(F.), Vn(x*) - 0(F.)] 

converges weakly to a bivariate normal distribution with mean 0 and 
covariance matrix S =  (aij), where 0-l,l = o ' 2 ( F ) ,  0"2,2 = 1/[4 f2(O(F))], and 
al,z is the covariance between X and - 1 (X < _ O(F))/f(O(F)) when X has 
distribution F. 

The proof of Proposition 3.1 is similar to the proofs of convergence of 
the marginal distributions, for which the reader is referred to Bickel and 
Freedman (1981), Beran (1984) and Sheehy and Wellner (1988). The joint 
asymptotic normality is easily obtained, for example, by applying an 
appropriate linear representation of the sample median (see Serfling (1980), 
Theorem 2.5). 

If F, is the empirical distribution of the data, it remains to show that 
{P,} falls in Cr with probability one. The only difficulty is showing that 
(3.4) holds almost surely when F, = P,. Beran (1984) shows that this 
convergence holds in probability, but Sheehy and Wellner (1988) show this 
convergence to hold almost surely. Hence, the conclusions of Theorems 3.1 
and 3.2 hold. 

In this example, it may be desirable to symmetrize the empirical 
distribution and resample from a symmetric distribution. In addition, one 
might wish to smooth the empirical distribution. The same conclusions 
could easily be obtained in an analogous manner as long as the estimating 
sequence of distributions falls in CF with probability one. For example, one 
might symmetrize the empirical distribution about the sample median. 
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Then,  the same results hold under  no addit ional assumptions.  

Example 4(2). Combining independent estimates. Let y,  be a sample 
of size n f rom a distribution Py and z,, be a sample of size m = m(n) f rom a 
distr ibution P~. Let 0 = O(P) be the funct ional  of interest. It is assumed 
O(Py) = O(Pz), though it need not  be true that  Py = P~. Let U, be an 
estimate of 0 based on y,  and let Vn be an estimate of 0 based on Zml,l. The 
prob lem is to combine  the estimates by a suitable choice of fl in (3.1). 
Under  Assumpt ion  A, and the fur ther  assumpt ion  that  the limiting distri- 
but ion  Do is bivariate Gaussian with mean  0, the resulting (asymptotically) 
best choice o f f l  is, by (3.3), given by fl0 = 002,2/(001,1 + 002,2), where 0~ is the 
asymptot ic  variance of V, and o-i,~ is the asymptotic variance of U,. Thus,  
the boo t s t r ap  me thod  of  choos ing  fl is equivalent ,  to first order ,  to 
choosing fl by the usual weights determined by the inverse propor t ional  to 
the variance and is dependent  on the choice of the loss funct ion l. For  
squared error  loss function and unbiasedness of the estimators U, and Vn, 
the boots t rap  choice off l  is exactly equal to/~ = ~2,2/(61,1 Ji- 62,2), where 62,2 
and 61, i are boots t rap estimates of the variances of V. and U., respectively. 
In general,  T.,~ is (asymptotically) as good as T.,~0 and the conclusions of 
Theorems 3.1 and 3.2 hold. 

Example 4(3). Shrinkage estimators. Let U#(Xn) be an estimate of 
O(P). The goal is to choose fl to minimize 

- p ) U .  - 0 ( e ) l  } ] .  

The case l ( I t l ) =  [tl corresponds to LLshrinkage,  as considered by Hall 
and Mar t in  (1988). This is a special case in our  context  of combining 
estimates because we can take V~ = 1 (or V, = r,~ 1, which is convenient  for 
asymptot ic  purposes in verifying Assumpt ion  A). The above theorems 
apply immediate ly  to this si tuation for bounded  loss functions.  Typically, 
z~ = n l/z, as is the case under  the assumptions of Hall and Martin,  and the 
opt imal  value of fl (as is its boots t rap  estimate) is of order  n-1 and so does 
not play a role in first order asymptotics. 

We conclude this subsection by point ing out that,  in general, one 
might  wish to consider linear combinat ions of estimators of the form 

d 
T..p = W..; 

by an appropr ia te  choice of fl = (fl~,...,fla). Analogous  theoretical results 
are obta ined in the same manner .  In particular,  Assumpt ion  A is modified 
so that  Dn(P Inl) refers to the distribution of 
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rn[Un,  --  0 . . . .  , Un, a -  0 ]  

under pl,I. As an example, Cox and Hinkley ((1974), p. 347) consider 
estimating location by a linear combination of order statistics. The methods 
discussed here allow one to choose the appropriate combination in an 
optimal way. 

Example 5. Unbiased risk reduction. Let xn be a sample of size n 
from a distribution P and consider the estimation of some functional O(P) 
by some estimator Un(x,). Because the estimator may be biased, for 
example, one might wish to consider alternative estimators of the form 

T.,p = + & U n ( x n )  , 

with the idea that some linear transformation of Un is a better estimator 
than Un. For example, suppose one always chooses f12 = 1 but considers 
choices for fl~ other than zero. If the criterion is squared error loss and if 

E[Un(xn)] = O(P) + bn(P) ,  

where b,,(P) is the bias of Un(xn) under P, then the "best" choice of fl~ is 
- bn(P). In general, the optimal choices offl~ and f12 will depend on both P 
and the loss function, and the bootstrap offers an approach for correcting 
for bias or, more generally, reducing risk. As before, the bootstrap choice 
of fl = (fl~,fl2) minimizes the empirical risk function. Thus, for squared 
error loss, the bootstrap choice of fl~ is -bn(0n) ,  where 0n is some 
estimate of P. 

The mathematical development of the bootstrap choice of fl is, of 
course, similar to Example 4, as it is really a special case. However, due to 
the importance of bias reduction, we prefer to distinguish its special 
features. 

Example 5(1). Unbiased risk estimation. Suppose that P has a 
density f ( x - O )  for some location parameter 0 and that f is known. 
Consider the estimation of 0 based on a single observation X. Any location 
equivariant estimator of 0 takes the form X + fl~. In this case, the optimal 
choice of fll does not depend on 0 but rather on the choice of the loss 
function l. Hence, the parametric bootstrap approach also exactly yields 
the best choice of ill, as long as one estimates P by some distribution in the 
parametric family. The resulting estimator is the minimum risk equivariant 
(see Lehmann (1983), Chapter 3). For squared-error loss, the estimator is 
unbiased for 0. In general, the estimator is risk-unbiased. The point of this 
example was to see the connection with risk-unbiasedness and to see how 
the choice of an estimator is influenced by the loss function. It is also 
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reassuring to know the bootstrap approach reproduces the exact solution 
when it exists. 

Example 5(2). Estimation o f  variance in a linear modeL Suppose 
xn consists of  n observations Xi, where X; =/~ + e~ and the ei are indepen- 
dent and identically distributed with mean 0 and variance 0 "2. The problem 
is to estimate 0 = o -2. Let U, = Y,(Xi - X n ) 2 / ( n  - 1), where 2(, = Y ~ X i / n .  

First, consider the case where the cg are assumed to be normally 
distributed. Also, take fl~ = 0, so that the problem is then reduced to the 
proper choice of f12. The mean squared error of f12 U, is easily seen to be 

(3.53 2fl20.----~4 + (fiE -- 1)20. 4 , 
n - I  

and so the optimal choice of f12 for squared error loss is ( n -  1)/(n + 1). 
Again, the parametric bootstrap approach yields the same exact answer. 
Note that the new estimator ( n -  1)U,/(n + 1) is now biased but has a 
smaller risk function than the unbiased estimator U,. 

Now, suppose the e; are only assumed to have mean 0 and variance a 2. 
Then, the mean-squared error of ~ 2  Un is given by (3.5) plus the additional 
t e r m  fl2lc4/n, where /ca is the fourth cumulant  of el. Alternatively, •4  = 

~//4 - -  3/-/2, where/z  s is the j- th moment  of el. Then, the optimal choice of f12 
becomes 

(3.6) f12,0 = fl2,0(n) = 
2 /r 

1 + - -  + - -  
H - - T  n 

where x = /~4/O "4 is the kurtosis of the e~. Since x is not assumed known, the 
bootstrap solution amounts to replacing x by a sample estimate ~ in (3.6). 
Thus, the bootstrap approach is not exact for finite samples in this case. 
Note that the optimal solution (3.6) depends on n and differs from 1 by 
order n -1, regardless of 0 -2 and lc. This is typical for bias reduction; that is, 
the removal of bias does not typically enter into first order asymptotic 
properties. This example can be easily generalized to the case where the 
mean of X; is a linear function of some covariates. 

An example where the removal of bias does enter into first order 
asymptotic properties is the following. 

Example 5(3). Uniform scale family. Consider the estimation of 0 
based on a sample xn = (X1 .... , Xn) of size n from a uniform distribution on 
[0, 0]. Let Un(x,) = max (XI,..., An) be the maximum likelihood estimate of 
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0. The mean squared error of/~2 Un is easily calculated to be 

 202 ( ) 2n 0 2 n/ 2 
( n + 2 ) ( n +  1) 2 + n + l  1 . 

This is minimized when ~2 is 1 + n -~ + o(n-l). Since it is independent of 0, 
the bootstrap also yields the optimal value of f12. In this example, U, 
converges to 0 at rate n, and the removal of the bias is reflected in first 
order asymptotic properties. Indeed, n[Un - 0] converges weakly to - OX, 
where  X has the exponent ia l  d i s t r ibu t ion  with mean  1. However ,  
n[((n + 1)/n)U, - 0] converges weakly to - OX+ O, and so has an asymp- 
totic bias equal to 0. 

To obtain a general result on the bootstrap estimation of bias, we will 
need the following assumption which is quite similar to Assumption A of 
Example 4. Here, we consider the i.i.d, case, with the extension to other 
situations left to the reader. Let Dn(P) be the law of Z'n[Un(xn) -- 0(P)]  
based on a sample xn of size n from P, for some sequence r ,  tending to oo. 
For  simplicity, we focus on the additive bias adjustment by always setting 
f12 = 1. Similar results could be obtained by considering a multiplicative 
adjustment or a combination of the two. For  convenience, we modify the 
notation so the problem is to choose fl among the class of estimators 

Tn,p(xn) = + U . ( x . ) .  

Multiplying by z-,~ ~ does not change the resulting choice of estimators; it 
merely changes the name of the index ft. 

ASSUMPTION B. Let Ce be a set of sequences of distributions {Pn} 
satisfying D,,(P,,) converges weakly to a continuous limit distribution De 
whenever {Pn} ~ Ce, and O(Pn)~ O(P). If U has distribution De, then 
E~,[IIP + UI] has a unique minimum fl(P) in ft. 

THEOREM 3.3. Let x, be a sample o f  size n from P. Assume Assump- 
tion B. Let Q, be an estimate o f  P based on x, such that {Q.n} falls in Ce 
with probabili ty one. Then, the bootstrap estimate fin minimizing 
EQ.l{rnlflr,~l + Un(x*)- 0(Qn)l} converges to ~(P) almost surely, for  any 
bounded, continuous loss function L Moreover, bootstrap confidence 
intervals for  O( P ) based on Tn.~. are asymptotically valid. 

The proof  is omitted, as it is completely analogous to the proof  of 
Theorem 3.2. Note that when De in Assumption B is normal with mean/xe 
and variance a~, then the optimal (asymptotic) value of fl is -/~p. More- 
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over,/re and hence the optimal fl(P) are typically zero. In this sense, the 
problem is typically distinct from that of Example 4 in that the asymptotic 
solution is often degenerate (because the optimal value of 0 is known and 
does not depend on P). In Example 5(3), however, the limiting distribution 
of U, was not normal and did not have mean 0, and the bias reduction was 
nontrivial even at the first order level. Also, the choice of the loss function 
was important. 

Thus, the optimal value of fl is typically 0 in asymptotically normal 
situations. Although the study of second order properties are beyond the 
scope of this paper, the bootstrap estimator T,,r is generally better than 
T,,0. To heuristically appreciate why, Un typically has an expected value 
equal to 

(3.7) O(P) + a(P) + O(n_2) " 
n 

Then, for squared error loss, the estimator fl + Un has the same variance as 
Un and an expected value equal to (3.7) plus ft. The bootstrap choice of fl 
amounts  to choosing fl to be a(Q.n)/n, for some estimate Q~ of P. Since 
a(Qn) also typically has an expectation equal to a(P) + O(n-l), it should 
follow that U, - a(O.,)/n has an expectation equal to O(P) plus a term of 
order n -2. This result is typically true in smooth parametric and smooth 
nonparametric problems. For more details of bootstrap bias reduction, see 
Efron (1979). Also, the recent work of Hall and Martin (1988) considers 
the iterative bootstrap reduction of bias. This works by iterating the above 
method. That is, given the new bias is the reduced estimator U2 = Un + fin, 
consider choosing fl among the new class of estimators U2 + ft. Applying 
the bootstrap procedure yields U2 + / ~ .  Repeat the procedure for this new 
estimator, and so on. See Hall and Martin (1988) for a most interesting 
discussion of iterative bootstrap methods. 

Example 1. Mean versus median (continued). Before discussing the 
details of Example 1, consider the more general situation where the index 
set I is a finite set, say I={1 ,2 , . . . , d} .  In this case, the main weak 
convergence hypothesis in Theorem 2.1 is reduced to studying the weak 
convergence of Zn given by (2.2) as a random variable on R a. Actually, 
based on the fact that real numbers ynj converge to yj, for j = 1, . . . ,d  
implies that ynj converges to Y1 uniformly in j, one can deduce the 
conclusions of Theorem 2.1 under a weaker assumption. That is, one only 
needs to study the asymptotic behavior of Zn(fl, xn, Pn) for a fixed ft. 
Specifically, the assumption that Jn(Pn) converges weakly to J(P) is 
replaced by that J,(fl, Pn) converges weakly to J(fl, P) for each ft. The 
details are left to the reader. The reason that such an assumption is nice is 
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that its verification can be deduced from known properties about the 
bootstrap distribution of Tn,p for a fixed ft. The behavior of the bootstrap 
distribution of various types of estimators has been well-studied in Bickel 
and Freedman (1981) and Beran (1984), for example. 

The problem of choosing fl among a finite set I has several potential 
applications to model selection and regression problems. For example, 
consider fitting a polynomial of degree less than or equal to d to data 
(x,,yz) or consider the problem of selecting which of a finite number of 
variables should be included in a regression equation. While certain 
asymptotic results may be deduced for these problems by the methods in 
this paper, we defer them to subsequent work. In such problems, it seems 
necessary to study asymptotic properties where d tends to infinity with n if 
one is to believe the appropriateness and validity of bootstrap approxi- 
mations in finite samples. 

In the mean versus the median example, the verification of the main 
weak convergence assumption can be deduced from Proposition 3.1. In the 
case of squared error loss (or any loss function l(t) bounded above by t2), 
one also needs to know that bootstrap estimates of variance of the sample 
mean and sample median are consistent. Under the hypothesis of a finite 
variance of the underlying population (as already assumed in Proposition 
3.1), this is easily seen to be the case (see Ghosh et al. (1984)). 

It is perhaps worthwhile to note the following. The bootstrap approach 
asymptotically picks the best estimator Tn,, with probability approaching 
one. On the other hand, if Tn.~ is the sample mean and Tn,2 iS the sample 
median and the underlying distribution is normal with mean 0, it is not the 
case that the probability that [T,,,~[ < [T~.2[ occurs approaches one; this 
follows from Proposition 3. I. 

To gain some insight into how well the bootstrap works for small 
sample sizes, some simulation results are presented in Table 1. In particular, 
the loss function is squared error loss and Q~ is the empirical distribution 
of the data Xi. This is especially convenient because the bootstrap estimate 
of the mean squared error of the sample mean can be calculated without 
simulation and is equal to 

t = l  

On the other hand, the bootstrap estimate of the mean squared error of the 
sample median is calculated by simulation of 100 bootstrap samples. The 
resulting estimator, denoted TBoor in Table 1, picks the estimator with the 
smallest bootstrap estimate of the mean squared error. In Table 1, the 
mean squared errors of the sample mean and sample median are also 
reported for comparison. Actually, all mean squared errors are multiplied 
by the sample size n for easier comparison over values of n. For example, 
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consider situation 1 where the underlying population is normal with 
variance one. The sample mean has a standardized mean squared error 
(MSE) of 1.00. The sample median, in the case n = 20, has a standardized 
MSE of 1.479; this number is obtained based on 10,000 simulations, using 
the variance reduction technique of Johnstone and Velleman (1985). The 
bootstrap estimator ~/'8oor, based on 10,000 simulations, has a mean 
squared error of 1.079, and suffers only a small loss in efficiency relative to 
the efficient sample mean. The results are slightly less favorable in situation 
2 where the underlying population is double exponential, but are still 
encouraging. Perhaps the results would improve with a better estimate of 
the bootstrap variance of the sample median (see Hall et al. (1989)). 

E x a m p l e  3. Bandwid th  selection in densi ty  es t imat ion  (cont inued) .  
Recall the setting of Example 3 introduced in Section 1. Assume the kernel 
K in (1.2) is bounded, has mean 0, has an integrablej-th derivative K Ij) for 
j =  0, 1,2 satisfying KtJl(x)-- .  0 as Ix l - - -~ .  Also, assume K 3 is integrable 
and set 

C, = f x2K(x) dx 

and 

= f K (x)dx . 

We will also assume the unknown density f is bounded and twice differen- 
tiable with f 121 uniformly continuous. These assumptions can be weakened 
somewhat,  particularly if one is not interested in estimating f everywhere, 
but we do not dwell on the best technical assumptions needed here. 

First, consider the problem of estimating 0 = f ( t )  at some fixed t. 
Recall the following facts, as developed in Parzen (1962). If h, is a fixed 
bandwidth sequence and if nh~ ~ ~ and h, -- 0, then ~n.h~ is asymptotical- 
ly normal. Moreover, 

h~Z[Ef~,,,h,(t) - f ( t ) ]  -- Ct fC2)(t)/2 

and 

nhn Vary [~n,h,,(t)] --  f ( t )  C2. 

Assumingf( t )  andfl21(t) are nonzero, the asymptotically optimal choice of 
h~ minimizing the mean squared error then satisfies 

(3.8) nl/5h~ ~ [f( t )  Cz] l/5[C~ ftz)(t)] -2/5 �9 
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Hence, it is convenient for asymptotic purposes to reparametrize the 
problem by settingj~,~(t) = ~,,,-,,,#(t), and the problem is to choose fl so that 
j~.~(t) best estimatesf(t). Thus, the asymptotic best choice of fl, fly, depends 
on fand ,  for squared error loss, is given by the right side of (3.8). 

In order to apply the theorems of Section 2, first assume I =  [a,b], 
where a > 0 and b < ~.  The main weak convergence assumption of 
Theorems 2.1 and 2.2 is verified by the following. 

PROPOSITION 3.2. Let Cy be a set o f  sequences o f  distributions {F,} 
on the line with densities {f,} such that, for  j =  O, 1,2, f tjl converges 
uniformly to f Ijl. Let X,, l,..., X,,, be a sample o f  size n f rom f ,  and set 

t - X , , e )  
A,#(t) = fl-ln-'/5 ~l K n-:1/5--- ~ . 

Let 

(3.9) Zn(fl) = Zn(fl, t) = n2/5[f,,~(t) -f~(t)] , 

so that the appropriate normalization is ~ = n 2/5. Then, Z , ( .  ), regarded as 
a random element o f  Loo(l), converges weakly to a continuous Gaussian 
process Z with mean 

(3.10) E[Z(fl)] = fl=C,fC2)(t)/2 

and covariance function 

(3.11) Coy [Z(fl0, Z(fl2)] =f(t)( f l , f l2)- ' /z fK(rz)K(r- 'z)dz,  

where r = (ill/flz) 1/2. 

The proof of Proposition 3.2 is relatively straightforward because 
Zn(. ) is a sum of independent identically distributed variables. It is similar 
to the proof of Theorem 2.1 of Romano (1988a) and Lemma 4.1 of 
Romano (1988b). The only difficulty is verifying tightness, but this can 
readily be obtained by application of Theorem 12.3 of Billingsley (1968). 

Note that the optimal value of fl actually depends on the loss function 
l, mainly due to the fact that the limiting process Z(-)  does not have mean 
0. In general, the optimal value of /~ is the value of /~ minimizing 
E[I{IZ(fl)I}], where Z(/~) is normal with mean given by (3.10) and 
variance given by (3.11) with fl = fl~ = fl:. 

In order to apply Proposition 3.2 to verify the assumptions of 
Theorems 2.1 and 2.2, we need to specify an appropriate resampling 



734 CHRISTIAN LINGER AND JOSEPH P. ROMANO 

distribution Qn. Given xn = (X~,..., Xn) from f, let Qn be the distribution 
with density ~n,ho(.) given by (1.2). If nh~/log ( n ) ~  ~ and hn ~ 0, then Qn 
falls in C: with probability one (see Silverman (1978)). Furthermore, if 
nhSn -- c for some c < ~,  then the bootstrap will not work even though this 
is the optimal rate for estimatingf(t).  The reason can be traced to the fact 
that ~2~, does not consistently estimate fl2) for such a sequence hn. Hence, 
the bootstrap sampling distribution does a poor job of estimating the bias 
component (see Romano (1988a, 1988b) where this is observed in the 
context of modal estimation). 

The convergence of Zn to Z in Proposition 3.2 does not extend to the 
case I =  [0,~). While Theorems 2.1 and 2.2 provide results concerning 
optimal choices of fl in [a, b], we would like to extend these t o / / i n  [0, ~). 
By Technical Remark 4 of Section 2, it suffices to show that the bootstrap 
choice, fin, of/~ lies in some [a, b], where a > 0 and b < ~ with probability 
approaching one. To do this, consider the squared error loss. Then, fin is 
obtained by minimizing Rn(fl, Qn). To see, for example, that the minimizing 
/~ is bounded away from infinity, consider the behavior of Rn(/~n, 0n), 
where ft, is any sequence tending to oo. A direct calculation shows that 
Rn(fln, Q n ) -  ~ because a too large bandwidth fin results in a large bias 
component for the risk function. Similarly, if fin -- 0, the variance Compo- 
nent gets large. For more details, see equation (4.15) of Parzen (1962), but 
generalized to the case that f varies with n. In any case, the minimizing 
must be bounded away from 0 and ~ and so that Proposition 3.2 is again 
applicable. For other loss functions, similar arguments work as well. 

In the case of constructing a confidence band for 0 = f ( . ) ,  0 is not 
real-valued. However, by considering Zn(fl, t) defined by (3.9) as process on 
the product space of [a, b] and the real line, bootstrap convergence results 
about the bootstrap choice of fl can similarly be deduced from weak 
convergence results of the behavior of Zn under sequencesfn. A start in this 
direction is given in Bickel and Rosenblatt (1973) who consider Zn(fl, t) as 
a process in t under a fixed f, whereas in the case of fixed t above, we 
considered Zn as a process in/L The technical considerations of treating Zn 
as a process in both fl and t under general sequences f~ will be treated 
elsewhere, as the calculations are too involved. In principle, however, the 
technical approach is straightforward since Zn(fl, t) is still a sum of i.i.d. 
variables. Faraway and Jhun (1988) consider this problem of bootstrap 
bandwidth selection and constructing confidence bands for f. They con- 
clude, based on fairly extensive simulation results, that the bootstrap 
outperforms cross-validation. 

Bandwidth selection for other functionals of a density may also be 
considered by similar methods. For example, to select the bandwidth to 
estimate the mode off, the main weak convergence hypothesis of Theorems 
2.1 and 2.2 follows as in the proof of Theorem 2.1 of Romano (1988a). 
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