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Summary 

Scale and location estimators defined by the  equation 

J[i/(n+ 1 ) ] r  Tn)/V.] = 0 

are introduced. Their asymptotic distribution is derived. If the  under- 
lying distribution is known, a large number  of estimators is shown to 
be efficient. Step versions of these estimators are also studied. Ham- 
pel's (1974, J. Amer. Statist. Ass., 69, 383-393) concept of influence 
curve is used. All the  asymptotic results presented in this paper are 
derived from a general theorem of Rivest (1979, Tech. Rep., Univ. of 
Toronto). 

1. Introduction 

Let XI, X2 , . . . ,  X~ be a random sample from a distribution F(x), 
let Xcl~, Xc2, " . . ,  Xc~) be the corresponding ordered sample. 

With the  modern emphasis on robustness (see Huber [8]), two classes 
of estimators of the  location parameter  have been widely invest igated:  

The M-estimator T~ defined as a solution of 

n ^ 

E o)/v*] = o 

where 17~* is a scale estimator. 

The L-estimator T~ defined as 

J[i / (n+ l)lX.  

where J satisfies f: J(t)dt=l. 

Key words: M-estimator, L-estimator, influence curve, Robust estimation, step estimator. 
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In M-estimation an observation is weighted according to its magni- 
tude while in L-estimation it is weighted according to its rank in the 
sample. In Section 2 the asymptotic behavior of L-M-estimators which 
weight an observation according to both its magnitude and its rank is 
investigated. The findings are compared with known results about L- 
estimators (Stigler [12]) and M-estimators (Huber [6], [7]). 

The third section is devoted to the study of step estimators. If 
the estimating equation is of the type 

z(~, 9 : ) = 0  

where V* is a scale parameter, a one step estimator is defined as 

~1~= ~:-t(~:, ~:)/u~:, 9:) 
where l~ is the partial derivative of l(z, y) with respect to x, T* and 

"V* are a location and a scale estimator given a priori. In Section 3, 
the asymptotic distribution of L-M step estimators is derived under 
minimal regulari ty conditions. 

For the estimators defined in Section 2 and their step versions 
studied in Section 3 it is shown that  

? " ] . - 0 - n - '  ~, IC (8, x,) is o.(n -'/2) 

where IC (/~, x) is Hampel [5] influence curve. 

NOTATION. The superscript " .  " will denote estimators given a 
priori, independently of the estimation procedure under consideration. 

2. Asymptotic behavior of L-M-estimators 

As mentioned in the introduction, the L- and the M-estimators can 
be subsumed in the following class. 

DEFINITION (L-M-estimators). Let J(t) be a weight function de- 
fined in [0, I] and r be a function defined in R then the L-M-esti- 

mator of location T~, is defined as a solution of: 

(2.1) ~ J[il(~+ 1)]r  ~)/~':] =o 

while the L-M-estimator of scale, I?~, is defined as a solution of 
n . 

Z J [ i / ( n  + 1)]r T*)/8] = O. 
i = l  

If J ( t ) = l  the L-M-estimator reduces to M-estimators while if r 
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T~=7. J[il(n+l)]X(~, J[i/(n+l)] 

which is equivalent to the L-estimator of location and if r  

which is equivalent to the L-estimator of scale defined by Bickel and 
Lehmann [2]. 

The asymptotic results of this section will be derived from the 
following theorem : 

THEOREM 1. Let J(t) be a bounded variation function defined in 
[0, 1] and r be a function defined in R which can be written as 

n o 

E b,r 
3 = 1  

n o where b, e R, i=  1, 2, . . . ,  no and {r is a sequence of increasing func- 

tions. Let T* and V* be consistent estimators of F and r then under 
the assumptions 
A1) J(t) and r are not discontinuous together, r is continuous 

at F-~(t) for almost all t. 
And either 

A2) i) (2b*--/~) and (V*--r)  are op(1) 
ii) There exists 8 e (0, 1/2) such that J( t )=0,  t ~ (~, 1 - 8 )  or there 

exists B>0  such that ]r x e R. 
Or 

A3) i) (T*--g)  and ( I~* - r )  are O,(n -'n) 
ii) 2(x, y) and 2n(x, y) are continuously diffentiable in a neighbor- 

hood of (~, r) where 

iii) 

~(x, y)----f10 J(t)r 

~H(x, y)----E[r 

and 

r f: J[F(y)]dr  [ICo z-~'zr J[F(y)]dr 

There exist v>0, Mo in N such that ]J(t)-J(s)[<Mo]t-sl  for 
both s and t in [0, v] or in [ l - v ,  1]. 

There exist M1, M~ in IV such that F is absolutely contin- 
uous in { x e R :  ]xl>M1} and f(x) ,  the density of F, satisfies 
f (x)  and [xf(x) l<M2 for ]xl>Ml 
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iv) E [r is finite in a neighborhood of (~, r). 
Then the following is true: 

n -~ :~ {J[i/(n+ 1)]r 2:)/fz.] 
Z = I  

-~(~*.  9: ) -r  is op(n-'~). 

The proof of this result is technical. A sketch of the  proof is con- 
tained in the  appendix while a formal proof is derived in Rivest [11]. 

F ]/ Remarks. 1) If r ,~(x, y)=  oJ(t)(F-1(t)-x)dt y and if ~'* 

is the  L-estimator corresponding to J(t), Theorem 1 implies tha t  (tak- 

ing I~X * = r = 1) : 

n'n {T *-[~-n- '  D [f~ '-~ J[F(y)]dy--E [f[ ~-~ J[F(y)]dyll } is %(1). 

This result has been proved by Stigler [12]. I t  implies the asymptotic 
normali ty of L-estimators of location. 

2) If J(t)=l and if T* is a consistent root of (2.1), Theorem 1, 
under  assumptions A1) and A2) implies tha t  

This is a special case of a theorem of Huber [7] used to establish 
the  asymptotic normality of maximum likelihood estimators under non- 
standard conditions. 

f: J(t)r 3) Define ,(F)= where /~ and r are 

the  functionals corresponding to T* and I ~*. After  some algebra the  
influence curve (Hampel [5]) of ~, IC (,,  x), is shown to be equal to :  

r (#, x)~(z, r ) + I C  (r, x)~(Z, r) 

where ~ and ~ denote the partial derivatives of I with respect to x 
and y respectively and IC (/~, x), IC (r, x) are the  influence curves of /~ 
and r respectively. 

X,)J are o,(n-in), (T*- /~)  and ( V * - r )  are O,(n-in), therefore 

^ ^ ^ ^ 

~(~, r)--2(T*. V*)+(T*-/~)2.(/~, r)+(V*-r)a , ( , ,  r) is o~(n -'/~) 

since 2 is differentiable at  (~, r). With the  influence curve the  con- 
clusion of Theorem i can be reformulated as 
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In-' ~:,~ J[il(n+ 1)1r T*)/V*]--~(F)--n- '  ,=~ IC (~, X~)] is op(n-W2). 

Filippova [4] has established this type of result for several statistics. 
4) The assumption r can be wri t ten  as a weighted sum of in- 

creasing functions is not too restrictive. I t  is easily shown (see Rivest 
[11]) tha t  any function with a finite number  of minima and maxima 
can be decomposed in such a way. All the  functions r used in robust  
estimation (see Andrews et al. [1]) are of tha t  type. 

THEOREM 2 (Asymptotic normality of  L-M-estimators of  location). 
Under the assumptions 

i) r is increasing and J is positive, 
ii) 2x(~, r) e ( - c o ,  0) where Z is defined as the solution of  2(x, r)=O, 

iii) ~'*, the scale estimator, satisfies: 

n '/~ V : - r - n  -~ ~ IC (r, X~) is %(1), 

iv) A1) and A3) of Theorem 1, 

the L-M-estimator T~ based on J and ~ satisfies 

where 

IC (/,, x)= - {r r) IC (r, ~)}/~(~, r) 

is Hamper's influence curve for  lz. 

The theorem is also t rue under assumptions A1) and A2) of Theo- 
rem 1 provided J is 0 near 0 and 1 or r is bounded. 

Note tha t  this result implies tha t  n ln(T~-~)  is asymptotically 
N[0, E [IC ~ (/~, X)]]. 

PROOF. For any g ~ R, 

where ks is defined by nln2(k~, r)=g. Since 2 is differentiable at (/~, r), 

nl/2(lc~-tO is 0(1). As in Huber [6], P (T=>k~) and 

reach the  same limit as n - ,  co. Applying Theorem 1 under  the  as- 
sumptions A1) and A3) 
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n -In ~ {][i/(n + 1)]r ks) /V' l --  J (k~, V*) - CH[(X~- Z)/7]} is o~(1). 

Therefore 
^ 

lira P [nlnJ(T~, r)<g] 

=lip p r)} >=-g]. 

This shows that  nl/2~(T~, r) is asymptotically normal. Since 2~(~, r) is 

nonzero nln(T~--[~) is asymptotically normal by Slutsky's Theorem. 

Applying Theorem I with Tn and V* yields 

n'n[,,1(~',. T~:)+n-l~ CH[(Z,--ll)/y] ] is 0,(1) 

which is equivalent to:  

n 1/~ - ~ + n  -~ E [ O . [ ( X ~ - ~ ) l r l + ( V * - r ) , ~ ( ~ ,  r)]l,~.(~, r) is o.(1) 

since ,~ is differentiable at (~,r). Replacing n t n ( V * - r )  by n -tn. 

~ IC (r, X3 concludes the proof. Q.E.D. 

Remarks. 5) The assumption r is increasing and J is positive 
implies that  the L-M-estimator is uniquely defined. If this assumption 
is not met, one has to use the method of Huber [7] to prove the 
asymptotic normality: first find a consistent solution to (2.1) then 
Theorem 1 under the assumptions A1) and A2) yields the asymptotic 
normality of this solution. 

6) If F,  J and r are symmetric, 2~(/~, r )=0  and the influence 

curve of [b is an odd function. If the influence curve of V* is even, 

as is usually the case, T~ is asymptotically independent of ~'*. 

For M-estimator, Carroll [3] has shown that  n(logn)-*lTn-/~ 7) 
L_ 

- -n  -~ ~=~' IC (1~, X~)] is 0(1) almost surely provided ~ is a smooth func- 

tion. 
8) If two L-M-estimators are estimating the same parameter and 

have the same influence curve, their difference is %(n -~n) as conjec- 
tured by Hampel [5], see also Jaeckel [9]. 

Along the lines of Huber [6], one proves: 

COROLLARY 1 (Efficient estimation). Assuming that F is a sym- 

metric distribution and that V* is a consistent estimator of  r, for  any 



ASYMPTOTIC DISTRIBUTIONS 231 

strictly positive funct ion J(t), symmetric about 1/2 with bounded varia- 
tion, there exists a funct ion r 

+(Y): ~[ [J(E(~))]--'d<-- fI<(~) ~ 
f(x) / 

such that the L-M-estimator T~ based on J and r is e~cient for  IX. 

Example 1. Let F be logistic, i.e. F(x)=(l+e-~) -I, then  

f, - - -~ - (x l= (e=- l l l (e~+  l )  . 

I f  J(t)--1 and r the efficient M-estimator is ob- 
tained. I f  J ( t ) = t ( 1 - t )  and r this is the efficient L-estimator. I f  

t ~ t < l / 2  
J(t) : "  

( l - t )  2 t~1]2 

and 

r 1 - e  -~ x>=0 

eX-1 x < 0  

the L-M-estimator based on J and ~ is efficient. 

For scale estimators, the  same reasoning yields: 

THEOREM 3 (Asymptotic normality o f  L-M-estimators o f  scale). I f ,  
the L-M-estimator V~ based on r and J is uniquely defined, under as- 
sumptions similar to the ones o f  Theorem 2, 

where 

n'/2[#,,-y-n-~IC(r, XD] is op(1) 

IC 0% x)= {-r ~') IC (~. x)}l~,(i~, r) 

is the influence curve o f  ~{. 

Remark. 9) As for location estimators one can find an infinity of 
efficient L-M-estimator of scale. Under  symmet ry  it is easily shown 

tha t  ]~ is asymptotically independent of T* (compare with Bickel and 
Lehmann [2]). 

Example 2 (The median deviation). If 

r { - - I  I x l < l  

1 Ix l> l  
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and if T* is the median the M-estimator of scale I>. is the median 
deviation. Here 

2(x, y ) = P  ( IX -x l / y>  I ) - P  ( ]X-x l / y< l )  . 

Assuming that  F(x) is symmetric with respect to /~, r (F)=F-I (3 /4 ) -Z ,  

~(~, r) = - 4  f[F-~(3/4)] 

and 

IC (r, x)= l -1/4f[F-*(3/4)] Ix I< l  
[ 114f[F-*(3/4)] Ix i> 1. 

According to Theorem 1, under assumptions A1) and A2), V, is asymp- 
totically normal provided f(#)  and f[F-l(3/4)] exist and are nonzero. 

3. Step estimators 

Consider now a one step L-M-estimator of location 

2:-t(2:, ?:)jto(r 
where 

l(x, y )=n- '  ~, J[i/(n+ 1)]r 
i = l  

and l~ is the partial derivative of l with respect to x. If r  note 

that  T2)= T~ the L-estimator corresponding to J. The asymptotic dis- 
tribution of Ib2) is now derived. 

THEOREM 4. Under the assumptions 

are %(1). 
ii) The pairs (J, r and (J, r satisfy A1) and A3) (or A2) i f  J is 

0 near 0 and 1 or r and r are bounded) of Theorem 1. 
The one step L-M-estimator T<~> satisfies 

nln[T(~l)-I~(1)-n-l ~= IC (llcl', X~)J is %(1) 

where 

#Cl)(F) = # ( F ) -  ~(~, r)/]~(~, r) 

IC (/~(1,, x)= {--r ~I~, r) IC (r, x)}/~lZ, r) 
+ ~(~, r)R('(~, r) 
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is Hampel's influence curve for t~ (~) and 

R<'(/~, r)=IC [~=(/~, r), x]l,~i(/~, r). 

(~:(ix, r) is considered as the functional -f~o J(t)O'[[F-'(t)-ix(F)]/r(F)]dt I 
% 

r(F).) 
PROOF. If v~ and ~2 are two functionals, it is easily shown that  

IC (~+~2, x)=IC (~I, x)+IC @2, x) and IC (,l/v2, x)=[IC (vl, x)v~-IC (v2, x) 
�9 v,]/v~ if v2r Therefore 

(3.1) IC (~<-, x)=IC (~, x)-IC [2(~, r), x]p=(~, r) 
-2(/~, r) IC [J:(/~, r), x]/2~(~, r).  

(Here, 2(/~, r) is considered as a functional.) By Remark 3) 

IC [~(Z, r), z]/~:(~, r) 

= {r r) IC (r, x)}/2=(~, r)+IC (~, x). 

Replacing IC [I(/~, r), x]/2~(/~, r) by this quantity in (3.1) yields the de- 
sired expression for IC (~"), x). According to Theorem 1, 

(3.2) 

Consider 

UT,*, V:)= -n- '  ~, J[il(n+ l)lO'[(X<,,- rb~*)l P:]I V: 

since the pair (J, r satisfies the assumptions of Theorem 1 and since 

n l /2 I f / * - r -n - lDIC(r ,X~) l  is o,(1) 

(3.3) n'i@x(7'*, l/*)-~:(tx, y)--n-' ~ IC [~:(/x, r), X,]] is o,(1) . 

Combining (3.2) and (3.3) proves the result. Q.E.D. 

Remarks. 10) If ix is a solution of 2(0, r )=0,  i.e. if T* and 262) 

are estimating the same parameter,  ~1) has the same asymptotic be- 
havior as the corresponding L-M-estimator. For maximum likelihood 
estimators a similar conclusion has been reached by LeCam [10]. 

11) If /~ is not a solution of 2(0, r )=0 ,  t2 cl) is the solution of 2(0, r) 
=0 obtained after one iteration of the Newton Raphson procedure 

starting at g. Note that  ~ o  and 1~* satisfy the assumptions of Theo- 

rem 4, therefore T~(~) the two step estimator satisfies: 
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If the iteration procedure converges, /~a) is closer to a solution of ~(~, •) 
=0  than ~(') and its influence curve is also closer to the influence curve 

A 

of the corresponding L-M-estimator. I terat ing this result T~ ~) the k 
step estimator should be closer to the corresponding L-M-estimator 

than ~cz) for l<k. 
Now the effect of a lack of robustness of T* and ]7* on T~ and 

T2 ) is investigated. 
For instance suppose that  F is t with 3 degrees of freedom, the 

location is to be estimated with some robust M-estimator, the scale is 

unknown. An a priori scale estimator, ~'* has to be used. If ~'* is 

the standard deviation then V* is a consistent estimator of the popu- 
A 

lation standard deviation r. I t  is easily seen that  V* belong to the 
domain of attraction of a stable law with parameter  3/2. Therefore 

the rate of convergence of V*, a(V*)= {sup p: nl-'/~(V*-r) is 0~(1)} is 

3/2. Will the slow convergence of ~'* affect the convergence of T~ ? 
The next theorem answers this question. 

So far we have assumed a(T*)=a(V*)=2, now this assumption is 

weakened to a(~'*) and a(T*) e (1, 2). 

THEOREM 5. Assuming 
i) A1) and A2) of Theorem 1 hold. 

ii) 2(x, y) is continuously differentiable near (/~, r) and ~(/~, r )<0 .  
Then i f  
1) F is symmetric with respect to ~ and J and r are symmetric, 

A A 

2) 2y(/~, r ) r  a( T~) =a( V* ). 

PROOF. Assume without loss of generality ~ =0  and r = l .  Apply- 
ing Theorem 1 

l 
Applying the mean value theorem: 

lira [~(T~, "v'*)- ~(0, V*)]/T~2~(0, 1)=1 

^ A 

in probability. If 1) holds 2(0, V*)=O and n~/~T~ has the same asymp- 

totic distribution as n -~n ~. cH(X,), i.e. a(T~)=2. If 2) holds for any 
Z = I  

~2,  
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lim P (n*-*/~T~>g) 

=lim P n ~-~/~ 2(0, V*)+n  -t 

^ ^ 

and ~(T~) =a(V*). 

~ cn(X,)) > a,(0, 1)g] 

Q.E.D. 

For one step estimators, 

THEOREM 6. Assuming that 
i) (or, r and (J, r satisfy A1) and A2) of Theorem 1. 

ii) a(x, y) has continuous third partial derivatives near (/~, 7) and 
~(~, r)<0.  

zf  
a) F is symmetric with respect to g, r and J are symmetric ; 

/ \ 
b) r) and r) are  o zero 

\ d ~  ~ / 

If 
c) 

a(T~'))=min {aa(T*), a( T*)a( V*), 2}. 

~(I~, r), ax~(~, r), ~(2~,(1~, r) are nonzero, 

~(~")  = rain [a(7%), ~( I~*)]. 

PROOF. Assume without loss of generality /~=0 and r = l .  As in 
Theorem 4, l(~'*, fr*)/l,(~'*, fr*)-a(O, 1)/a,(0, 1) minus 

,~ , Y,*)+n -~ Z r 1 ,~(0, l)  

--,I(0, 1) 2=(7',*, t*)--,l=(O, 1)--n-' N r J~(O, 1) 

+).(0, 1)(~'*--1)/~,(0, 1) 

is o~(n -'n) where era(x) is the r function corresponding to J and r 
If a) and b) hold, a(T~ 1>) equals 

(3.4) 4 ~ ( 0 ,  1 ) f * - ~ ( f * ,  ~,*)1 

note that  2(x, 1) is odd, hence a(=,~(x, 1) is also odd, i.e. a(~,)(0, 1)=0. 
Now using a Taylor series expansion and the fact that  a(0, V*)=0, 
(3.4) is equal to 

a{i~*[i=(0, 1)-I~(0, IZ*)l-(Ib*)3ic,x,(0, 1)}. 

This proves the first part. If c) holds, 

~(~,,)=~[#:~(~:, ~:)-~(o, 1)1 
=min [a(11"), a(~'*)]. Q.E.D. 
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^ A 

Remark.  12) If F i s  symmetric, note that  a(T2))>=a(T(J)).., there- 
fore to increase the number of iterations improves the rate of con- 
vergence of the estimator. 

Appendix. Sketch of the proof of Theorem 1 

Without losing generality it is assumed that  J(t) is positive in- 
creasing bounded, /~=0 and r--1  and r is increasing. 

LEMMA 1. Under assumptions A2)-ii) or A3)-iv) 

[~(~:, f~:)-~(~:, ?:)] is o.(n-'O 

where ~(x ,  y) = n  -I ~ J[ i / (n+ 1)]r {[F-l[i /(n+ 1)] -  x]/y} . 

PROOF. Write r162162 where r162 if x>=0 and r162 
if x<0.  Assume r i.e., r is positive increasing. For $ large 

enough such that  (F- l ( t ) - -T*) / f z*>O if t>3 ,  

n ~ i ln  
~I(T*,IY*) = E ~ J( t )r  

i = [ n ~ ] + l  J ( f - - 1 ) / n  

Since the product of two positive increasing functions is positive 
increasing, 

1( T*, fz*) < ~1( T*, fz*) + f"~-~ J(t)r - ~*)/fz,*]dt . 

Under A2)-ii) or A3)-iv), 

f ~ r  lira n m J(t)r dt = O . 
n--1 

Bounding 21(T*, I7") from below yields the result for r To prove the 
result for r it can be assumed that  J(t) is negative increasing, hence 

J( t )r  is positive decreasing as a product of negative 
increasing functions. The reasoning is similar to the first part. 

Q.E.D. 

A) Proof  under A1) and A2) 

Using this result, 

n -''~ ~, J[il(n + ~)]r ~:) / f~:]-  ~(~:, f~:) 

can be writ ten as h,(ZC~)(.)) where h, is a random function defined by 
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h=(x(. )) = n -'12 ~ J[i/(n + 1)] {r + 1) + n-mx[il(n + 1)11 - T*]/IY*] 
^ ^ 

-- r  + 1)]  - T*] i  V * ] }  

and Z(:)(-) is the empirical process. Heuristically for large n, h~(Z("~(.)) 
can be wr i t ten  as: 

n -~ Z J[i / (n+l)]Z~)[i / (n+l)]  r  * 
~=l t=i/(n+I)  

this random variable should therefore converge to f~oJ(t)Z(t)dr 

Z(t) is the  Brownian Bridge. 
Lemma 2 of Rivest [11] contains a rigorous proof of this state- 

ment  under assumption A2) (i.e. Ir is bounded or J is 0 near 0 and 1). 

Using a similar a rgument  it is shown tha t  n -'n N r converges to 

Now since dr162 the two random variables under  
consideration converge to the same limit. This proves the  theorem 
under  A1) and A2). 

B) Proof under A1) and A3) 

Consider 

~-,~2 ~, {J[</(n+ 1 ) ] r  ~:)1 ~:]- ~(~:, fz:) 
z : l  

-r ~:)17:]+ ~,,(~:, ~:)}. 
By Lemma 1, this random variable will reach the  same limit as 

(A.1) n_,~2 : ~  { E x < , ~ - t : l l ~ :  . . 
, : <  j[s-,[i/(n+I)l-m*]tv* [J[it(n + 1)] -J[F(x)]]dr  . 

Using assumption A3), for any v>0,  it is possible to find $>0  
such tha t  

n -'n c~(...)+=~D~+l(...)] is 0~(~). 

used to prove the  theorem under  A1) and A2) The a rgument  
serves to prove 

n-[n~] 

n -'/~ ~, ( . . . )  is o.(1). 
i=Fn~]+l 

Therefore (A.1) is %(1). 
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Write r 1 6 2 1 6 2  where r162 when r  0 if not. To prove 
the  result it suffices to show tha t  

(A .2 )  {r ?.) 
- r162  is %(1) for ] = 1 ,  2 .  

Take ]=1. For any ~>0, by the  assumption on T* and I/* it  is pos- 

sible to find constants Co, C1 such tha t  IT*[<Con -1/2 and ]TT*-l l<C0n -1/2 

and I~j.(T*, V*)]<CIn -~n for large n except on a set of probability ~. 
Similarly one can find C2 such tha t  

-~n  l +Con-ln)l<C2n-,n I ~ j . ( - C o n  , 

for large n. Now take a=~/(C~+Q), since r is increasing, null 
for small z, positive for large ones, 

i=n-[n~]+l 

~_~+n -'~ ~ r  
~=n-[n~]+1 

where k~=-Con -*/2, s~--l-k~. Therefore (A.2) is less than 

n 
s + n -*n E r k,)/s~]-- ;~,(k~, s~)-- r + E (r 

~ = 1  

n-Cna] ^ ^ ^ 

+n -'n E r T*)IV*]-~,,(T*, V*) 
i=l  

-r + ~,.(k~, s~) . 

The first summation is summing independent variables with 0 ex- 
pectation. I t  is easily seen tha t  its variance goes to 0. The second 
summation is %(1) by an a rgument  used previously hence (A.2) is less 
than ~. Similarly it can be shown tha t  (A.2) is bigger than - ~  for 
large n, therefore  (A.2) is %(1) when ]=1. The proof when ]=2 is 
similar. Q.E.D. 

Acknowledgment 

This work was done while I was a graduate s tudent .  I want  to 
thank  my advisers Professors Harold Ruben and Constance van Eeden 
for their  valuable comments and helpful suggestions. 

UNTYERSIT]~ LAVAL 



ASYMPTOTIC DISTRIBUTIONS 239 

R E F E R E N C E S  

[ 1 ] Andrews, D. F. et al. (1972). Robust Estimates o f  Location: Survey and Advances, 
Princeton University Press, Princeton, N.J. 

[ 2] Bickel, P. J. and Lehmann, E. L. (1976). Descriptive statistics for nonparametric 
models, III, Ann. Statist., 4, 1139-1158. 

[ 3 ] Carroll, R. J. (1978). On almost sure expansions for M-estimates, Ann. Statist., 6, 
314-318. 

[ 4] Filippova, A. A. (1962). Mises' theorem on the asymptotic behaviour of functionals 
of empirical distribution functions and its statistical applications, Theory Prob. Appl., 
7, 24-57. 

[ 5 ] Hampel, F. R. (1974). The influence curve and its role in robust estimation, f l  Amer. 
Statist. Ass., 69, 363-393. 

[ 6 ] Huber, P. J. (1964). Robust estimation of a location parameter, Ann. Math. Statist., 
35, 73-101. 

[7]  Huber, P. J. (1967). The behavior of maximum likelihood estimates under non 
standard conditions, Proc. 5th Berkeley Syrup. Math. Statist. Prob., Univ. of California 
Press, 221-233. 

[8]  Huber, P. J. (1972). Robust statistics: A review, Ann. Math. Statist., 43, 1041-1067. 
[ 9 ] Jaeckel, L. A. (1971). Robust estimates of location: Symmetry and asymmetric con- 

tamination, Ann. Math. Statist., 42, 1020-1034. 
[10] LeCam, L. (1956). On the asymptotic theory of estimation and testing hypothesis, 

Proc. 3rd Berkeley Syrup. Math. Statist. Prob., Univ. of California Press, 129-156. 
[11] Rivest, L. P. (1979). An asymptotic theorem in the location scale model, Tech. Re])., 

Univ. of Toronto. 
[12] Stigler, M. S. (1974). Linear functions of order statistics with smooth weight func- 

tions, Ann. Statist., 4, 676-693. (Correction, 7, 466.) 


