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Summary

Scale and location estimators defined by the equation
2 J(if(n+ DII(Xeo— T/ V) =0

are introduced. Their asymptotic distribution is derived. If the under-
lying distribution is known, a large number of estimators is shown to
be efficient. Step versions of these estimators are also studied. Ham-
pel’'s (1974, J. Amer. Statist. Ass., 69, 383-393) concept of influence
curve is used. All the asymptotic results presented in this paper are
derived from a general theorem of Rivest (1979, Tech. Rep., Univ. of
Toronto).

1. Introduction

Let X, X,, ---, X, be a random sample from a distribution F(z),
let X, X, -+, X be the corresponding ordered sample.

With the modern emphasis on robustness (see Huber [8]), two classes
of estimators of the location parameter have been widely investigated :

The M-estimator 7, defined as a solution of
2 ¢l(X,~0)/ V¥]=0

where 17"* is a scale estimator.
The L-estimator T, defined as

Fo=n~t 33 Jif(n+1)]Xe,

where J satisfies SIJ (t)ydt=1.
0

Key words: M-estimator, L-estimator, influence curve, Robust estimation, step estimator.
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In M-estimation an observation is weighted according to its magni-
tude while in L-estimation it is weighted according to its rank in the
sample. In Section 2 the asymptotic behavior of L-M-estimators which
weight an observation according to both its magnitude and its rank is
investigated. The findings are compared with known results about L-
estimators (Stigler [12]) and M-estimators (Huber [6], [7]).

The third section is devoted to the study of step estimators. If
the estimating equation is of the type

W8, V¥)=0
where V* is a scale parameter, a one step estimator is defined as
To=Tx—UTE VILTE, V)
where [, is the partial derivative of l(z, y) with respect to z, T* and

V,,* are a location and a scale estimator given a priori. In Section 3,
the asymptotic distribution of L-M step estimators is derived under
minimal regularity conditions.

For the estimators defined in Section 2 and their step versions
studied in Section 3 it is shown that

[é,,-o-wl $IC (4, Xi)] is o(n)
3=1
where IC (g, ) is Hampel [5] influence curve.
NoTATION. The superscript “*” will denote estimators given a
priori, independently of the estimation procedure under consideration.

2. Asymptotic behavior of L-M-estimators

As mentioned in the introduction, the L- and the M-estimators can
be subsumed in the following class.

DEFINITION (L-M-estimators). Let J(¢) be a weight function de-
fined in [0, 1] and ¢(x) be a function defined in R then the L-M-esti-

mator of location ’.f'n, is defined as a solution of:

(2.1) 33 L+ DIgl(Xio— )/ V51 =0

while the L-M-estimator of scale, 17,,, is defined as a solution of
3 Jlifn+ DIgl(XKeo—T/01=0.

If J(t)=1 the L-M-estimator reduces to M-estimators while if ¢(x)
=%,
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7,=33 Jlif(n+ D Xeo| £ T/ +1)]
which is equivalent to the L-estimator of location Iand if ¢(x)=|x]"~1,
A n A n 1/a
Vo= [ £ T+ D X = T2 [ 33 i+ 101

which is equivalent to the L-estimator of scale defined by Bickel and
Lehmann [2].

The asymptotic results of this section will be derived from the
following theorem:

THEOREM 1. Let J(t) be a bounded variation function defined in
[0, 1] and ¢(x) be a function defined in E which can be written as

Z b.(x)

where b€ R, 1=1,2, ---, n, and {¢.}.%, is a sequence of increasing func-
tions. Let T,,* and Vn* be consistent estimators of p and y then under
the assumptions
Al) J(@t) and ¢[F(t)] are not discontinuous together, ¢ 1is continuous
at F~'(t) for almost all ¢.
And either
A2) 1) (T*—p) and (VF—7) are ol)
ii) There exists 8 € (0, 1/2) such that J(t)=0, t ¢ (3,1~3) or there
exists B>0 such that |¢(x)|<B, z¢ R.
Or
A3) i) (TFr—p) and (Vx—7) are O,(n™"?)
il) Az, y) and Ax(z, y) are continuously diffentiable in a neighbor-
hood of (p, v) where

A, )=\ TOWIE (O —a)ydt

22z, ¥)=Elpa[(X—z)/y)]]

and

(X-
0

on@)={ TF@I-E[ | TR )]

ili) There exist >0, M, in IV such that |J(t)—J(s)|<M,|t—s| for
both s and t in [0, 4] or in [1—y, 1].
There exist M,, M, in N such that F is absolutely contin-
wous i {x e R: |x]>M} and f(x), the density of F, satisflies
f(x) and |zf(2)|<M, for |x|>M,
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iv) E [¢L[(X—2x)/y]] is finite 7n a neighborhood of (u, 7).
Then the following is true:

w7 S+ DIl (Koo — T/ V1]
— XL Vi~ gal(Xo~ )7} is o,(n™7) .

The proof of this result is technical. A sketch of the proof is con-
tained in the appendix while a formal proof is derived in Rivest [11].

Remarks. 1) If g(z)=2, iz, y):[S:J(t)(F"(t)—x)dt} /y and if T
is the L-estimator corresponding to J(t), Theorem 1 implies that (tak-
ing Vn*zrzl):

X X;
0 0

el T — o 5 | @y —E[ | TRy |} s o)

This result has been proved by Stigler [12]. It implies the asymptotic
normality of L-estimators of location.

2) If J(¢)=1 and if 7* is a consistent root of (2.1), Theorem 1,
under assumptions Al) and A2) implies that

weladr, V- S XK= winl] s o).

This is a special case of a theorem of Huber [7] used to establish
the asymptotic normality of maximum likelihood estimators under non-
standard conditions.

3) Define u(F)=S:J(t)<p[(F‘1(t)—,u(F))/r(F)]dt where g and y are

the functionals corresponding to 7* and V*. After some algebra the
influence curve (Hampel [5]) of v, IC (v, ), is shown to be equal to:

¢al(@—p)[71+1C (g, )2z, v)+IC (7, )2, (s 7)

where 2, and 1, denote the partial derivatives of 1 with respect to z
and y respectively and IC (g, ), IC(y, #) are the influence curves of p
and y respectively.

Now assuming I:T,:"—/z——n" é IC (g, X,)] and [V,,*——r—n‘l f‘_‘ IC (v,
=1 =1
Xi)] are o,(n~?), (T,:"— #) and (Vx—7) are O,(n~*%), therefore
e, 1) = MTE VOHTE= )0, N H(VE-IA(2, 7) B8 0 (n™)

since 1 is differentiable at (g, y). With the influence curve the con-
clusion of Theorem 1 can be reformulated as
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l:’n-l ;Y—:‘J_l J[t/(n+D)]ol(Xo,— T,,*)/ Vn*]—v(F)_n-l ?:Jl IC (v, Xz)] ig op(n‘”z) .

Filippova [4] has established this type of result for several statistics.

4) The assumption ¢ can be written as a weighted sum of in-
creasing funections is not too restrictive. It is easily shown (see Rivest
[11]) that any function with a finite number of minima and maxima
can be decomposed in such a way. All the functions ¢ used in robust
estimation (see Andrews et al. [1]) are of that type.

THEOREM 2 (Asymptotic normality of L-M-estimators of location).
Under the assumptions
i) ¢ 1s increasing and J is positive,
i) (g, r) € (—oo, 0) where u is defined as the solution of A(x, r)=0,
iii) V*, the scale estimator, satisfies:

n*/{ Vr—y—n 2 IC(r, Xl)] is o(1),

iv) Al) and AB) of Theorem 1,
the L-M-estimator T, based on J and ¢ satisfies

m/z[j’,,— p—nt 2 IC (g, Xi)} is 0,(1)

where

IC (g, #)=— {gul(@— )/r]+ 2,1, ¥) IC (v, 2)} /AL 2, 7)

1s Hampel’s influence curve for p.

The theorem is also true under assumptions Al) and A2) of Theo-
rem 1 provided J is 0 near 0 and 1 or ¢ is bounded.

Note that this result implies that n‘”(Tn— ¢) 1is asymptotically
NIO, E [ICt (g, X)11.

PrOOF. For any geR,
P (n2A(T,, 1)<gl=P (T.>k,)

where k, is defined by n'?i(k,, r)=¢. Since 2 is differentiable at (g, 7),
n'(k,— ) is O(1). As in Huber [6], P (T.>k,) and

P[n £ (Tl + DIAZKeo— k)] V21— 20k 1) Z =0

reach the same limit as n— co. Applying Theorem 1 under the as-
sumptions Al) and A3)
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w7 ST+ D Xeo— ) VL= 2w Vi) =@l (Xm w71} s 0,(1) -

Therefore

lim P [n*2a(T,, 7)< g]

=lim P07 33 {gal(Xc= ]+ tay Vi) =20k DY 29

This shows that n‘”z(f’n, 7) is asymptotically normal. Since (g, 7) is
nonzero n‘“(’.i’,,—/;) is asymptotically normal by Slutsky’s Theorem.
Applying Theorem 1 with T, and V* yields

w1 F V07 31 gal (K= i) s 0,(1)
which is equivalent to:

By ™ 3 0l K= @)1+ (V= DA DU D) 8 0,(1)

since 1 is differentiable at (g, 7). Replacing n“z(V,,*——r) by n~'.
é IC (7, X,) concludes the proof. Q.E.D.

Remarks. 5) The assumption ¢ is increasing and J is positive
implies that the L-M-estimator is uniquely defined. If this assumption
is not met, one has to use the method of Huber [7] to prove the
asymptotic normality: first find a consistent solution to (2.1) then
Theorem 1 under the assumptions Al) and A2) yields the asymptotic
normality of this solution.

6) If F, J and ¢ are symmetric, 2,(¢, 7)=0 and the influence
curve of T, is an odd function. If the influence curve of V* is even,

as is usually the case, T is asymptotically independent of V.
7) For M-estimator, Carroll [3] has shown that n(log n)“[f’n— 7z

—nt f_‘, IC (g, X,-)] is O(1) almost surely provided ¢ is a smooth func-
1=1

tion.

8) If two L-M-estimators are estimating the same parameter and
have the same influence curve, their difference is o,n"'*) as conjec-
tured by Hampel [5], see also Jaeckel [9].

Along the lines of Huber [6], one proves:

COROLLARY 1 (Efficient estimation). Assuming that F is a sym-
metric distribution and that V* is a consistent estimator of r, for any



ASYMPTOTIC DISTRIBUTIONS 231

strictly positive function J(t), symmetric about 1/2 with bounded varia-
tion, there exists a function ¢,

w)=\! TF@Ia(~ %%1>

such that the L-M-estimator Tn based on J and ¢ is efficient for p.
Example 1. Let F be logistie, i.e. F(x)=(1+¢7%)"!, then

—-fj;(x)=(ef—1>/(ef+ 1).

If J(t)=1 and ¢(x)=(e"~1)/(¢°+1), the efficient M-estimator is ob-
tained. If J(t)=i(1—t) and ¢(z)=x, this is the efficient L-estimator. If

t t<1/2
J(t):{
(1—-t) t=1/2
and
1-e2 =0
sb(w):{
ef—1 <0

the L-M-estimator based on J and ¢ is efficient.
For scale estimators, the same reasoning yields:

THEOREM 3 (Asymptotic normality of L-M-estimators of scale). If

the L-M-estimator V, based on ¢ and J 1s uniquely defined, under as-
sumptions similar to the ones of Theorem 2,

W V= y=n~ 31IC (r, X)) s 0,(1)
where
IC (7, )= {—¢ul(®— )71 — (s, 7) 1IC (1, @)} 2, 7)
1s the influence curve of 7.

Remark. 9) As for location estimators one can find an infinity of
efficient L-M-estimator of scale. Under symmetry it is easily shown

that V, is asymptotically independent of T'* (compare with Bickel and
Lehmann [2]).

Ezample 2 (The median deviation). If
—1 [x]<1
1 jzj>1

P(x)=
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and if T* is the median the M-estimator of scale 17,, 1s the median
deviation. Here

Az, P)=P (X—2x|[y>1)—P (| X—zx|y<1).
Assuming that F'(x) is symmetric with respect to u, (F)=F"'(3/4)—p,
A, 7)=—4FIF3/4)]
and
—147[F734]  |z[<1
VAfIFT'GMT  l=i>1.

According to Theorem 1, under assumptions Al) and A2), V, is asymp-
totically normal provided f(g) and f[F~'(3/4)] exist and are nonzero.

IC (y, »)=

3. Step estimators
Consider now a one step L-M-estimator of loeation
TO=TF—UT¥ VAT V)
where

Uz, y)=n"" 3 T+ DIl(Xeo—)/y]

and [, is the partial derivative of | with respect to x. If ¢(x)=2x, note
that T;":Tn the L-estimator corresponding to J. The asymptotic dis~
tribution of 7 is now derived.

THEOREM 4. Under the assumptions
i) nt/z[T‘,,*—#—n-lﬁIc () X,.)] and n'”z[Vn*—r—n“li‘,IC (7, Xi)]
=1 =1
are 0,1).
i) The parrs (J, ¢) and (J, ¢') satisfy Al) and A3) (or A2) if J is
0 near 0 and 1 or ¢(x) and ¢'(x) are bounded) of Theorem 1.
The one step L-M-estimator Tw satisfies

w10~ -t STC (4, X)] s 0,1)
where
pP(F )= p(F) =2z, 7)[21, 1)

IC (¢, @)= {—gul(@x— ©)/r]1—2,(z, 7) IC (v, ©)} 2L &t, 7)
+ (g, )RV (ges 7)
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is Hampel’s influence curve for p and

R(D(#, )’):IC [Zz(#’ ), x]/li(p, 7).
<lz(/.z, v) is considered as the functional ——S:J(t)gb’[[F“(t)-— w(F)|r(FYdt
oy

Proor. If v, and v, are two functionals, it is easily shown that
IC (v + vy, 2)=1C (v, 2)+1IC (g, ) and IC (vy/vs, 2)=[IC (vy, 2)v;—1C (v,, )
-y]/v} if »,#0. Therefore
(3.1) IC (1, #)=1C (g, ®)—1C [A(g, ), @)/ 2l 7)

(Here, (g, 7) is considered as a functional.) By Remark 3)
IC Ty, 1), 21/ 2pe, 7)
={¢gul(@— )71+ 2,(2, ) IC (v, )}/ 22, 1) +1C (g2, %) -
Replacing IC [A(g, 1), 2)/2(g, v) by this quantity in (3.1) yields the de-
sired expression for IC (¢, ). According to Theorem 1,
(3.2) n‘”[l(’f’,ﬁ“, V)=, 1) =n~ IC A, 7), Xl]} is o,(1).
Consider

L(TE, V== ST+ DI (Xeo— THI VY Vi

since the pair (J, ¢') satisfies the assumptions of Theorem 1 and since
nlﬂ[f/n*—y—n~1 $11C (r, XI)} is o,()
=1

(3.3) nm[zx(z“f, V)= 2ulpt, 1)~ 11 [, 7), Xl]] is 0,(1).

Combining (3.2) and (3.3) proves the result. Q.E.D.

Remarks. 10) If p is a solution of (4, y)=0, i.e. if T* and T®

are estimating the same parameter, 7% has the same asymptotic be-
havior as the corresponding L-M-estimator. For maximum likelihood
estimators a similar conclusion has been reached by LeCam [10].

11) If g is not a solution of (6, r)=0, ¢ is the solution of (4, 1)
=0 obtained after one iteration of the Newton Raphson procedure
starting at ¢. Note that T® and V,,* satisfy the assumptions of Theo-

rem 4, therefore T,&” the two step estimator satisfies:



234 LOUIS-PAUL RIVEST

ni/z[:ﬂgz)_#m_n—l é IC (¢, X’)] is 0,(1).
=1

If the iteration procedure converges, ¢ is closer to a solution of (4, r)
=0 than g and its influence curve is also closer to the influence curve

of the corresponding L-M-estimator. Iterating this result T,ﬁ"’ the k
step estimator should be closer to the corresponding L-M-estimator

than T® for I<k.

Now the effect of a lack of robustness of 7* and V* on T, and
T,&" is investigated.

For instance suppose that F is ¢ with 3 degrees of freedom, the
location is to be estimated with some robust M-estimator, the scale is

unknown. An a priori scale estimator, V,,* has to be used. If V* is
the standard deviation then V* is a consistent estimator of the popu-

lation standard deviation y. It is easily seen that Vn* belong to the
domain of attraction of a stable law with parameter 3/2. Therefore

the rate of convergence of V¥, o V¥)={sup B: n"VA(Vr—y) is 0,1)} is
3/2. Will the slow convergence of V* affect the convergence of 1.7
The next theorem answers this question.

So far we have assumed a(T,:“)::a( Vn*)=2, now this assumption is
weakened to o( V) and o(T¥*) € (1, 2).

THEOREM 5. Assuming

1) Al) and A2) of Theorem 1 hold.

il) Az, y) ts continuously differentiable near (p,r) and A (g, r)<0.
Then if
1) F 1s symmetric with respect to p and J and ¢ are symmetric,

oT)=2. )
2) Ay 1)#0, a(T)=a(VY).

PrOOF. Assume without loss of generality =0 and y=1. Apply-
ing Theorem 1

[z(Tm V)t i‘,ng(Xi)] is O,(n1%).
=1
Applying the mean value theorem:
lim [A(T,, V)= 2(0, V)1 T2.00, 1)=1

in probability. If 1) holds (0, V,.*):O and 72T, has the same asymp-

totic distribution as n‘“zi‘,ng(Xi), ie. oT,)=2. If 2) holds for any 8
=1

=2,
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lim P (=T, >g)
—lim P [n““ﬁ<2(0, V)t 3] ng(X,)) >2,(0, 1)g}

and o T,)=a(V¥). Q.E.D.
For one step estimators,

THEOREM 6. Assuming that
i) (J,¢) and (J, ¢') satisfy Al) and A2) of Theorem 1.
il) Az, y) has continuous third partial derivatives mear (g, y) and
A(p, 7)<0.
If

a) F is symmetric with respect to p, ¢ and J are symmetric;

3
b)  A,(p, 1) and 2gop, v) are nonzero <1<3z>=—%—3 Az, y)>,

o Ty =min {A(TF), A TF)a( V), 2} .

If
C) ].(‘U, T)! lry(,u! T)’ Z(Zl‘)(#i T) are nonze,roy

o TP)=min [a(TF), (V)] -
PROOF. Assume without loss of generality =0 and y=1. As in
Theorem 4, U(T*, V) IAT*, V¥)— (0, 1)/,(0, 1) minus
(3T, V) +n™ £ gl XD =200, bl/a0,1
20, V[ V2T, V=100, D=~ 532X | 130, 1)
+2(0, 1)(VF=1)/0, 1)

is o (n""*) where ¢P(x) is the ¢ function corresponding to J and ¢’.
If a) and b) hold, «(T'®) equals

(3.4) a[2,(0, VT —2(T*, V)]

note that A(x,1) is odd, hence Aqx(x,1) is also odd, i.e. Ag,(0,1)=0.

Now using a Taylor series expansion and the fact that 2(0, V,,*):O,
(3.4) is equal to

e {TH2,(0, 1) = 2,00, Vi)~ (T¥)°2aa(0, 1)} .
This proves the first part. If c¢) holds,

A TO)=a[ VA (T*, V¥)— 2,0, 1)]
=min [a(V¥), «(T)] . Q.E.D.
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Remark. 12) If F is symmetric, note that a(T,S’))ga(T,E’))- -+ there-
fore to increase the number of iterations improves the rate of con-
vergence of the estimator.

Appendix. Sketch of the proof of Theorem 1

Without losing generality it is assumed that J(t) is positive in-
creasing bounded, =0 and y=1 and ¢(z) is increasing.

LeMMA 1. Under assumptions A2)-ii) or A3)-iv)
(T, V)= 2T, Vi) s o(n-v2)
where 2,(z, ¥)=n" 3 Jli/(n+ Dl ((F'[if(n+ D] ~2]/y}

ProOF. Write ¢=¢,+¢, where ¢(x)=¢(x) if £=0 and ¢y(x)=¢(x)
if x<0. Assume ¢(0)=0, i.e., ¢ is positive increasing. For 4§ large

enough such that (F-'(t)—T¥)/ Vx>0 if t>4,
WIE VH= 5 S/ JOGQI(F ()~ T} Vi*ide .
i=[n]+1JG=-D/n

Since the product of two positive increasing functions is positive
inereasing,

A(EE VO <a(tr v+ | TOel@E- - Torvad .
Under A2)-ii) or A3)-iv),
lim n¥ S TORIF )TVt =0.

Bounding (T, V;*) from below yields the result for ¢;. To prove the
result for ¢, it can be assumed that J(¢) is negative increasing, hence

JEWLF )~ T*)/ V*] is positive decreasing as a product of negative
increasing functions. The reasoning is similar to the first part.
Q.E.D.

A) Proof under Al) and A2)
Using this result,

—y é JlE(n+ Dol X, — T2) ViEl—= 2T, Vi)

can be written as h,(Z“(-)) where h, is a random function defined by
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ha((- ) =n""2 >:, Tt/ 4+ DUIF 5/ (n+ 1)+ li)(n+1)]]— T/ V¥
—[[F'[4)(n+1)]— TX V<)

and Z™(-) is the empirical process. Heuristically for large n, h,(Z™(-))
can be written as:

w7t 33 713+ DIZ i+ D] L g [(F )~ T2 721

t=i/Cnt 1

this random variable should therefore converge to SlJ(t)Z(t)dgb[F“(t)],
g

Z(t) is the Brownian Bridge.
Lemma 2 of Rivest [11] contains a rigorous proof of this state-
ment under assumption A2) (i.e.|¢| is bounded or J is 0 near 0 and 1).

Using a similar argument it is shown that n=? é ¢(X;) converges to
=1

|, Z3dgal ).

Now since dgu[F~'(t)]=J()d¢[F'(t)] the two random variables under
consideration converge to the same limit. This proves the theorem
under Al) and A2).

B) Proof under Al) and A3)
Consider

n Y 3T+ DIl (Ko — TN VL= AT, 729
—gul(Xeo— TR VEI+ 2T, VY.
By Lemma 1, this random variable will reach the same limit as

" S[xm—m/vzﬂ i/ +1)]—J[F(@)]lde(=) .

—1/2

A1) 2™ B i 1Ty
Using assumption A3), for any »>0, it is possible to find 4>0

such that

Syt 3 ()] s 0.

=1 i=n—{ns]+1

n—l/?.

The argument used to prove the theorem under Al) and A2)
serves to prove

-1/2 n—[nd] .
n i=m2ml(---) is 0,(1).

Therefore (A.1) is o,(1).
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Write ¢y=¢xz+ ¢y where ¢y=¢y when ¢z >0, 0 if not. To prove
the result it suffices to show that

(A2) 7 D {g,al(Xi= TRV~ 20l T2, V)
_.ngH(Xi)_!_E (Qb]H(XZ))} is Op(l) for j=1, 2.

Take 7=1. For any >0, by the assumption on T,:" and V* it is pos-
sible to find constants C,, C, such that lT,i"l<Con'1’2 and |I9’,,*—1l<C'on“”2

and Ix,-H(T,:", ]A/',,*)|<Cm,"/2 for large m except on a set of probability e.
Similarly one can find C, such that

|2;0(—Cmn™", 1£Cn™ )| < Cyn ™'

for large n. Now take 5=¢/(C,+C)), since ¢(x) is increasing, null
for small z, positive for large ones,
n—l/2i=n§_]+l¢1H[(X(i)_ ZA"78*)/ Vn*]'_llH(Tn*: Vn*)

n

Se+n™ [M]qum[(Xm —k.)[s.]— Aialkrs 8a)

f=mne-

where k,=~Cmn™"%, s,=1—k,. Therefore (A.2) is less than
s+17 32 ual (K= k)] = Dby 82) = 91X+ E ($un(X)
n—[na} A A A A
+nR é Gl (X — T Vil = 2T, V3F)

- ¢’1H[(X(i) - kn)/sn] + llH(km sn) .

The first summation is summing independent variables with 0 ex-
pectation. It is easily seen that its variance goes to 0. The second
summation is o0,(1) by an argument used previously hence (A.2) is less
than . Similarly it can be shown that (A.2) is bigger than —e for
large m, therefore (A.2) is o0,1) when j=1. The proof when j=2 is
similar. Q.E.D.
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