Ann. Inst. Statist. Math. 34 (1982), Part A, 225-239

SOME ASYMPTOTIC DISTRIBUTIONS IN THE LOCATION-SCALE MODEL

LOUIS-PAUL RIVEST

(Received]an. 16, 1980; revised Oct. 27, 1981)

Summary

Scale and location estimators defined by the equation

$$
\sum_{i=1}^{n} J[i/(n+1)]\varphi[(X_{(i)} - \hat{T}_n)/\hat{V}_n] = 0
$$

are introduced. Their asymptotic distribution is derived. If the underlying distribution is known, a large number of estimators is shown to be efficient. Step versions of these estimators are also studied. Hampel's (1974, *J. Amer. Statist. Ass.,* 69, 383-393) concept of influence curve is used. All the asymptotic results presented in this paper are derived from a general theorem of Rivest (1979, *Tech. Rep.,* Univ. of Toronto).

1. Introduction

Let X_1, X_2, \dots, X_n be a random sample from a distribution $F(x)$, let $X_{(1)}, X_{(2)}, \cdots, X_{(n)}$ be the corresponding ordered sample.

With the modern emphasis on robustness (see Huber [8]), two classes of estimators of the location parameter have been widely investigated: The M-estimator \hat{T}_n defined as a solution of

$$
\sum_{i=1}^{n} \phi[(X_i - \theta) / \hat{V}_n^*] = 0
$$

where \hat{V}_n^* is a scale estimator.

The L-estimator \hat{T}_n defined as

$$
\hat{T}_n = n^{-1} \sum_{i=1}^n J[i/(n+1)]X_{(i)}
$$

where J satisfies $\int_0^1 J(t)dt=1$.

Key words: M-estimator, L-estimator, influence curve, Robust estimation, step estimator.

226 LOUIS-PAUL RIVEST

In M-estimation an observation is weighted according to its magnitude while in L-estimation it is weighted according to its rank in the sample. In Section 2 the asymptotic behavior of L-M-estimators which weight an observation according to both its magnitude and its rank is investigated. The findings are compared with known results about Lestimators (Stigler [12]) and M-estimators (Huber [6], [7]).

The third section is devoted to the study of step estimators. If the estimating equation is of the type

 $l(\theta, \hat{V}_0^*)=0$

where \hat{V}_n^* is a scale parameter, a one step estimator is defined as

$$
\hat{T}_n^{(1)} = \hat{T}_n^* - l(\hat{T}_n^*, \hat{V}_n^*)/l_x(\hat{T}_n^*, \hat{V}_n^*)
$$

where l_x is the partial derivative of $l(x, y)$ with respect to x, \hat{T}_n^* and \hat{V}_n^* are a location and a scale estimator given a priori. In Section 3, the asymptotic distribution of L-M step estimators is derived under minimal regularity conditions.

For the estimators defined in Section 2 and their step versions studied in Section 3 it is shown that

$$
\left[\hat{\theta}_n - \theta - n^{-1} \sum_{i=1}^n \mathrm{IC}(\theta, X_i)\right] \text{ is } o_p(n^{-1/2})
$$

where IC (μ, x) is Hampel [5] influence curve.

NOTATION. The superscript "*" will denote estimators given a priori, independently of the estimation procedure under consideration.

2. Asymptotic behavior of L-M-estimators

As mentioned in the introduction, the L- and the M-estimators can be subsumed in the following class.

DEFINITION (L-M-estimators). Let $J(t)$ be a weight function defined in [0, 1] and $\varphi(x)$ be a function defined in R then the L-M-estimator of location \hat{T}_n , is defined as a solution of:

(2.1)
$$
\sum_{i=1}^{n} J[i/(n+1)]\psi[(X_{(i)}-\theta)/\hat{V}_n^*]=0
$$

while the L-M-estimator of scale, \hat{V}_n , is defined as a solution of

$$
\sum_{i=1}^n J[i/(n+1)]\varphi[(X_{\zeta_i}-\hat{T}_n^*)/\theta] = 0.
$$

If $J(t)=1$ the L-M-estimator reduces to M-estimators while if $\phi(x)$ $=x,$

$$
\hat{T}_n = \sum_{i=1}^n J[i/(n+1)]X_{(i)} / \sum_{i=1}^n J[i/(n+1)]
$$

which is equivalent to the L-estimator of location and if $\psi(x)=|x|^2-1$,

$$
\hat{V}_n = \left[\sum_{i=1}^n J[i/(n+1)]|X_{(i)} - \hat{T}_n^*|^n / \sum_{i=1}^n J[i/(n+1)]\right]^{1/n}
$$

which is equivalent to the L-estimator of scale defined by Bickel and Lehmann [2].

The asymptotic results of this section will be derived from the following theorem :

THEOREM 1. *Let J(t) be a bounded variation function defined in* $[0, 1]$ and $\psi(x)$ be a function defined in R which can be written as

$$
\sum_{j=1}^{n_0} b_i \phi_i(x)
$$

where $b_i \in R$, $i=1, 2, \cdots, n_0$ and ${\{\phi_i\}}_{i=1}^{n_0}$ is a sequence of increasing func*tions.* Let \hat{T}^* and \hat{V}^* be consistent estimators of μ and γ then under *the assumptions*

A1) *J(t)* and $\psi[F^{-1}(t)]$ are not discontinuous together, ψ is continuous at $F^{-1}(t)$ for almost all t.

$$
And\ either
$$

- A2) i) $(\hat{T}_n^*-\mu)$ *and* $(\hat{V}_n^*-\gamma)$ *are* $o_p(1)$
	- ii) *There exists* $\delta \in (0, 1/2)$ *such that* $J(t)=0$, $t \notin (\delta, 1-\delta)$ *or there exists B* >0 *such that* $|\psi(x)| \leq B$, $x \in R$.

$$
\\ Or
$$

A3) i)
$$
(\hat{T}_n^* - \mu)
$$
 and $(\hat{V}_n^* - \gamma)$ are $O_p(n^{-1/2})$

ii) $\lambda(x, y)$ and $\lambda_n(x, y)$ are continuously diffentiable in a neighbor*hood of* (μ, γ) *where*

$$
\lambda(x, y) = \int_0^1 J(t)\phi[(F^{-1}(t) - x)/y]dt
$$

$$
\lambda_H(x, y) = \mathbb{E}[\phi_H[(X - x)/y)]]
$$

and

$$
\phi_H(x) = \int_0^x J[F(y)]d\phi(y) - \mathcal{E}\left[\int_0^{(X-\mu)/\tau} J[F(y)]d\phi(y)\right]
$$

iii) *There exist* $\eta > 0$, M_0 in N such that $|J(t)-J(s)| < M_0|t-s|$ for *both s and t in* $[0, \eta]$ *or in* $[1-\eta, 1]$.

There exist M_1 , M_2 in N such that F is absolutely contin*uous in* $\{x \in R : |x| > M_1\}$ and $f(x)$, the density of F, satisfies $f(x)$ and $|x f(x)| < M_2$ for $|x| > M_1$

iv) E $[\psi_H^2[(X-x)/y]]$ is finite in a neighborhood of (μ, γ) . *Then the following is true:*

$$
n^{-1} \sum_{i=1}^{n} \{J[i/(n+1)]\psi[(X_{(i)} - \hat{T}_{n}^{*})/\hat{V}_{n}^{*}]\n- \lambda(\hat{T}_{n}^{*}, \hat{V}_{n}^{*}) - \psi_{H}[(X_{(i)} - \mu)/\gamma]\} \text{ is } o_{p}(n^{-1/2}).
$$

The proof of this result is technical. A sketch of the proof is contained in the appendix while a formal proof is derived in Rivest [11].

Remarks. 1) If $\psi(x)=x$, $\lambda(x, y)=\left[\int_{a}^{1}J(t)(F^{-1}(t)-x)dt\right]/y$ and if \hat{T}_n^* is the L-estimator corresponding to $J(t)$, Theorem 1 implies that (taking $\hat{V}_n^* = \gamma = 1$:

$$
n^{1/2}\Big\{\hat{T}_n^*-\mu-n^{-1}\sum_{i=1}^n\Big[\int_0^{X_i-\mu}J[F(y)]dy-\mathbf{E}\Big[\int_0^{X_i-\mu}J[F(y)]dy\Big]\Big]\Big\}\ \text{ is }\ o_p(1)\ .
$$

This result has been proved by Stigler [12]. It implies the asymptotic normality of L-estimators of location.

2) If $J(t)=1$ and if \hat{T}_n^* is a consistent root of (2.1), Theorem 1, under assumptions A1) and A2) implies that

$$
n^{1/2}\Big\{\lambda(\hat{T}_n^*,\,\hat{V}_n^*)-n^{-1}\sum_{i=1}^n\varphi[(X_i-\mu)/\gamma]\Big\}\;\;\text{is}\;\;o_p(1)\;.
$$

This is a special case of a theorem of Huber [7] used to establish the asymptotic normality of maximum likelihood estimators under nonstandard conditions.

3) Define $\nu(F) = \int_0^1 J(t)\varphi[(F^{-1}(t) - \mu(F))/\gamma(F)]dt$ where μ and γ are the functionals corresponding to \hat{T}^* and \hat{V}^* . After some algebra the influence curve (Hampel [5]) of ν , IC (ν , x), is shown to be equal to:

$$
\psi_{H}[(x-\mu)/\gamma]+{\rm IC}(\mu,x)\lambda_{x}(\mu,\gamma)+{\rm IC}(\gamma,x)\lambda_{y}(\mu,\gamma)
$$

where λ_x and λ_y denote the partial derivatives of λ with respect to x and y respectively and IC (μ , x), IC (γ , x) are the influence curves of μ and γ respectively.

Now assuming $\left[\hat{T}_n^*-\mu-n^{-1}\sum_{i=1}^n\text{IC }(\mu, X_i)\right]$ and $\left[\hat{V}_n^*-\gamma-n^{-1}\sum_{i=1}^n\text{IC }(\gamma, X_i)\right]$ X_i) are $o_p(n^{-1/2})$, $(\hat{T}_n^*-\mu)$ and $(\hat{V}_n^*-\gamma)$ are $O_p(n^{-1/2})$, therefore

$$
\lambda(\mu, \gamma) - \lambda(\hat{T}_n^*, \hat{V}_n^*) + (\hat{T}_n^* - \mu)\lambda_x(\mu, \gamma) + (\hat{V}_n^* - \gamma)\lambda_y(\mu, \gamma) \text{ is } o_p(n^{-1/2})
$$

since λ is differentiable at (μ, γ) . With the influence curve the conclusion of Theorem 1 can be reformulated as

$$
\left[n^{-1}\sum_{i=1}^n J[i/(n+1)]\varphi[(X_{\iota})-\hat{T}_n^*)/\hat{V}_n^*]-\nu(F)-n^{-1}\sum_{i=1}^n IC(\nu,X_i)\right] \text{ is } o_p(n^{-1/2}).
$$

Filippova [4] has established this type of result for several statistics.

4) The assumption ϕ can be written as a weighted sum of increasing functions is not too restrictive. It is easily shown (see Rivest [11]) that any function with a finite number of minima and maxima can be decomposed in such a way. All the functions ϕ used in robust estimation (see Andrews et al. [1]) are of that type.

THEOREM 2 *(Asymptotic normality of L-M-estimators of location). Under the assumptions*

- i) ϕ *is increasing and J is positive,*
- ii) $\lambda_x(\mu, \gamma) \in (-\infty, 0)$ *where* μ *is defined as the solution of* $\lambda(x, \gamma)=0$,
- iii) \hat{V}_n^* , the scale estimator, satisfies:

$$
n^{1/2} \left[\hat{V}_n^* - \gamma - n^{-1} \sum_{i=1}^n \mathrm{IC} \left(\gamma, X_i \right) \right] \text{ is } o_p(1),
$$

iv) A1) *and* A3) *of Theorem 1,*

the L-M-estimator \hat{T}_n based on J and φ satisfies

$$
n^{1/2} \left[\hat{T}_n - \mu - n^{-1} \sum_{i=1}^n \mathrm{IC} \left(\mu, X_i \right) \right] \text{ is } o_p(1)
$$

where

IC
$$
(\mu, x) = -\left\{\phi_H[(x-\mu)/\gamma] + \lambda_y(\mu, \gamma)\right\} \left(\gamma, x\right)\right\} / \lambda_x(\mu, \gamma)
$$

is Hampel's influence curve for μ *.*

The theorem is also true under assumptions A1) and A2) of Theorem 1 provided J is 0 near 0 and 1 or ϕ is bounded.

Note that this result implies that $n^{1/2}(\hat{T}_n-\mu)$ is asymptotically $N[0, E [IC²(\mu, X)]].$

PROOF. For any $g \in R$,

$$
P\left[n^{1/2}\lambda(\hat{T}_n, \gamma) < g\right] = P\left(\hat{T}_n > k_n\right)
$$

where k_n is defined by $n^{1/2}\lambda(k_n, \gamma)=g$. Since λ is differentiable at (μ, γ) , $n^{1/2}(k_n-\mu)$ is $O(1)$. As in Huber [6], P $(\hat{T}_n > k_n)$ and

$$
\mathrm{P}\left[n^{-1/2}\sum_{i=1}^n\left\{\int I[i/(n+1)]\varphi[(X_{(i)}-k_n)/\hat{V}_n^*]-\lambda(k_n,\,\gamma)\right\}\geq -g\right]
$$

reach the same limit as $n \rightarrow \infty$. Applying Theorem 1 under the assumptions A1) and A3)

$$
n^{-1/2}\sum_{i=1}^n\left\{J[i/(n+1)]\varphi\{(X_{(i)}-k_n)/\hat{V}_n^*\}-\lambda(k_n,\hat{V}_n^*)-\varphi_H[(X_i-\mu)/\gamma]\right\}\text{ is }o_p(1).
$$

Therefore

$$
\lim_{n} P [n^{1/2} \lambda(\hat{T}_n, \gamma) < g]
$$
\n
$$
= \lim_{n} P \Big[n^{-1/2} \sum_{i=1}^{n} \left\{ \psi_H [(X_i - \mu)/\gamma] + \lambda(k_n, \hat{V}_n^*) - \lambda(k_n, \gamma) \right\} \geq -g \Big].
$$

This shows that $n^{1/2}\lambda(\hat{T}_n, \gamma)$ is asymptotically normal. Since $\lambda_x(\mu, \gamma)$ is nonzero $n^{1/2}(\hat{T}_n-\mu)$ is asymptotically normal by Slutsky's Theorem. Applying Theorem 1 with \hat{T}_n and \hat{V}_n^* yields

$$
n^{1/2} \left[\lambda(\hat{T}_n, \hat{V}_n^*) + n^{-1} \sum_{i=1}^n \phi_n[(X_i - \mu)/\gamma] \right] \text{ is } o_p(1)
$$

which is equivalent to:

$$
n^{1/2}\Big\{\hat{T}_n - \mu + n^{-1}\sum_{i=1}^n [\psi_{H}[(X_i - \mu)/\gamma] + (\hat{V}_n^* - \gamma)\lambda_{y}(\mu, \gamma)]/\lambda_{x}(\mu, \gamma)\Big\} \text{ is } o_{p}(1)
$$

since λ is differentiable at (μ, γ) . Replacing $n^{1/2}(\hat{V}_n^*-\gamma)$ by $n^{-1/2}$. $\sum_{i=1}^{n} IC(r, X_i)$ concludes the proof. Q.E.D.

Remarks. 5) The assumption ϕ is increasing and J is positive implies that the L-M-estimator is uniquely defined. If this assumption is not met, one has to use the method of Huber [7] to prove the asymptotic normality: first find a consistent solution to (2.1) then Theorem 1 under the assumptions A1) and A2) yields the asymptotic normality of this solution.

6) If *F*, *J* and ϕ are symmetric, $\lambda_y(\mu, \gamma)=0$ and the influence curve of \hat{T}_n is an odd function. If the influence curve of \hat{V}_n^* is even, as is usually the case, \hat{T}_n is asymptotically independent of \hat{V}_n^* .

7) For M-estimator, Carroll [3] has shown that $n(\log n)^{-1} \hat{T}_n-\mu$ L_ $-n^{-1} \sum \text{IC } (\mu, X_i)$ is $O(1)$ almost surely provided ϕ is a smooth function.

8) If two L-M-estimators are estimating the same parameter and have the same influence curve, their difference is $o_p(n^{-1/2})$ as conjectured by Hampel [5], see also Jaeckel [9].

Along the lines of Huber [6], one proves:

COROLLARY 1 *(Efficient estimation). Assuming that F is a symmetric distribution and that* \hat{V}_n^* *is a consistent estimator of* γ *, for any*

strictly positive function J(t), *symmetric about* 1/2 *with bounded variation, there exists a function* ϕ ,

$$
\varphi(y) = \int_0^y \left[J(F(x))]^{-1} d\left(-\frac{f'(x)}{f(x)}\right) \right.
$$

such that the L-M-estimator \hat{T}_n based on J and ϕ is efficient for μ .

Example 1. Let F be logistic, i.e. $F(x)=(1+e^{-x})^{-1}$, then

$$
-\frac{f'}{f}(x) = (e^x - 1)/(e^x + 1).
$$

If $J(t)=1$ and $\phi(x)=(e^x-1)/(e^x+1)$, the efficient M-estimator is obtained. If $J(t)=t(1-t)$ and $\varphi(x)=x$, this is the efficient L-estimator. If

$$
J(t) = \begin{cases} t^2 & t < 1/2 \\ (1-t)^2 & t \ge 1/2 \end{cases}
$$

and

$$
\psi(x) = \begin{cases} 1 - e^{-x} & x \ge 0 \\ e^x - 1 & x < 0 \end{cases}
$$

the L-M-estimator based on J and ϕ is efficient.

For scale estimators, the same reasoning yields:

THEOREM 3 *(Asymptotic normality of L-M-estimators of scale). If,* the L-M-estimator \hat{V}_n based on ϕ and J is uniquely defined, under as*sumptions similar to the ones of Theorem 2,*

$$
n^{1/2}\left[\hat{V}_n-\gamma-n^{-1}\sum_{i=1}^n\mathrm{IC}\left(\gamma,X_i\right)\right] \text{ is } o_p(1)
$$

where

IC
$$
(\gamma, x) = \{-\phi_H[(x-\mu)/\gamma] - \lambda_x(\mu, \gamma) \operatorname{IC}(\mu, x)\}/\lambda_y(\mu, \gamma)
$$

is the influence curve of γ *.*

Remark. 9) As for location estimators one can find an infinity of efficient L-M-estimator of scale. Under symmetry it is easily shown that \hat{V}_n is asymptotically independent of \hat{T}_n^* (compare with Bickel and Lehmann [2]).

Example 2 (The median deviation). If

$$
\psi(x) = \begin{cases}\n-1 & |x| < 1 \\
1 & |x| > 1\n\end{cases}
$$

and if \hat{T}_n^* is the median the M-estimator of scale \hat{V}_n is the median deviation. Here

$$
\lambda(x, y) = P(|X - x|/y > 1) - P(|X - x|/y < 1).
$$

Assuming that $F(x)$ is symmetric with respect to μ , $\gamma(F)=F^{-1}(3/4)-\mu$,

$$
\lambda_y(\mu, \gamma) = -4f[F^{-1}(3/4)]
$$

and

$$
IC(r, x) = \begin{cases} -1/4f[F^{-1}(3/4)] & |x| < 1 \\ 1/4f[F^{-1}(3/4)] & |x| > 1. \end{cases}
$$

According to Theorem 1, under assumptions A1) and A2), \hat{V}_n is asymptotically normal provided $f(\mu)$ and $f[F^{-1}(3/4)]$ exist and are nonzero.

3. Step estimators

Consider now a one step L-M-estimator of location

$$
\hat{T}_n^{(1)} = \hat{T}_n^* - l(\hat{T}_n^*, \hat{V}_n^*)/l_x(\hat{T}_n^*, \hat{V}_n^*)
$$

where

$$
l(x, y) = n^{-1} \sum_{i=1}^{n} J[i/(n+1)] \varphi[(X_{(i)}-x)/y]
$$

and l_x is the partial derivative of l with respect to x. If $\varphi(x)=x$, note that $\hat{T}_n^{(1)} = \hat{T}_n$ the L-estimator corresponding to J. The asymptotic distribution of $\hat{T}_n^{(1)}$ is now derived.

- THEOREM 4. *Under the assumptions*
i) $n^{1/2} \left[\hat{T}_n^* \mu n^{-1} \sum_{i=1}^n \text{IC}(\mu, X_i) \right]$ and $n^{-1/2} \left[\hat{V}_n^* \gamma n^{-1} \sum_{i=1}^n \text{IC}(\gamma, X_i) \right]$ are $o_p(1)$.
- ii) *The pairs* (J, ϕ) *and* (J, ϕ') *satisfy* A1) *and* A3) (or A2) *if J is 0 near 0 and 1 or* $\phi(x)$ *and* $\phi'(x)$ *are bounded) of Theorem 1.*

The one step L-M-estimator $\hat{T}_n^{(1)}$ satisfies

$$
n^{1/2} \left[\hat{T}_n^{(1)} - \mu^{(1)} - n^{-1} \sum_{i=1}^n \mathrm{IC} \left(\mu^{(1)}, X_i \right) \right] \text{ is } o_p(1)
$$

where

$$
\mu^{(1)}(F) = \mu(F) - \lambda(\mu, \gamma)/\lambda_x(\mu, \gamma)
$$

IC $(\mu^{(1)}, x) = \{-\phi_H[(x-\mu)/\gamma] - \lambda_y(\mu, \gamma) \text{ IC } (\gamma, x)\}/\lambda_x(\mu, \gamma)$
 $+ \lambda(\mu, \gamma)R^{(1)}(\mu, \gamma)$

is Hampel's influence curve for $\mu^{(1)}$ and

$$
R^{\scriptscriptstyle{\mathrm{(1)}}}(\mu,\,\gamma)\!=\!\mathrm{IC}\left[\lambda_x(\mu,\,\gamma),\,x\right]/\lambda_x^2(\mu,\,\gamma)\;.
$$

 $\left(\lambda_x(\mu, \gamma) \text{ is considered as the functional } -\int_0^1 J(t)\phi'[[F^{-1}(t)-\mu(F)]/\gamma(F)]dt \right)$ $r(F).$

PROOF. If ν_1 and ν_2 are two functionals, it is easily shown that IC $(\nu_1+\nu_2, x)=$ IC $(\nu_1, x)+$ IC (ν_2, x) and IC $(\nu_1/\nu_2, x)=[$ IC $(\nu_1, x)\nu_2$ - IC (ν_2, x) $\cdot \nu_1$ / ν_2^2 if $\nu_2 \neq 0$. Therefore

(3.1) IC
$$
(\mu^{\text{}}\mathbf{x}) = \text{IC } (\mu, \mathbf{x}) - \text{IC } [\lambda(\mu, \gamma), \mathbf{x}]/\lambda_{\mathbf{x}}(\mu, \gamma)
$$

- $\lambda(\mu, \gamma)$ IC $[\lambda_{\mathbf{x}}(\mu, \gamma), \mathbf{x}]/\lambda_{\mathbf{x}}^2(\mu, \gamma)$.

(Here, $\lambda(\mu, \gamma)$ is considered as a functional.) By Remark 3)

IC
$$
\left[\lambda(\mu, \gamma), x\right] / \lambda_x(\mu, \gamma)
$$

= $\left\{\phi_\mu[(x-\mu)/\gamma] + \lambda_y(\mu, \gamma) \right\} \left[\gamma(x, x)\right] / \lambda_x(\mu, \gamma) + \text{IC}(\mu, x).$

Replacing IC $[\lambda(\mu, \gamma), x]/\lambda_x(\mu, \gamma)$ by this quantity in (3.1) yields the desired expression for IC ($\mu^{(1)}$, x). According to Theorem 1,

(3.2)
$$
n^{1/2} \Big[l(\hat{T}_n^*, \hat{V}_n^*) - \lambda(\mu, \gamma) - n^{-1} \sum_{i=1}^n \mathrm{IC} \left[\lambda(\mu, \gamma), X_i \right] \Big] \text{ is } o_p(1).
$$

Consider

$$
l_x(\hat{T}_n^*, \hat{V}_n^*) = -n^{-1} \sum_{i=1}^n J[i/(n+1)]\psi'[(X_{(i)} - \hat{T}_n^*)/\hat{V}_n^*]/\hat{V}_n^*
$$

since the pair (J, ψ') satisfies the assumptions of Theorem 1 and since $n^{1/2} \left[\hat{V}_n^* - \gamma - n^{-1} \sum_{i=1}^n \text{IC}(\gamma, X_i) \right]$ is $o_p(1)$

$$
(3.3) \t n^{1/2} \Big[l_x(\hat{T}_n^*, \hat{V}_n^*) - \lambda_x(\mu, \gamma) - n^{-1} \sum_{i=1}^n \mathrm{IC} \big[\lambda_x(\mu, \gamma), X_i \big] \Big] \; \mathrm{is} \; o_p(1) \; .
$$

Combining (3.2) and (3.3) proves the result. Q.E.D.

Remarks. 10) If μ is a solution of $\lambda(\theta, \gamma) = 0$, i.e. if \hat{T}_n^* and $\hat{T}_n^{(1)}$ are estimating the same parameter, $\hat{T}_n^{(1)}$ has the same asymptotic behavior as the corresponding L-M-estimator. For maximum likelihood estimators a similar conclusion has been reached by LeCam [10].

11) If μ is not a solution of $\lambda(\theta, \gamma)=0$, $\mu^{(1)}$ is the solution of $\lambda(\theta, \gamma)$ $=0$ obtained after one iteration of the Newton Raphson procedure starting at μ . Note that $\hat{T}_n^{(1)}$ and \hat{V}_n^* satisfy the assumptions of Theorem 4, therefore $\hat{T}_n^{(2)}$ the two step estimator satisfies:

234 **LOUIS-PAUL RIVEST**

$$
n^{1/2} \left[\hat{T}_n^{(2)} - \mu^{(2)} - n^{-1} \sum_{i=1}^n \mathrm{IC} \left(\mu^{(2)}, X_i \right) \right] \text{ is } o_p(1) .
$$

If the iteration procedure converges, $\mu^{(2)}$ is closer to a solution of $\lambda(\theta, \gamma)$ =0 than $\mu^{(1)}$ and its influence curve is also closer to the influence curve of the corresponding L-M-estimator. Iterating this result $\hat{T}_n^{(k)}$ the k step estimator should be closer to the corresponding L-M-estimator than $\hat{T}^{(l)}$ for $l < k$.

Now the effect of a lack of robustness of \hat{T}_n^* and \hat{V}_n^* on \hat{T}_n and $\hat{T}_{n}^{(1)}$ is investigated.

For instance suppose that F is t with 3 degrees of freedom, the location is to be estimated with some robust M-estimator, the scale is unknown. An a priori scale estimator, \hat{V}_n^* has to be used. If \hat{V}_n^* is the standard deviation then \hat{V}_n^* is a consistent estimator of the population standard deviation γ . It is easily seen that \hat{V}_n^* belong to the domain of attraction of a stable law with parameter 3/2. Therefore the *rate of convergence* of \hat{V}_n^* , $\alpha(\hat{V}_n^*) = {\sup \beta : n^{1-1/\beta}(\hat{V}_n^*-\gamma) \text{ is } O_n(1)}$ is 3/2. Will the slow convergence of \hat{V}_n^* affect the convergence of \hat{T}_n ? The next theorem answers this question.

So far we have assumed $\alpha(\hat{T}_n^*) = \alpha(\hat{V}_n^*) = 2$, now this assumption is weakened to $\alpha(\hat{V}_n^*)$ and $\alpha(\hat{T}_n^*) \in (1, 2)$.

THEOREM 5. *Assuming*

i) A1) *and* A2) *of Theorem 1 hold.*

ii) $\lambda(x, y)$ is continuously differentiable near (μ, γ) and $\lambda_x(\mu, \gamma) < 0$. *Then if*

1) F is symmetric with respect to μ and J and ϕ are symmetric, $\alpha(\hat{T}_n)=2.$

2) $\lambda_y(\mu, \gamma) \neq 0$, $\alpha(\hat{T}_n) = \alpha(\hat{V}_n^*)$.

PROOF. Assume without loss of generality $\mu = 0$ and $\gamma = 1$. Applying Theorem 1

$$
\[\lambda(\hat{T}_n, \hat{V}_n^*) + n^{-1} \sum_{i=1}^n \phi_{H}(X_i)\] \text{ is } O_p(n^{-1/2}).
$$

Applying the mean value theorem:

$$
\lim_{n} \left[\lambda(\hat{T}_n, \hat{V}_n^*) - \lambda(0, \hat{V}_n^*) \right] / \hat{T}_n \lambda_x(0, 1) = 1
$$

in probability. If 1) holds $\lambda(0, \hat{V}_n^*)=0$ and $n^{1/2}\hat{T}_n$ has the same asymptotic distribution as $n^{-1/2} \sum_{i=1}^{\infty} \phi_{H}(X_i)$, i.e. $\alpha(T_n)=2$. If 2) holds for any \leq 2,

$$
\lim_{n} \mathbf{P}(n^{1-1/\beta}\hat{T}_n > g)
$$
\n
$$
= \lim_{n} \mathbf{P}\left[n^{1-1/\beta}\left(\lambda(0, \hat{V}_n^*) + n^{-1}\sum_{i=1}^n \phi_{ti}(X_i)\right) > \lambda_x(0, 1)g\right]
$$

and $\alpha(\hat{T}_n) = \alpha(\hat{V}_n^*).$

For one step estimators,

THEOREM 6. *Assuming that*

- i) (J, ϕ) and (J, ϕ') satisfy A1) and A2) of Theorem 1.
- ii) $\lambda(x, y)$ has continuous third partial derivatives near (μ, γ) and $\lambda_x(\mu, \gamma)$ < 0.

zf

a) F is symmetric with respect to μ , ϕ and J are symmetric;

*/ * b) $\lambda_{xy}(\mu, \gamma)$ and $\lambda_{3x}(\mu, \gamma)$ are nonzero $\lambda_{3x} = \frac{1}{\partial x^3} \lambda(x, y)$

$$
\alpha(\hat{T}_n^{(1)}) = \min \{ \alpha^3(\hat{T}_n^*), \alpha(\hat{T}_n^*) \alpha(\hat{V}_n^*), 2 \}.
$$

If

c) $\lambda(\mu, \gamma)$, $\lambda_{xy}(\mu, \gamma)$, $\lambda_{(2x)}(\mu, \gamma)$ are nonzero,

$$
\alpha(T_n^{(1)}) = \min \left[\alpha(T_n^*), \alpha(V_n^*) \right].
$$

PROOF. Assume without loss of generality $\mu=0$ and $\gamma=1$. As in Theorem 4, $l(\hat{T}_n^*, \hat{V}_n^*)/l_x(\hat{T}_n^*, \hat{V}_n^*) - \lambda(0, 1)/\lambda_x(0, 1)$ minus

$$
\begin{aligned}\n\left[\lambda(\hat{T}_n^*, \hat{V}_n^*) + n^{-1} \sum_{i=1}^n \phi_{H}(X_i) - \lambda(0, 1) \right] / \lambda_x(0, 1) \\
- \lambda(0, 1) \left[\hat{V}_n^* \lambda_x(\hat{T}_n^*, \hat{V}_n^*) - \lambda_x(0, 1) - n^{-1} \sum_{i=1}^n \phi_{H}^{(1)}(X_i) \right] / \lambda_x^2(0, 1) \\
+ \lambda(0, 1) (\hat{V}_n^* - 1) / \lambda_x(0, 1)\n\end{aligned}
$$

is $o_p(n^{-1/2})$ where $\phi_H^{(1)}(x)$ is the ϕ_H function corresponding to J and ϕ' . If a) and b) hold, $\alpha(\hat{T}_n^{(1)})$ equals

(3.4)
$$
\alpha[\lambda_x(0, 1)\hat{T}^*_n - \lambda(\hat{T}^*_n, \hat{V}^*_n)]
$$

note that $\lambda(x, 1)$ is odd, hence $\lambda_{(2x)}(x, 1)$ is also odd, i.e. $\lambda_{(2x)}(0, 1)=0$. Now using a Taylor series expansion and the fact that $\lambda(0, \hat{V}_n^*)=0$, (3.4) is equal to

$$
\alpha\{\hat{T}_n^*[\lambda_x(0,1)-\lambda_x(0,\hat{V}_n^*)]-(\hat{T}_n^*)^3\lambda_{(3x)}(0,1)\}\,.
$$

This proves the first part. If c) holds,

$$
\alpha(\hat{T}_n^{(1)}) = \alpha [\hat{V}_n^* \lambda_x(\hat{T}_n^*, \hat{V}_n^*) - \lambda_x(0, 1)]
$$

= min [\alpha(\hat{V}_n^*), \alpha(\hat{T}_n^*)]. \tQ.E.D.

Q.E.D.

236 **LOUIS-PAUL RIVEST**

 $Remark.$ 12) If F is symmetric, note that $\alpha(\hat{T}_n^{(1)}) \geq \alpha(\hat{T}_n^{(2)}) \cdots$ therefore to increase the number of iterations improves the rate of convergence of the estimator.

Appendix. Sketch of the proof of Theorem 1

Without losing generality it is assumed that $J(t)$ is positive increasing bounded, $\mu=0$ and $\gamma=1$ and $\psi(x)$ is increasing.

LEMMA 1. *Under assumptions* A2)-ii) *or* A3)-iv)

$$
[\lambda(\hat{T}_n^*, \hat{V}_n^*) - \lambda_n(\hat{T}_n^*, \hat{V}_n^*)] \text{ is } o_p(n^{-1/2})
$$

where $\lambda_n(x, y) = n^{-1} \sum_{i=1}^n J[i/(n+1)]\phi\{[F^{-1}[i/(n+1)]-x]/y\}$.

PROOF. Write $\phi = \phi_1 + \phi_2$ where $\phi_1(x) = \phi(x)$ if $x \ge 0$ and $\phi_2(x) = \phi(x)$ if $x < 0$. Assume $\phi(0) = 0$, i.e., ϕ_1 is positive increasing. For δ large enough such that $(F^{-1}(t)-\hat{T}^*_{n})/\hat{V}^*_{n}>0$ if $t>\delta$.

$$
\lambda_1(\hat{T}_n^*, \hat{V}_n^*) = \sum_{i=[n\delta]+1}^n \int_{(i-1)/n}^{i/n} J(t) \psi_1[(F^{-1}(t) - \hat{T}_n^*)/\hat{V}_n^*]dt.
$$

Since the product of two positive increasing functions is positive increasing,

$$
\lambda_1(\hat{T}_n^*,\hat{V}_n^*) < \lambda_{n1}(\hat{T}_n^*,\hat{V}_n^*) + \int_{n-1}^n J(t)\varphi_1[(F^{-1}(t) - \hat{T}_n^*)/\hat{V}_n^*]dt.
$$

Under A2)-ii) or A3)-iv),

$$
\lim_n n^{1/2} \int_{n-1}^n J(t) \varphi_1[(F^{-1}(t) - \hat{T}_n^*)/\hat{V}_n^*] dt = 0.
$$

Bounding $\lambda_1(\hat{T}_n^*, \hat{V}_n^*)$ from below yields the result for ψ_1 . To prove the result for ϕ_i it can be assumed that $J(t)$ is negative increasing, hence $J(t)\phi[(F^{-1}(t)-\hat{T}^*')/\hat{V}^*]$ is positive decreasing as a product of negative increasing functions. The reasoning is similar to the first part.

Q.E.D.

A) *Proof under* A1) and A2)

Using this result,

$$
n^{-1/2} \sum_{i=1}^n J[i/(n+1)] \varphi[(X_{\zeta_i}) - \hat{T}_n^*)/\hat{V}_n^*] - \lambda(\hat{T}_n^*, \hat{V}_n^*)
$$

can be written as $h_n(Z^{(n)}(\cdot))$ where h_n is a random function defined by

$$
h_n(x(\cdot)) = n^{-1/2} \sum_{i=1}^n J[i/(n+1)] \{\psi[[F^{-1}[i/(n+1)+n^{-1/2}x[i/(n+1)]] - \hat{T}_n^*]/\hat{V}_n^*]-\psi[[F^{-1}[i/(n+1)] - \hat{T}_n^*]/\hat{V}_n^*]]
$$

and $Z^{(n)}(\cdot)$ is the empirical process. Heuristically for large n, $h_n(Z^{(n)}(\cdot))$ can be written as:

$$
n^{-1}\sum_{i=1}^n J[i/(n+1)]Z^{(n)}[i/(n+1)]\left[\frac{d}{dt}\phi[(F^{-1}(t)-\hat{T}_n^*)/\hat{V}_n^*]\right]_{t=i/(n+1)}
$$

this random variable should therefore converge to $\int_a^1 J(t)Z(t)d\varphi[F^{-1}(t)],$ *Z(t)* is the Brownian Bridge.

Lemma 2 of Rivest [11] contains a rigorous proof of this statement under assumption A2) (i.e. $|\psi|$ is bounded or J is 0 near 0 and 1).

Using a similar argument it is shown that $n^{-1/2} \sum_{i=1}^{n} \psi_H(X_i)$ converges to

$$
\int_0^1 Z(t) d\varphi_H[F^{-1}(t)] .
$$

Now since $d\psi_H[F^{-1}(t)] = J(t)d\psi[F^{-1}(t)]$ the two random variables under consideration converge to the same limit. This proves the theorem under A1) and A2).

B) *Proof under* A1) *and* A3) Consider

$$
n^{-1/2} \sum_{i=1}^{n} \{J[i/(n+1)]\phi[(X_{\zeta_i}) - \hat{T}_n^*)/\hat{V}_n^*] - \lambda(\hat{T}_n^*, \hat{V}_n^*) - \phi_{H}[(X_{\zeta_i}) - \hat{T}_n^*)/\hat{V}_n^*] + \lambda_{H}(\hat{T}_n^*, \hat{V}_n^*)\}.
$$

By Lemma 1, this random variable will reach the same limit as

(A.1)
$$
n^{-1/2} \sum_{i=1}^n \int_{[F^{-1}[i/(n+1)]-}^{[X_{(x)}-1]}\tilde{V}_n^* [J[i/(n+1)]-J[F(x)]]d\psi(x).
$$

Using assumption A3), for any $\eta > 0$, it is possible to find $\delta > 0$ such that

$$
n^{-1/2}\left|\sum_{i=1}^{[n\delta]}(\cdots)+\sum_{i=n-[n\delta]+1}^{n}(\cdots)\right| \text{ is } O_p(\eta).
$$

The argument used to prove the theorem under A1) and A2) serves to prove

$$
n^{-1/2}\sum_{i=[n\delta]+1}^{n-[n\delta]}(\cdots) \text{ is } o_p(1).
$$

Therefore (A.1) is $o_p(1)$.

Write $\phi_H = \phi_H + \phi_{2H}$ where $\phi_H = \phi_H$ when $\phi_H > 0$, 0 if not. To prove the result it suffices to show that

(A.2)
$$
n^{-1/2} \sum_{i=1}^{n} {\{\phi_{jH}[(X_i - \hat{T}_n^*)/\hat{V}_n^*] - \lambda_{jH}(\hat{T}_n^*, \hat{V}_n^*) - \phi_{jH}(X_i) + E(\phi_{jH}(X_i))\}}
$$
 is $o_p(1)$ for $j=1, 2$.

Take $j=1$. For any $\varepsilon > 0$, by the assumption on \hat{T}_n^* and \hat{V}_n^* it is possible to find constants C_0 , C_1 such that $|\hat{T}_n^*| < C_0 n^{-1/2}$ and $|\hat{V}_n^* - 1| < C_0 n^{-1/2}$ and $|\lambda_{jH}(\hat{T}_n^*, \hat{V}_n^*)|$ < $C_1n^{-1/2}$ for large *n* except on a set of probability ε . Similarly one can find C_2 such that

$$
|\lambda_{_JH}(-C_0n^{-1/2},\, 1\pm C_0n^{-1/2})|\!<\!C_2n^{-1/2}
$$

for large *n*. Now take $\delta = \varepsilon/(C_2 + C_1)$, since $\psi_{H}(x)$ is increasing, null for small x , positive for large ones,

$$
n^{-1/2} \sum_{i=n-\lfloor n\delta\rfloor+1}^{n} \psi_{1H}[(X_{(i)} - \hat{T}_n^*)/\hat{V}_n^*] - \lambda_{1H}(\hat{T}_n^*, \hat{V}_n^*)
$$

$$
\leq \varepsilon + n^{-1/2} \sum_{i=n-\lfloor n\delta\rfloor+1}^{n} \psi_{1H}[(X_{(i)} - k_n)/s_n] - \lambda_{1H}(k_n, s_n)
$$

where $k_n = -C_0 n^{-1/2}$, $s_n = 1 - k_n$. Therefore (A.2) is less than

$$
\varepsilon + n^{-1/2} \sum_{i=1}^{n} \phi_{1H}[(X_i - k_n)/s_n] - \lambda_{1H}(k_n, s_n) - \phi_{1H}(X_i) + \mathbb{E}(\phi_{1H}(X_i))
$$

+
$$
n^{-1/2} \sum_{i=1}^{n-[n\delta]} \phi_{1H}[(X_{(i)} - \hat{T}_n^*)/\hat{V}_n^*] - \lambda_{1H}(\hat{T}_n^*, \hat{V}_n^*)
$$

-
$$
\phi_{1H}[(X_{(i)} - k_n)/s_n] + \lambda_{1H}(k_n, s_n).
$$

The first summation is summing independent variables with 0 expectation. It is easily seen that its variance goes to 0. The second summation is $o_p(1)$ by an argument used previously hence (A.2) is less than ϵ . Similarly it can be shown that (A.2) is bigger than $-\epsilon$ for large *n*, therefore (A.2) is $o_p(1)$ when $j=1$. The proof when $j=2$ is $\sum_{i=1}^{\infty}$ similar.

Acknowledgment

This work was done while I was a graduate student. I want to thank my advisers Professors Harold Ruben and Constance van Eeden for their valuable comments and helpful suggestions.

UNIVERSITÉ LAVAL

ASYMPTOTIC DISTRIBUTIONS 239

REFERENCES

- [1] Andrews, D. F. et al. (1972). *Robust Estimates of Location: Survey and Advances*, Princeton University Press, Princeton, N.J.
- [2] Bickel, P. J. and Lehmann, E. L. (1976). Descriptive statistics for nonparametric models, III, *Ann. Statist.,* 4, 1139-1158.
- [3] Carroll, R. J. (1978). On almost sure expansions for M-estimates, *Ann. Statist., 6,* 314-318.
- [4] Filippova, A. A. (1962). Mises' theorem on the asymptotic behaviour of functionals of empirical distribution functions and its statistical applications, *Theory Prob. Appl.,* 7, 24-57.
- [5] Hampel, F. R. (1974). The influence curve and its role in robust estimation, *J. Amer. Statist. Ass.,* 69, 363-393.
- [6] Huber, P. J. (1964). Robust estimation of a location parameter, *Ann. Math. Statist.,* 35, 73-101.
- [7] Huber, P. J. (1967). The behavior of maximum likelihood estimates under non standard conditions, *Proc. 5th Berkeley Syrup. Math. Statist. Prob.,* Univ. of California Press, 221-233.
- [8] Huber, P. J. (1972). Robust statistics: A review, *Ann. Math. Statist.,* 43, 1041-1067.
- [9] Jaeckel, L. A. (1971). Robust estimates of location: Symmetry and asymmetric contamination, *Ann. Math. Statist.,* 42, 1020-1034.
- [10] LeCam, L. (1956). On the asymptotic theory of estimation and testing hypothesis, *Proc. 3rd Berkeley Syrup. Math. Statist. Prob.,* Univ. of California Press, 129-156.
- [11] Rivest, L. P. (1979). An asymptotic theorem in the location scale model, Tech. Rep., Univ. of Toronto.
- [12] Stigler, M. S. (1974). Linear functions of order statistics with smooth weight functions, *Ann. Statist.,* 4, 676-693. (Correction, 7, 466.)