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Summary 

The conventional procedures for a common odds ratio in multiple 
2 •  tables are explored and critiqued. Three types of linear approxi- 
mation to the likelihood equations under some models of common meas- 
ures of association are used to derive the popular conventional estimators 
and test  statistics. Some of them are derived using the model of the 
common standardized difference which is an unacceptable measure. The 
derivation provides us with some characteristics of the procedures. The 
advantages of procedures based on the conditional and unconditional 
likelihoods are discussed. 

1. Introduction 

Several estimators and test procedures in multiple 2 x 2 tables have 
been devised when the possibility of a common odds ratio is assumed. 
Woolf [27] presented an estimator and a test procedure and Mantel- 
Haenszel [21] introduced a well known estimator and test  procedure. 
Birch [3] defined another estimator and test  statistic, which are close 
to an estimator by Yates [29] and a test  statistic by Cochran [6]. These 
estimators and test statistics are usually referred to by the author 's 
name. Other estimators were defined, such as the unconditional maxi- 
mum likelihood (UML) estimator, after  adding a constant to an entry 
in each cell. Gart [12] recommended a half integer 0.5 as the constant 
and Hitchcock [19] suggested a quarter-integer 0.25. In this decade 
the UML and the conditional maximum likelihood (CML) procedures 
have at tracted the researcher's attention in the analysis of the contin- 
gency table. 

Fleiss [11] presented a fine overview on this confusing problem. 

Key words and phrases: Common odds ratio, conditional likelihood, half integer correction, 
Mantel-Haenszel estimator, quarter integer correction. 
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He recommended, in the earlier edition of his monograph,  the  Yates 
est imator  and the  extensive use of the Cochran test.  But  Halperin et  
al. [15] criticized the extensive use of the  Cochran tes t  for the  homo- 
geneity under  some conditions, and he agreed with the  criticism. 

Many simulation studies were conducted to compare the  estimators.  
Studies by Mckinlay [23], Farewell and Prentice [9], Lubin [20], Hauck 
et  al. [18] and Breslow [5] compared the  bias of the  estimators and 
suggested tha t  the  CML estimator, Mantel-Haenszel and the quar te r  
integer  correction are less biased. 

The main result  of this paper is to show tha t  the  Yates, Mantel- 
Haenszel and Woolf estimators can be regarded as the  root of linear 
equations which approximate the likelihood equation and their  tes t  sta- 
tistics can be regarded as approximations of those of the  conditional 
and unconditional likelihood procedures. This derivation follows some 
fundamental  properties of them. We show tha t  the  Birch est imator  
as well as the  Yates can be regarded as an est imator of the  common 
standardized difference (Fleiss [10]) ra ther  than  tha t  of the  common 
log-odds ratio. This corresponds to the criticism by Halperin et  al. [15]. 
Similar criticisms extend to the Cochran and Mantel-Haenszel tes t  sta- 
tistics. 

The half- and quarter-integer correction of the  UML est imator  is 
examined in relation to the CML estimator. The quarter- integer  cor- 
rection provides the bet ter  approximation to the  CML than  the  half  
integer.  Following the above approximations, the  tes t  procedures are 
also discussed. 

2. Models and likelihood equation 

Consider a 2K set of two binomial variates X~ and Yk, k = l , . . - ,  K 
with their  incidence probabilities p~ and q~, respectively. Let  n~ and 
m~ be sample sizes from X~ and Yk, respectively, and x~ and y~ be the  
numbers  of individuals with positive occurence, respectively. We will 
wri te  x~,+y~ as s~ and n~+m~ as tk. Following the  usual notion the  

K 

subscript ' . '  denotes the summation, thus x . = Z  xk. 

Consider a measure of association, R~, between X~ and Yk. We are 
often interested in a model with common R~'s, R, for k = l , - . - ,  K, while 
p~ and qk depend on k. The problem of combining the  common associ- 
ation of multiple 2 x 2 tables is to estimate a common measure of asso- 
ciation R and to tes t  for R = 0  against R e 0 ,  where R = 0  means p~=q~. 
Interes t  has been largely focused on the log-odds ratio, tha t  is, 

p~=log (p,(1--q~)/q~(1--p~)), 

or, equivalently, on the odds ratio 
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r ,=p,(1-q,) /qk(] . -pk) .  

Write p~--- exp (a~ -t- ~)/(1-[- exp (a~ +/~)), then q~ = exp (a~)/(l+ exp (a~)). 
The models used in the conventional problem of combining the common 
effect of multiple 2)(2 tables are 

M0 : /~,=0 for any k 

Me:  ~,=P for any k 

and Ms:  p,'s are arbi t rary .  

Many procedures were proposed to estimate a common measure # in,the 
model Me, to test for the null hypothesis M0 against the alternative 
Mc and to test for M0 against M s .  

The UML estimator under the model Mc is given as the root~of 
the equations, if they have a root, 

(2.1) ~ x~--~, n~ exp (ak+p)/(l+exp (ak+/~))=0 
k k 

(2.2) sk- -n~ exp (a~+~)/(l+exp (ak+fl))--m~ exp (ak)/(l+exp (a~))=O 

for k =  l .  . . . , K .  

Since the equation (2.2) has a unique root, if it has a root, we denote 
it by ak(~). Put  

UL~ (fl)=x~--n~ exp.(ak(~)+p)/(l+exp (a~(~)-l-~)) . 

Then the UML estimator of/~ is the root of the equation Z UL, (~)--0. 
I t  is easy to show that  UL, (p) is strictly decreasing in ~. Following 
Yanagimoto-Kamakura the power expansion of UL, (/~) up to the second 
order is expressed as 

UL, (~) - x , - -  [n ,s , / t ,  + {s,( tk--  sk)n~mdt~} p 

+ 1/2 {s , ( t , - -  sk) ( t , - -  2 s , ) n , m , ( m , - -  n,)/t~} ~2] . 

Parallel derivation is available for other measures of association. 
The UML estimator of the common odds ratio is the root of the equa- 
tion, ~ UO, ( r )=0 with each term 

U0~ ( r ) = x g r - n ~  exp ( a ~ ( r ) ) / ( l + r  exp (a~(r)), 

where a,(r) is again the root of the equation (2.2) by replacing exp (~) 
by r. 

Next  we consider the standardized difference ~k, which is expressed 
by 

~----- (p~--q~) / ( ( n~p~-t-mkqk) ( tk - -n~pk- -  mkq~) /t~) . 
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The standardized difference depends on the  sample size in the k th  stra- 
tum,  as well as the  incidence probabilities, p, and q,. Thus it may be 
a measure to be avoided, but  as shown later it  is a key measure for 
deriving the  conventional estimators and test  statistics. The UML 
est imator of the  common measure, a, is given by the  root of the  fol- 
lowing equation, if a root exists:  

P, 

where  p,(/~,, q,) is a root of 

l - p ,  p, = 0  , 

~, = (p,(~,, q , ) -  q,)/[ {n,p,(a,, q,)-F mkq,} 
�9 { n k ( 1 - - p , ( 3 k ,  q k ) ) - F m , ( 1 - - q , ) } / t ~ ] ,  

and q~(~) is a root of 

l - - p ,  / 8q, q, 1--q~ 

I t  is shown tha t  the  roots of the above equations are unique, if they  
exist�9 

3. Linear approximation 

We will show tha t  linear approximations to the  three  log-likelihood 
functions result  in the conventional' estimators. For convenience we 
denote any one of the three  functions, UL (x), UO (x )and  U D ( x ) b y  
U(x), and write  U(x)=7.  U~(x). 

The iteration procedure is required to obtain the  root of the equa- 
tion U(x)=O, since the  function U(x) is nonlinear. A linear approxi- 
mation permits  us to ge t  an approximated root, though the  simple 
approximation may follow serious bias�9 We discuss three  types of linear 
approximations U(x), which can be used to derive the  conventional 
estimators and tes t  statistics. 

Recall t ha t  the  values of the  functions and their  derivatives are 
easily obtained. In fact it follows tha t  

UL, (0) = UO, (1) = UD, (0) = x,-- n ,sd t , �9  

Suppose tha t /~ ,  is a (unique) root of the  equation, UL, (#)=0, if it  ex- 
ists. The values of the derivatives of UL,(#) at  #--0 and fl, a re :  
UL~ (0)= --s,(t,--s,)n,mdt~ and UL~ (#,) = - -  {x,(n,--x,)y~(m~--y~)/n,m,} / 

{x~(n,--x,)/n,+yk(m,--yk)/m,}, if ~, exists. 
Using these easily available values three types of linear approxi- 

mations to a function U(x) are introduced. 
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DEFINITION 1. For a function U(x) three types of the linear ap- 
proximation are defined. 
1) (Tangent line at a null point; NL) Let x0 be a null point. U(x) is 

approximated by No U(x) = U(xo) + U'(x0) ( x -  x0). 
2) (Tangent line at a root; RL) Let xr be a unique root of U(x)=0. 

U(x) is approximated by R o U(x)=U'(xr)(x-x~), if x~ exists. 
3) (Connection line between a null point and a root; CL) Let x0 and 

x~ be defined in 1) and 2). An approximation function Co U(x) is  
defined as follows; 

i) If x, exists and xrCx0, Co U(x)=[(U(x~)-U(xo))/(xr-Xo)](x-x~) 
= [ -  U(xo) / (x , -  x0)] (x  - xr)  

ii) If x, exists and x,=x0, Co U(x)=U'(xr)(x-x~) 
iii) If x~ does not exist, Co U(x)=U(xo). 

Remark 1. Though the definitions of R o U(x) and Co U(x) are in- 
complete, they are good enough for our purposes. 

The conventional estimators in study are:  
1) (Mantel-Haenszel estimator). The estimator is for the odds ratio r, 
which is given by 

~'~= ~ {x~(mk--y~)/t~} / ~  {yk(n~--x~)/t~} . 

This estimator is usually not defined, when 52, yk(n~-x~)/t~=O. Log(~H) 
is regarded as an estimator of the log-odds ratio ft. 
2) (Woolf estimator). The estiniator is for p, which is given by 

~w = Z (w~ log x~(m~-y~)/y~(n~- xk)}/Z w~, 

where w~=[x~(n~-x~)y~(m~-y~)/n~m~]/[x~(nz-x~)/n~ +y~(m~-y~)/m~]. 
This estimator is usually not defined, when it holds that  x~(m~-yk)y~. 
(n~-x~)=0 for some k. 
3) (Birch estimator). The estimator is given by 

t~ t~( t ~ -  ~ ) 

4) (Yates estimator). The estimator was originally for the standard- 
ized difference. But it is quite close to the Birch estimator, which is 
given by 

fir = Z m~x~- n~y~ /~ .  m~n~s~(t~- s~) 
t~ t~ 

Among the above four, the Birch and Yates estimators have been 
given less attention. But they are closely related to the commonly 
used test statistics by Cochran [6] and Mantel-Haenszel [21]. The above 
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estimators except for the Birch estimator are derived through linear 
approximation functions to UL~ (~), U Q  (r) and UDk (3), which are stated 
explicitly in the following propositions. 

PROPOSITION 1. Let CoUO~(r) be the CL approximation to UO~(r). 
Then the root of the equation CoUL(r)=CoUO~(y)=O is the Mantel- 
Haenszel estimator. 

PROPOSITION 2. Let RoUL~ (#) be the RL approximation to UL~ (#). 
Then the root of the equation RoUL(#)=RoUL~(#)=O is the Woolf esti- 
mator. 

PROPOSITION 3. (i) Let CoUD~(3) be the CL approximation to 
UDk(3). Then the root of the equation CoUD(3)=0 is the Yates esti- 
mator. 
(ii) Let NoULk(#) be the NL approximation to UL~(#). Then the root 
of the equation NoUL(~)=0 is again the Yates estimator. 

We remark that  the Yates estimator can be derived in two differ- 
ent ways. It  is not a consistent estimator of the common log-odds 
ratio but  that  of the common standardized difference, even when n~ 
and m~ of each stratum tend to infinity with a fixed ratio of n~ to m~ 
and a fixed K. The inconsistency comes from the fact that  NoUL (~0) 
is in general not equal to UL (~0) for a t rue ~0 which is an important  
point for consistency. The CL approximation is preferable to the NL, 
since the approximated function by the CL approximation is quite close 
around both the points #=0 and ~0. The fine behavior of the Mantel- 
Haenszel estimator is supported partly by a characterization in Proposi- 
tion 1. The Yates estimator is regarded as an estimator of 3 ra ther  
than #. This, together with the sample size dependency of 3, results 
in the limited use of the Yates estimator. The above criticism to the 
Yates estimator can be extended to that  to the Birch estimator and 
the Cochran test  statistic, which will be discussed later. 

. Conditional likelihood 

Consider the CML estimator, /~c, under the model Me, which is the 
root of the equation, if it exists, 

: ~ ] x ~ - ~  ~ ( n ~ [  m~ hexp(pu) = 0 .  
\ u / \ sk -  u~ 

Denote the left-hand side by CL ( p ) = ~  CL~ (/~). The conditional likeli- 
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hood ratio test statistic for M0 against Mo is given by 2 / .  ~ CL~ (/~)d/~. 

Andersen [1] proves that  under certain regularity conditions ~ is a 
consistent estimator of ~ in Mc when K tends to infinity. Harkness 
[16] shows that  (CL~(~)--UL~(/~))~K0 unless either ~=0 or s~(t~--s~)=O 
holds. Coupling these two results, we suspect that  the UML estimator 
of/~,/~r is upwardly biased and is inconsistent when K tends to infinity. 
The fact of upward bias is observed in existing simulation results. 
Thus, the CML estimator is considered to be preferable to the UML. 
But computation difficulties are much more serious for the CML esti- 
mator. 

The Taylor expansion of CL~(~) follows from (5.10) in Cox [7], which 
is expressed as 

(4.1) CL~ (#) = x~- [n~sJt~ + {s~(t~- s~)n~m~/t~(t~- 1)} # 

+ 112 [s~(t~-- s~) ( ~ -  2s~)n~m~(m~--n~)/t~(t~- 1) (t~-- 2)}/~] . 

The difference between the UML and CML estimators is partly inter- 
preted by the coefficients of the second order in the power expansion 
of UL~(/~) and CL~(tg), ~m~s~(t~--s~)]t~ and n~m~s~(t~--s~)/t~(t~-l). The 
ratio of the former to the latter is (t,--l)/t,=a,. The difference re- 
flects that  between the Yates and Birch estimators. 

PROPOSITION 4. (Birch [3]). The Birch estimator is the root of the 
equation No CL (19) = 0. 

Proposition 4 derives the inconsistency of the Birch estimator when 
K tends to infinity. 

We consider two adjustments of UL~ (/~) to CLk (/~). A simple ad- 
justment is obtained by introducing a function AL~(~)=UL~(~/a~). 
AL~ (~) well approximates CL~ (/~) (Breslow [4] and Yanagimoto-Kama- 
kura [28]). We can obtain the approximated estimate,/~A, by replacing 
UL~(~) by AL~(~). Consider a specific condition that  $~--t for any k. 
Then the estimator /~ is ( t - 1 ) ~ / t .  

Another adjustment is derived by replacing entries in cells. In 
place of n~, z~, ~n~ and y~ we use n~/a~, x~+n~s~lt~(t~-l), ~n~/a~ and 
y,+~n,sJt,(t,-l), respectively. The formal application of the UML 
method to data after this replacement leads to another adjusted esti- 
mator. The Taylor expansion of the function corresponding to UL (p) 
is given by 

~ { x~- n~s~t~ s~(tk--s~)n~m~t~(t~_l) P 21sk(t~--s~)(tk--2s~)n~n~(m~--n~)~2}'t~(t~--l) 

The idea of changing entries for bias reduction of the estimator of 
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/~ were proposed by Gart [12] and Hitchcock [19]. Gart recommended 
adding to each entry the half integer 0.5, which had been proposed by 
Haldane [14] and Anscombe [2] get a less biased estimator of the logit 
of a binomial distribution. Hitchcock suggested the use of the quarter- 
integer 0.25 ra ther  than 0.5 based on her numerical experiments in 
some situations. Her suggestion was supported by Hauck et al. [18] 
from their simulation study. It  should be remarked that  our correc- 
tion terms are close to Hitchcock's 0.25. In fact the total sum of the 
correction terms of entries in the kth 2•  table is t~ / ( t~ - l ) ,  which 
locates between i and 2 but is close to 1 for a large number t~. Espe- 
cially when it holds that  n~=~n~=s~, the correction terms to entries in 
the kth table become to be a common constant t k /4 ( t~ - l ) ,  which is 
close to 0.25. 

5. Diagnosis of the linear approximation 

To obtain some characteristics of the conventional estimator com- 
pared with the UML and CML estimators, we explore the behavior of 
the function UL(p). We assume s~(t~--s~)r in this section. Then each 
term of UL (/~), UL~ (/~), has the following properties. 

PROPOSITION 5. 

i) lira UL~(p) = x~-- Min (n~, s~), 
~ c o  

lim ULk(~) = x ~ -  Max (0, s~-  m~). 
j3~-oo 

ii) ULk(~) has  a un ique  poin t  o f  reflexion. 

PROOF. Statement i) is obvious. For simplicity we will omit the 
subscript k. The condition UL" (p)=0 is expressed by 

(5.1) (~' + 1)2(1 - e ~+~) + a"(1 + e ~+~) = 0 , 

where a is given by (2.2), and a' and a" are defined by 

(5.2) ne ~+ P(a'+ 1)/(1 + e~+~) 2 + mesa'~(1 + e~) 2 = 0 

(5 .3)  a'2(1 - -  e') + ~"(1 + e ~) = 0 . 

Eliminating a' and a 'r from (5.1)-(5.3), we get ( 1 - 2 p ) / n 2 p 2 ( 1 - p ) 2 = ( 1  - 
2q)/m2q2(1-q)  2. Recall that  (2.2) can be writ ten by s = n p + m q .  Since 
(1 - -2p) /n2p2(1-p )  ~ is strictly decreasing in p, the roots p and q are 
unique, if they exist. It is easy to show UL" (p)=0 has a root. 

As Proposition 5 shows, the behavior of UL (~) is quite different 
from that  of a straight line. The approximated lines do not satisfy 
condition (i). The linear approximation can not be expected to be well 
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fitted for a wide range of the parameter.  The lack of fit of the  linear 
approximation is extended to tha t  of the approximation by the  poly- 
nomial function. Goodman [13] introduced an estimator based on a 
second order polynomial, but  it is unsatisfactory as seen in Mckinlay 
[24]. 

The behavior of UL" (~) explains partly characteristics of the  con- 
ventional estimators. Since UL '~ (0) = - n,m,s,(t ,-  sk) (t~- 2s,) (m,-- n,)/t~, 
the  point of reflexion is positive if C ,>0  and negative if C~<0, where 
C, = ( t , -  2s,) ( nk -  ~n,). Suppose for simplicity tha t  C, = 0, tha t  is, t , --  2s, 
or n,=m~ for k=l , . . . ,  K. Then UL,(~) is concave for ~<0  and con- 
vex for /~>0. This implies tha t  fl(NoUL,{/~)--UL,(p))(0 unless /~=0. 
Summing up over k it follows that  ~(NoUL(~)-UL(~))<0.  This im- 
plies tha t  sgn (jr) = sgn (j~) and I Jr  I-~]J~ I, where the equality holds only 
when ~r = 0. 

Next  we assume in addition tha t  z~y,(n,-z,)(m,-y~)r and x,>- 
n,s,/t, for any k. I t  follows tha t  RoUL,(fl)<UL,(~) for ~>0  and ~ r  
~,, which derives tha t  0 < ~ < ~  unless /~w=0 or ~ , - - ~  for any k. The 
behavior of ~ is not clear when we delete the additional la t ter  assump- 
tion on z,. The assumption n,=~n, is of practical importance and is 
usualy employed in existing simulation studies. 

6. Test statistic 

The unconditional likelihood ratio test  statistics for M0 against Me 
is derived from 

Z~=2 fi~ UL(,)d,=2 f:~ UO(r)dr . 

Using linear approximation functions in place of UL (~) or UO (r), we 
obtain a series of test  statistics. The use of RoUL (~) leads to 

Zb = ~  .RoUL (0)= [~' w, log x,(m,--yk)/y,(nk--x,)] ~ 
~. wk 

The use of NoUL(p) and CoUD(a) leads to the same test  statistics 
because of Proposition 3 and (3.1), which is expressed by 

Z~o= ( ~. .~n~x~--n~yk ) ~/ ( z n~m~s~(t~--s~) ) , 
t~ t~ 

which was introduced by Cochran [6]. The above derivation of Z~o by 
the  use of NoUL(~) is equivalent to tha t  of the  logit score tes t  by 
Day and Byar [8]. The statistic 2 Zoo has a simple form and is intui- 
tively appealing. Radhakrishna [26] showed tha t  Z~o is a locally most 
powerful test  statistic for M0 against Mc. However recall tha t  No 
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UL(/9) may be ill-approximated to UL(fi), while CoUD(/0 is considered 
to approximate UD (~) comparatively better .  This suggests  tha t  Z~o is 
closer to the  likelihood ratio tes t  statistic for M0 against  the  common 
standardized difference model, than  to Z~. 

The use of NoCL(p) or equivalently NoAL(/~) leads to 

t~ \ ti,(t~-- I) / 

Mantel and Haenszel [21] recommended the test  statistic, 

ti(t -l) 

This statistic is apparently close to Z~o. The te rm ( t , - 1 )  in place of 
t, is interpreted as adjusting to the conditional from the  unconditional 
likelihood ratio tes t  statistic. Thus Z~H is close to the  likelihood ratio 
tes t  statistic for M0 against the  common standardized difference. 

Next  we move to the tes t  statistic for M0 against Ms. Summing 
up each chi square statistic over all strata,  two statistics are der ived;  

X~r s = ~ w,(log x,(m,-- y,)/y,(n,-- xk)) 2 

and Z~os = Z t*(m*x*--n*Y*)2 
n,m~s,(t,--s,) 

The test  statistics for Mc against Ms are reasonably defined by Z~cs- 
X~v and "~ Xr Unfortunately  the  la t ter  statistic is unacceptable 
under  some conditions which Mantel et  al. [22] presented explicitly. 
They assert tha t  ~ 2 Zcos-Zco is based on the standardized difference 
which is an unacceptable measure because of its dependence on the  
sample sizes, n ,  and m~. Their assertation agrees with ours t ha t  Z~o 
can be regarded ra ther  as a test  statistic for M0 against the  common 
standardized difference model. 

Example. We emphasize the Z~o is close to the likelihood ratio 
tes t  statistic for M0 against the common standardized difference. Con- 
sider the two 2 x 2  tables in Table 1. I t  follows tha t  X~o and Z~os-- 
Z~ are 3.766 and .200, respectively. On the other hand we ge t  Z~-- 

Table  1. Working example 

Stratum 1 1 Stratum 2 
With Without  With 
factor factor factor 

Diseased 5 50 50 

50 980 500 

Without  
factor 

Not diseased 98 
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3.905, and the likelihood ratio test  statistic for the homogeneity of odds 
ratios is 0 since the common odds ratio of both tables is 1 .96=exp 
(.673). Numerical calculation of the likelihood ratio tes t  statistics for 
M0 against the common standardized difference and for the  homogeneity 
of standardized differences results in 3.748 and .157, respectively. These 
are close to X~o and ~- Zcos--Zco. 

The good approximation of Z~o to the  likelihood ratio tes t  statistic 
for M0 against the common odds ratio is observed when the  estimated 
common standardized difference is small. In the  above example the 
est imated value is .594. When the  estimated common standardized 
difference is large, say 2, and the total sample size is moderately large, 
the  tes t  based on any test  statistic should be highly significant. 

7. Discussion 

Common features of the conventional procedures are the under- 
standability and the ease of the computation. Though the former ad- 
vantage  is important  indeed, we should keep in mind the fact tha t  the  
intuit ive reasoning in the analysis of multiple 2 x 2  tables is often mis- 
leading as seen in Fleiss [11]. The lat ter  advantage is becoming less 
important ,  since the cost-performance of computation is dropping rapidly 
while the  expense of obtaining data is still rising. The computation .to 
derive the  UML estimator and the likelihood ratio test  statistic in the  
multiple 2 x 2  tables contain no special difficulties. The desk-top cal- 
culator performs the computation and no special device in programming 
is required, since the functions appearing in the  likelihood equation have 
favorable properties for maximization, tn  the case of the conditional 
likelihood, the computation is possibly troublesome, especially when all 
the  numbers,  n~, m~, s~ and t~-s~, are moderately large. But in such 
a case we can expect that  the approximation of AL (p) to CL (~) is satis- 
factory. 

Secondly, the model assumed in the analysis is not clear in the  
Cochran and Mantel-Haenszel procedures. The Yates estimator /~r and 
tes t  statistic Z~o are appropriate when the commen standardized differ- 
ence is assumed. The Mantel-Haenszel estimator ~ and the test  sta- 
tistic Z,~ are more confusing. We can not find any criterion to derive 
both the statistics simultaneously. As shown in Section 5, # ~  and M H  

are derived as approximations of the UML estimator and the likelihood 
ratio tes t  under the different models. Using the  recent  works by Hauck 
[17] and Breslow and Liang [5] on the variance of the Mantel-Haenszel 
estimator,  we may provide an alternative test  statistic. But it  seems 
tha t  fur ther  work on this topic is needed. 

The third defect of the conventional methods, which is most serious 
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in practice, pertains to difficulties in extending the models to be fitted. 
Though our attention focuses on three models, other candidates for rea- 
sonable models to be fitted exist. As Nelder and Wedderburn [25], for 
example, emphasized, it is worthwhile to consult the goodness of fit of 
various candidate models. Consider a model between -71//0 and Ms such 
that  ~=~91+p2z~ where z~ is a covariate to the stratum k. Then we 
can proceed straightforwardly with the analysis based on the UML and 
CML methods. But the use of the conventional procedure requires 
additional sophisticated devices to estimate parameters in this model. 

We wish to express grateful thanks to a referee for a number of 
valuable comments. 
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